PROBLEMS AND SOLUTIONS 2

PROBLEM 5.2:1
Statement. Find the solution of
Ut = AP Ugy, x,t € R,
{umm = (@), wx,0) = g(a),
in the following cases:

(b) f(x) = 6_$2, g(z) = 2a:ze_”2,
(d) f(z)=1, g(z) =0,
(f) f(z) =0, g(x) = sin® x.

Solution. We can directly apply D’Alambert’s formula

flx+at)+ f(x—at) 1 /‘”af
t) = — ds.
u(x,t) 5 + % ), ., g(s)ds
(b) We have
/Qxe_xzdx = e 4 C,
hence
—(z+at)? —(z—at)? 1 z+at
u(zx,t) = ¢ —;e + % 2ase™* ds
a Jy—at
—(z+at)? + —(z—at)? 1
=° 2 : 5 (e (rhalt g gmlematy
— ef(xfat)2.
(d) u(zx,t) = 1.
(f) We have

1,  sin2(z — at) —sin2(x + at)

1 z+at 1 z+at
u(z,t) = 2/ sin? sds = — (1 —cos2s)ds = 5t + <
a Jz—at a Jr—at a

PROBLEM 5.2:4

Statement. Solve

U = APUgy, 0< 1z <00, —00<t< 00,
uz(0,t) =0,
u(z,0) = 23, w(x,0) = 0.
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Solution. We need first to extend the initial data by even reflection to the entire real line
—00 < ¢ < 0o, apply D’Alambert’s formula to solve the problem on the line, and finally
restrict to the half line z > 0. The even reflection of the initial datum z3 is |z|3. Let us apply
the D’Alambert formula

— atf? ¢?
u(q:,t):’x at| ;—|:E-|-a| '

Note that since f(z) = |z|® is a C? function, u(z,t) satisfies the wave equation for all x and
t. We can calculate

3(x — at)|x — at| + 3(z + at)|x + at|

ux(xvt) = 9

which implies that u,(0,t) = 0 for all ¢. To solve the original problem, we just need to restrict
our attention to the region x > 0.

PROBLEM 5.1:1
Statement. Solve the problem
utt:a2um, 0<x<L, —0o<t<oo,
u(0,t) = u(L,t) =0,
u(x,O) = f(.T), ut($’0) :g(x),

in the following cases

(a) f(x) = 3sin(%) —sin(*F2), g(w) = 3sin(3F2),
(b) f(x) =sin®(F), g(x) =0,

(c) f(z) =0, g(x) = sin(7) cos?(7F),

(d) f(z)=sin’(%F), g(z) = sin(F) cos*()

Solution. If the initial data satisfy

N N
=Y ausin(*7),  gla) =Y Busin(To),
n=1 n=1

then the solution is given by

N

u(x,t) = Z <04n cos(m;at) + 5ni Sin<n7£at>) sin(nLﬂ)_

nmwa

n=1
Applying this formula, we get the following.

(a) u(w,t) = 3cos(TL)sin(ZE) — cos(42%) sin(272) + H sin(234L) sin(272).

(b) From the triple angle formula sin 36 = 3sin @ — 4sin® #, we have sin®§ = % sinf — % sin 36,
hence u(z,t) = 2 cos(Z2) sin(ZE) — + cos(224L) s1n(3?).

(c) Again using the triple angle formula g(z) = sm( ) — sind(2E) = Lsin(TE) + sin(3L),
which leads to u(z,t) = 7% sin(T%) sin(%) + - sin(374) sin(372).

(d) By combining (b) and (c) above, we 1nfer

u(x,t) = (i cos( ™= ) + m Sln(”gt)) sin(%*) + (—% cos(37mt) + 12m sm(3’TLat)) s1n(3zx).
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PROBLEM 5.1:6
Statement. Consider the problem
Ut = Ugz, 0L <, —00 <t <00,
u(0,t) =0, wu(m,t)=0,
u(z,0) = z(r —x), w(x,0)=0.

(a) Find a function that satisfies the equation and the boundary conditions exactly, and
the initial condition to within an error of .001.

(b) By computing uy and g, at (z,t) = (0,0), show that there is no C? solution of the
problem.

Solution. (a) Let us first compute the sine series coefficients for f(x) = x(7m — x), which are
given by

2 s
:/ f(x)sinnx dz, n=12,....
T Jo
We need the integrals

s - 1 ™ 1 n+1
/ rsinnzde = — T TE / cosnzdxr = ()777’
0 n 0 nJg n
and
71' 2 7" ™
2
/ 2sinnrdr = — L Cosny +/ z cosnx dx
0 n 0 n 0
(_1)n+17.r2 9 ) m 92 T .
=-———+ Zzsinnz| — — sinnz dz
n n o 1 Jo
_(=1)ntig? N 2cosnx|™  (—1)"Hx? N 2((=1)" —1)
N n n? | - n n? ’
Hence
b, — (_1)n+12l _ (_1)n+12l + 4(1 — (_Un) _ 4(1 - (_1)n)
" n n n2 n2mw
and the sine series for f is
_8 i n(2m + )z
™ 2m—|— 1
m=0

Obviously, for any M > 0, the function
M .
8 sin(2m + 1)z
t) =— _— 2 1)t
m(x,t) anz::o @m 4 1)2 cos(2m + 1)t,

satisfies the wave equation uy = g, and the boundary conditions u(0,t) = u(mw,t) = 0. We
just need to choose M so large that |ups(z,0) — f(z)| < .001 for all 0 < =z < 7w. We can
estimate this error as follows:

8 > sin(2m + 1)z S — 1
_ < = . S e
F@) —un@Ol< 21 D oo | Sh 2 Gmrip

Y -
T o 02 M+ D

Therefore, to ensure |up(z,0) — f(z)| < .001, it is sufficient to take M > 2000 — 1 je
M > 637.
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PROBLEM 5.1:9
Statement. Use separation of variables to find all product solutions of the problem
{utt:azum—kut, 0<x<L, —-oco<t<oo,
u(0,t) =0, w(L,t) =0,

for the string with air resistance and fixed ends (assume k > 0).
Solution. Putting u(z,t) = X (z)T(t), we have

XT" =a®X"T — kEXT,
and division by XT gives

T + T X
where o is a constant. If o = 0, then the equation for X becomes X" meaning that

=0,
X (z) = Ax + B. But the boundary conditions X (0) = X (L) = 0 forces X (z) = 0. So this
case is trivial. Now if & = A% > 0 with A > 0, we have

X(x) = Ae* + Be 7,

The boundary conditions give A + B = 0 and Ae* + Be™* = 0, implying that A = B = 0.
Finally, consider the remaining case o = —\? < 0 with A\ > 0. The general solution for X is
X(z) = Acos(Ax) + Bsin(Ax),
and from X (0) = 0 we immediately get A = 0. Then X(L) = Bsin(AL) = 0 gives the

condition A = “* for some positive integer n. To conclude the analysis of the equation for X,

the only solutions are

Xo(z) = sin(”%‘””), n=1,2,...,

and their linear combinations. ) s
We shall consider the equation for 7. With a = —\? = — "5, we have

T" + kT + Ww2T =0,

where w, = "7%. This (standard equation for damped oscillator) can easily be solved by the
ansatz T(t) = e, which yields

k k2

If w, < %, we have two monotone solutions

_ k k2
T,(t) = Ae Fnt 4 Be7hnt  g* = Sy -l
If w, > %, we have the oscillating solutions
k2
T, (t) = e—kt/2(A cos Wt + Bsinwyt), On = | w2 — e

If it so happens that w, = %, we have
To(t) = e */2(A + Bt).

To conclude, all product solutions of the given problem are given by
u(x,t) = Ty(x) sin(—nzx),
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as n ranges over the positive integers, where T, is one of the above three functions depending

on how w, = "I% compares with % Note that given n, T}, is one and only one of the above

three choices.



