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Gauss' law

If instead of point charges, charge density p(x) is given, the electric field is
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For any closed surface S, we have

0 otherwise.
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Therefore, with V the volume enclosed by S, and Q the total charge in V
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The divergence theorem gives

fE(x)-dezf V-E(y)dy.
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Since V is abritrary, we infer Gauss’ law: V-E=4nCp.
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Scalar potential

On the other hand, we have
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So the scalar potential

Co(y)
= dy,
@(x) ng Xyl y,

satisfies
E=-Vg, and so —Ap =4nCp.

If 4mCp(x) =d(x—2), then
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Fundamental solution

The fundamental solution of the Laplace operator is
1
D(x,2) = ———— which satisfies —AD(x,2) =6(x—2).

Am|x—z|’

If f is continuous and has bounded support, then

px) = f D(x,2)f(2)dz,
R3

satisfies
-Ap=f.
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