
SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 7

Problem 5.1:6

Statement. Consider the problem
utt = uxx, 0 ≤ x ≤ π, −∞ < t <∞,
u(0, t) = 0, u(π, t) = 0,

u(x, 0) = x(π − x), ut(x, 0) = 0.

(a) Find a function that satisfies the equation and the boundary conditions exactly, and
the initial condition to within an error of .001.

(b) By computing utt and uxx at (x, t) = (0, 0), show that there is no C2 solution of the
problem.

Solution. (a) Let us first compute the sine series coefficients for f(x) = x(π − x), which are
given by

bn =
2

π

∫ π

0
f(x) sinnx dx, n = 1, 2, . . . .

We need the integrals∫ π

0
x sinnx dx = − x cosnx

n

∣∣∣π
0

+
1

n

∫ π

0
cosnx dx =

(−1)n+1π

n
,

and ∫ π

0
x2 sinnx dx = − x2 cosnx

n

∣∣∣∣π
0

+
2

n

∫ π

0
x cosnx dx

=
(−1)n+1π2

n
+

2

n2
x sinnx

∣∣∣∣π
0

− 2

n2

∫ π

0
sinnx dx

=
(−1)n+1π2

n
+

2 cosnx

n2

∣∣∣∣π
0

=
(−1)n+1π2

n
+

2((−1)n − 1)

n2
.

Hence

bn = (−1)n+1 2π

n
− (−1)n+1 2π

n
+

4(1− (−1)n)

n2π
=

4(1− (−1)n)

n2π
,

and the sine series for f is

f(x) =
8

π

∞∑
m=0

sin(2m+ 1)x

(2m+ 1)2
.

Obviously, for any M > 0, the function

uM (x, t) =
8

π

M∑
m=0

sin(2m+ 1)x

(2m+ 1)2
cos(2m+ 1)t,
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satisfies the wave equation utt = uxx and the boundary conditions u(0, t) = u(π, t) = 0. We
just need to choose M so large that |uM (x, 0) − f(x)| ≤ .001 for all 0 ≤ x ≤ π. We can
estimate this error as follows:

|f(x)− uM (x, 0)| ≤ 8

π

∣∣∣∣∣
∞∑

m=M+1

sin(2m+ 1)x

(2m+ 1)2

∣∣∣∣∣ ≤ 8

π

∞∑
m=M+1

1

(2m+ 1)2

≤ 4

π

∫ ∞
2M+1

dθ

θ2
=

4

(2M + 1)π
.

Therefore, to ensure |uM (x, 0) − f(x)| ≤ .001, it is sufficient to take M ≥ 2000
π − 1

2 , i.e.,
M ≥ 637.

Problem 5.1:9

Statement. Use separation of variables to find all product solutions of the problem{
utt = a2uxx − kut, 0 ≤ x ≤ L, −∞ < t <∞,
u(0, t) = 0, u(L, t) = 0,

for the string with air resistance and fixed ends (assume k > 0).

Solution. Putting u(x, t) = X(x)T (t), we have

XT ′′ = a2X ′′T − kXT ′,
and division by XT gives

T ′′

T
+ k

T ′

T
= a2

X ′′

X
= a2α,

where α is a constant. If α = 0, then the equation for X becomes X ′′ = 0, meaning that
X(x) = Ax + B. But the boundary conditions X(0) = X(L) = 0 forces X(x) ≡ 0. So this
case is trivial. Now if α = λ2 > 0 with λ > 0, we have

X(x) = Aeλx +Be−λx.

The boundary conditions give A + B = 0 and Aeλ + Be−λ = 0, implying that A = B = 0.
Finally, consider the remaining case α = −λ2 < 0 with λ > 0. The general solution for X is

X(x) = A cos(λx) +B sin(λx),

and from X(0) = 0 we immediately get A = 0. Then X(L) = B sin(λL) = 0 gives the
condition λ = nπ

L for some positive integer n. To conclude the analysis of the equation for X,
the only solutions are

Xn(x) = sin(
nπx

L
), n = 1, 2, . . . ,

and their linear combinations.
We shall consider the equation for T . With α = −λ2 = −n2π2

L2 , we have

T ′′ + kT ′ + ω2
nT = 0,

where ωn = nπa
L . This (standard equation for damped oscillator) can easily be solved by the

ansatz T (t) = eµt, which yields

µ = −k
2
±
√
k2

4
− ω2

n.

If ωn <
k
2 , we have two monotone solutions

Tn(t) = Ae−k
+
n t +Be−k

−
n t, k±n =

k

2
±
√
k2

4
− ω2

n.
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If ωn >
k
2 , we have the oscillating solutions

Tn(t) = e−kt/2(A cos ω̃nt+B sin ω̃nt), ω̃n =

√
ω2
n −

k2

4
.

If it so happens that ωn = k
2 , we have

Tn(t) = e−kt/2(A+Bt).

To conclude, all product solutions of the given problem are given by

u(x, t) = Tn(x) sin(
nπx

L
),

as n ranges over the positive integers, where Tn is one of the above three functions depending
on how ωn = nπa

L compares with k
2 . Note that given n, Tn is one and only one of the above

three choices.

Problem 5.2:1

Statement. Find the solution of{
utt = a2uxx, x, t ∈ R,
u(x, 0) = f(x), ut(x, 0) = g(x),

in the following cases:

(b) f(x) = e−x
2
, g(x) = 2axe−x

2
,

(d) f(x) = 1, g(x) = 0,
(f) f(x) = 0, g(x) = sin2 x.

Solution. We can directly apply D’Alambert’s formula

u(x, t) =
f(x+ at) + f(x− at)

2
+

1

2a

∫ x+at

x−at
g(s)ds.

(b) We have ∫
2xe−x

2
dx = −e−x2 + C,

hence

u(x, t) =
e−(x+at)

2
+ e−(x−at)

2

2
+

1

2a

∫ x+at

x−at
2ase−s

2
ds

=
e−(x+at)

2
+ e−(x−at)

2

2
+

1

2
(−e−(x+at)2 + e−(x−at)

2
)

= e−(x−at)
2
.

(d) u(x, t) = 1.
(f) We have

u(x, t) =
1

2a

∫ x+at

x−at
sin2 s ds =

1

4a

∫ x+at

x−at
(1− cos 2s)ds =

1

2
t+

sin 2(x− at)− sin 2(x+ at)

8a
.

Problem 5.2:4

Statement. Solve 
utt = a2uxx, 0 ≤ x <∞, −∞ < t <∞,
ux(0, t) = 0,

u(x, 0) = x3, ut(x, 0) = 0.
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Solution. We need first to extend the initial data by even reflection to the entire real line
−∞ < c < ∞, apply D’Alambert’s formula to solve the problem on the line, and finally
restrict to the half line x ≥ 0. The even reflection of the initial datum x3 is |x|3. Let us apply
the D’Alambert formula

u(x, t) =
|x− at|3 + |x+ at|3

2
.

Note that since f(x) = |x|3 is a C2 function, u(x, t) satisfies the wave equation for all x and
t. We can calculate

ux(x, t) =
3(x− at)|x− at|+ 3(x+ at)|x+ at|

2
,

which implies that ux(0, t) = 0 for all t. To solve the original problem, we just need to restrict
our attention to the region x ≥ 0.


