SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 7

Problem 5.1:6

Statement. Consider the problem

$$\begin{cases} u_{tt} = u_{xx}, & 0 \le x \le \pi, \quad -\infty < t < \infty, \\ u(0,t) = 0, & u(\pi,t) = 0, \\ u(x,0) = x(\pi-x), & u_t(x,0) = 0. \end{cases}$$

(a) Find a function that satisfies the equation and the boundary conditions exactly, and the initial condition to within an error of .001.

(b) By computing u_{tt} and u_{xx} at (x,t) = (0,0), show that there is no C^2 solution of the problem.

Solution. (a) Let us first compute the sine series coefficients for $f(x) = x(\pi - x)$, which are given by

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx, \qquad n = 1, 2, \dots$$

We need the integrals

$$\int_0^{\pi} x \sin nx \, \mathrm{d}x = -\left. \frac{x \cos nx}{n} \right|_0^{\pi} + \frac{1}{n} \int_0^{\pi} \cos nx \, \mathrm{d}x = \frac{(-1)^{n+1} \pi}{n},$$

and

$$\int_0^{\pi} x^2 \sin nx \, dx = -\frac{x^2 \cos nx}{n} \Big|_0^{\pi} + \frac{2}{n} \int_0^{\pi} x \cos nx \, dx$$
$$= \frac{(-1)^{n+1} \pi^2}{n} + \frac{2}{n^2} x \sin nx \Big|_0^{\pi} - \frac{2}{n^2} \int_0^{\pi} \sin nx \, dx$$
$$= \frac{(-1)^{n+1} \pi^2}{n} + \frac{2 \cos nx}{n^2} \Big|_0^{\pi} = \frac{(-1)^{n+1} \pi^2}{n} + \frac{2((-1)^n - 1)}{n^2}.$$

Hence

$$b_n = (-1)^{n+1} \frac{2\pi}{n} - (-1)^{n+1} \frac{2\pi}{n} + \frac{4(1-(-1)^n)}{n^2\pi} = \frac{4(1-(-1)^n)}{n^2\pi}$$

and the sine series for f is

$$f(x) = \frac{8}{\pi} \sum_{m=0}^{\infty} \frac{\sin(2m+1)x}{(2m+1)^2}.$$

Obviously, for any M > 0, the function

$$u_M(x,t) = \frac{8}{\pi} \sum_{m=0}^{M} \frac{\sin(2m+1)x}{(2m+1)^2} \cos(2m+1)t,$$

Date: Winter 2012.

satisfies the wave equation $u_{tt} = u_{xx}$ and the boundary conditions $u(0,t) = u(\pi,t) = 0$. We just need to choose M so large that $|u_M(x,0) - f(x)| \leq .001$ for all $0 \leq x \leq \pi$. We can estimate this error as follows:

$$|f(x) - u_M(x,0)| \le \frac{8}{\pi} \left| \sum_{m=M+1}^{\infty} \frac{\sin(2m+1)x}{(2m+1)^2} \right| \le \frac{8}{\pi} \sum_{m=M+1}^{\infty} \frac{1}{(2m+1)^2} \le \frac{4}{\pi} \int_{2M+1}^{\infty} \frac{\mathrm{d}\theta}{\theta^2} = \frac{4}{(2M+1)\pi}.$$

Therefore, to ensure $|u_M(x,0) - f(x)| \leq .001$, it is sufficient to take $M \geq \frac{2000}{\pi} - \frac{1}{2}$, i.e., $M \geq 637$.

Problem 5.1:9

Statement. Use separation of variables to find *all* product solutions of the problem

$$\begin{cases} u_{tt} = a^2 u_{xx} - k u_t, & 0 \le x \le L, & -\infty < t < \infty, \\ u(0,t) = 0, & u(L,t) = 0, \end{cases}$$

for the string with air resistance and fixed ends (assume k > 0).

Solution. Putting u(x,t) = X(x)T(t), we have

$$XT'' = a^2 X''T - kXT',$$

and division by XT gives

$$\frac{T''}{T} + k\frac{T'}{T} = a^2 \frac{X''}{X} = a^2 \alpha,$$

where α is a constant. If $\alpha = 0$, then the equation for X becomes X'' = 0, meaning that X(x) = Ax + B. But the boundary conditions X(0) = X(L) = 0 forces $X(x) \equiv 0$. So this case is trivial. Now if $\alpha = \lambda^2 > 0$ with $\lambda > 0$, we have

$$X(x) = Ae^{\lambda x} + Be^{-\lambda x}.$$

The boundary conditions give A + B = 0 and $Ae^{\lambda} + Be^{-\lambda} = 0$, implying that A = B = 0. Finally, consider the remaining case $\alpha = -\lambda^2 < 0$ with $\lambda > 0$. The general solution for X is

$$X(x) = A\cos(\lambda x) + B\sin(\lambda x)$$

and from X(0) = 0 we immediately get A = 0. Then $X(L) = B \sin(\lambda L) = 0$ gives the condition $\lambda = \frac{n\pi}{L}$ for some positive integer n. To conclude the analysis of the equation for X, the only solutions are

$$X_n(x) = \sin(\frac{n\pi x}{L}), \qquad n = 1, 2, \dots,$$

and their linear combinations.

We shall consider the equation for T. With $\alpha = -\lambda^2 = -\frac{n^2\pi^2}{L^2}$, we have

$$T'' + kT' + \omega_n^2 T = 0,$$

where $\omega_n = \frac{n\pi a}{L}$. This (standard equation for damped oscillator) can easily be solved by the ansatz $T(t) = e^{\mu t}$, which yields

$$\mu = -\frac{k}{2} \pm \sqrt{\frac{k^2}{4} - \omega_n^2}$$

If $\omega_n < \frac{k}{2}$, we have two monotone solutions

$$T_n(t) = Ae^{-k_n^+ t} + Be^{-k_n^- t}, \qquad k_n^{\pm} = \frac{k}{2} \pm \sqrt{\frac{k^2}{4} - \omega_n^2}.$$

If $\omega_n > \frac{k}{2}$, we have the oscillating solutions

$$T_n(t) = e^{-kt/2} (A \cos \tilde{\omega}_n t + B \sin \tilde{\omega}_n t), \qquad \tilde{\omega}_n = \sqrt{\omega_n^2 - \frac{k^2}{4}}.$$

If it so happens that $\omega_n = \frac{k}{2}$, we have

$$T_n(t) = e^{-kt/2}(A + Bt).$$

To conclude, all product solutions of the given problem are given by

$$u(x,t) = T_n(x)\sin(\frac{n\pi x}{L})$$

as *n* ranges over the positive integers, where T_n is one of the above three functions depending on how $\omega_n = \frac{n\pi a}{L}$ compares with $\frac{k}{2}$. Note that given *n*, T_n is one and only one of the above three choices.

PROBLEM 5.2:1

Statement. Find the solution of

$$\begin{cases} u_{tt} = a^2 u_{xx}, & x, t \in \mathbb{R}, \\ u(x,0) = f(x), & u_t(x,0) = g(x) \end{cases}$$

in the following cases:

(b) $f(x) = e^{-x^2}, g(x) = 2axe^{-x^2},$ (d) f(x) = 1, g(x) = 0,(f) $f(x) = 0, g(x) = \sin^2 x.$

Solution. We can directly apply D'Alambert's formula

$$u(x,t) = \frac{f(x+at) + f(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} g(s) \mathrm{d}s.$$

(b) We have

$$\int 2xe^{-x^2}\mathrm{d}x = -e^{-x^2} + C,$$

hence

$$u(x,t) = \frac{e^{-(x+at)^2} + e^{-(x-at)^2}}{2} + \frac{1}{2a} \int_{x-at}^{x+at} 2as e^{-s^2} ds$$
$$= \frac{e^{-(x+at)^2} + e^{-(x-at)^2}}{2} + \frac{1}{2} (-e^{-(x+at)^2} + e^{-(x-at)^2})$$
$$= e^{-(x-at)^2}$$

(d) u(x,t) = 1. (f) We have

$$u(x,t) = \frac{1}{2a} \int_{x-at}^{x+at} \sin^2 s \, \mathrm{d}s = \frac{1}{4a} \int_{x-at}^{x+at} (1-\cos 2s) \mathrm{d}s = \frac{1}{2}t + \frac{\sin 2(x-at) - \sin 2(x+at)}{8a}$$

Problem 5.2:4

Statement. Solve

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 \le x < \infty, & -\infty < t < \infty, \\ u_x(0,t) = 0, & \\ u(x,0) = x^3, & u_t(x,0) = 0. \end{cases}$$

Solution. We need first to extend the initial data by even reflection to the entire real line $-\infty < c < \infty$, apply D'Alambert's formula to solve the problem on the line, and finally restrict to the half line $x \ge 0$. The even reflection of the initial datum x^3 is $|x|^3$. Let us apply the D'Alambert formula

$$u(x,t) = \frac{|x-at|^3 + |x+at|^3}{2}.$$

Note that since $f(x) = |x|^3$ is a C^2 function, u(x,t) satisfies the wave equation for all x and t. We can calculate

$$u_x(x,t) = \frac{3(x-at)|x-at| + 3(x+at)|x+at|}{2},$$

which implies that $u_x(0,t) = 0$ for all t. To solve the original problem, we just need to restrict our attention to the region $x \ge 0$.