(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 185794, 3265] NotebookOptionsPosition[ 184164, 3208] NotebookOutlinePosition[ 184503, 3223] CellTagsIndexPosition[ 184460, 3220] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s1", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "1"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.5067732524618883`*^9, 3.506773271635149*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s1", "[", "x", "]"}], ",", " ", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.5067730683201227`*^9, 3.506773072071497*^9}, {3.506773265035424*^9, 3.506773266731011*^9}, { 3.506773366731361*^9, 3.506773395634931*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwd2HlUTd/7B/AGdIvQRFSGTElKhpLK+9YHUTQhQxqJJJqoEBkSilRIkkIq okgqklSKShIVFVFpJI23e8+50/nt3/evZ73WOnfts/d5hr3ubHcfew8pCQkJ aUkJif/FN3I1v1f4rZb4Xzy9el5vkfGMqzY4o1beq3HVBfynenuaYl0w66et emOsDzqVPak8Ei8ViBqzY0PRvC6sNJXE607MmpjYK2hwiV1wm8S220P6VrHJ sPee1hxP4tht02XsYp4gZnhXTlzsE8TCMj7o8hsYl1vKmQcUg5t7o/Txvlr4 HrN2y/GtAO9K041iy0YcfOERJTWnFsOltUMl/b9Q37NBNt29HkMRcznNch2I 0ONK5O1oROs8A1OPsm74Laq4Xpz6A2/invhZ5fwFf/eBrJZDrbBpsd9c7jsA 99cOttF723Hv+dE9xvuGsHuovrj4QgdCJlv5bl8wgktL8n3SwrvQNHLjxMQ8 DqSK8w3DjvWgs/mIocRCLhS0rWp+xf9Bv84E3qUUHtYnm6cMxvZBNGmWze8+ ClMHqteF5vdjsJ99YLsBHwnvCySl9w9C6sXJned3CWCiYcbM2jOEbz/uLru/ WYhFrZM7ThweBuehUVI9WwTr7lmlgcHDeLjlsvKENSL49i+54xMyjDbHWa/N LER4LrTd5RY2jJUTVt1P3ySCybSY+jXXhkGNfVnmtFOEjfYK5eOfD2PuqUVz AgJE8C5TSLs5MoybfYMi9n0RMh8oeub6j8CktKjSWUKMsIY3ZtJBI6DblCx3 SYuxS+qgmt3xEZw/4pm0bZwYcrve1/SdHUG2zrJSiwli7J0UsmLu9RFcn249 KK8qxqzATqmr+SPoNFTN19cT49p/L277CkdwX8XoeIOjGCE/neoWhXNgLFVY diZLDI6F6W2PCA6Uk1i2PU/F8M5W35ccxUF48oZ8qxwxHMO+8xVvcHDKXaw6 4YUYq7R3aPLTORjQj50bUCIGfWSLX0UlB0fbmg2b68QIlLea5CE/CmHy5aXj eWL0B2o3JSmMwsL6cd8imrxvq2xKo8oo9tPPT1gKxHDIqTDYOGMUj+X+zTnN iLFixzrnZXqjmPGnJaRehgHnvlmmpN0oCrp92EqqDPxMVlolXRuF1sMspUED BhKHroVeiR/F/AfFMY9WMohKHsw5lTiKLS8StT1WMciQeqi++/4oNvVbPP5i yqC9Ylr/guejsLM72xe3hsGWrYLo7LpRZBTkbCizY2BwqOhrmSIXuQGG77K9 GJQlTx+fN4WLj2e/HljizcD+cyDSp3OxWzRjYeZBBoeW6z24qMlFwFebP3d8 GaTzk49aL+UifXV2mF8gA9Xzp9Ub7bi4ZtQwNv80A37yGve/0VzsEX249yWO wWqeaaz+dS6WLxqV14tncNrasDToJheyOgOGF28yYIkWao65x4WDxMh7g0QG KjsntavncNG4P7oh8C6DJcrNbtYNXMQZOsVGPGIQcKAu5loTF/+8dvwqfcwg r7S6pLmFC1Z4Vi+VycDU783sfV1c/FUfb+D8lIFlzf22UB4X2sE6j+RzGXhc 8HHLnsbD97pLHOY1gwe/PGN4Gjzc7lGUV37DoM/AvcRUk4e3a1La5hUz8O/c MrtKm4fCL9eKzEsZnDJf1dZuzIO87b21bu8YJAjHuCk78/BDdkGwfg2DWt8E 16B7POzW3TGq8YOBdvRkweE0Yp0VzHfis0/Cr/tn8LA4KVU+voV8j37/qoPP eNiur7JS7heD2weslu8p5eGx1UDJ1zYGXnuFMnbtPOgkUsmTu8n3Oud/z7qL hz6Vzn9ZxBqpPSYb//DQkPISVj1k/d/1fhbDPEw04PSf6GVg6Jb53VSKQndO 2rEPfxmM2eX8RFuTQmTdXMgMMnA+Xr9Baz4FXs369+eI8xMsO+ZpUzCZXmEv NUTWbzKYNnspBdfSlwGjxJ8dJp2dak7BZ1n8j7cjZH+B5zRU1lGIzyg7uZTD IOy6IF/RksLZPoW5ycQr67v75O0pBHWPBPmPMkiyK3YY404hfd2sNZI8BpSv wZDkXgpqbxPFLsT20Y8jmf0UdH1kCguJx36KL+b7UbBwj4YvxcB7o5/20GkK /3G/er6hGbw70F3Wf46C8hbtVRP5DGZGOrn0XaQwW99soiPxl8oN17pjKCR4 pRX1ExtZaIpb7pL162shFjBYnlJ14X0qhRPVPgPGQga6jL9S9kMKC/JO5gYR a+a/1QrLpvBoyc+wXmJ1Je+cg7kUokcWRM0UMZjio7x620sKjhPqMzcTj1/g sVm7hEJh57olecTjzsr/VCqnEFEqc7WDWOJXrqeogsLzxTMnKIhJ/ceNO1lb SyF2oYXZHuL+4SxWQT2F/GJ7UQRxj/W2qymNFFRGMj49IW4Z9+BBYCsF7+CV +SPEje62y1w7KEwq3F+tyJD9FlGvN/RQWB3yi6dHXD397vplZE6c4d8wsiJ+ F7ihTn2Q7Od6TMwe4uIvQ07jOBQ+V1Yxx4kLdBN6BngUNi8xD4shfh5hHtAk oPA9lDsjlfhJ1x9RKUNh+6WuT3nEGeZXLzyWpiFloXDjHfH9JGOlOBkau4qO HK4nTuL/vh06nsbiGUqercTxDpe09k+iEfGkx+8Pceyz5Tn2SjSqGkdjhokv TWwxNZlK46rGqgqKONzrXMU8NRqfZuQqi4hPv1u8edJMGjkJe4MY4hDNry2U Jo0Cb+vB/3fgyZOe7fNpPL7sHSom9m2eP/JBm0acUslcAbGXwacTubo0avQ3 to4S74kNYiUvpTGycuKzfmLn/plXLxjQGIiTSegk3m5ZoeG/isbQ15XxzcSb 03wfOK6m4X/33uOPxNZS05atNaexrHDttyLi9c4lr3XX0YDcHNUsYvOC/etV LWn0Rhr73CI2maJYJ2lNo9I5+kc4sYF/gdNfOxrlrzVdfYmX1Lj31G+lMU6S Q28jnheeI0p3ouGzYIfvbOJZ7Y4XYtxobN00uFGaePrqMUrHPWiIf1TjN8mH idwtWtYHaWhLOnveJmbZi54Z+tF4WDolKYhYKivVdPYRGh0WGn9siHkeXHtO CDlvI41yPsnP4ZKklpZTNExfq235SNynYeH5PozGxGX+9G3i1oYbJxIu0bjl sfS8EXHlWqMH7EQalKvDkx2kPoLfn9QNvUPjiq9vzlRirQ1lz1/fJ+fJdQuq I/UWvtGmZFUmDb3yn6vXEK/Z7NG8vIjGq8+fquVIfXLqM1wDSml0dS6vzSP1 neIw2JX9jobyhsSrrsRSO4+P6H6ike8VsTOT9INi15gJC1tpmAlv9C4i/cK3 /Wvsvg4a3E2l/8q5pB/sUZ+W1kOjumfOMyfik/vS580ZovEuOON4OOlHJode r9aQ4kNlW6Lia9LP8o/3+irM5ePcbfttRQMM9op0eTZafMw3LXBfTjwl9PCJ KB0+/hxv033Qz+DwGebi+BXk+SNxshf/MVh6USVl7Do+RBdfVOqRfpsVZ9ZA 7+ODdW7zSYUukl+q5x1XevMhOJyZsLuTgXxCdVugLx8L64OCczpIf7u9rX8k mI+qW1eCN/4m/fX+QZn+i3x0rF9yaXcrg9Tsm0btj/h4drR9wvxmks8CR+3G J3xUHm5wdG8i+bN2hlpNDvn9J638xEYGhY33hC9f8SFjMPvq+G8M6phHb2I+ 8PHXM6ftcx0DSeuitWZ/+agQxnVIfGTg9Kfd7o62AAslDrb1kPmouTzVPE5X gL2fl33tKiT96MS+ZZeWCiD6PK2p/RXZv0KfcvAqAZ4anZVteMkgcuXoNxtL AU6tiplyj8zbl+Eyzsx+AQTvtAd/knmtMkfHy/mhABaR09Q7yPyPjo10eJgp gJ6ZltxFcj+Qk/przskWgNwtshfdIP2y7aFaRIEArjO89byukXxMWvAx94MA LypZHR+iyDycPmeJfL8ArFk6VppnyfsoTue+WiqEhubVWjVyvxk4fbR9nKEQ ctS1RcGe5LyGGmvsjIUwkW7478teBq61N9K7/xOiY9fFx6G7GWyMUtmhtFWI g9kz3d/sYjBHTqHQK0iIxAm+R79Yk/4qyTozrVAIw6ook/X6pF9n3nS2LRaC fpUW4qHHQHbnIuPzZULol7fHnlrMgP3MmsOpFsK2YZP504UkH9yv761tEWKH Q/rT0dnkvN5qWp1nhFiherdXVZHUwzlT5VFzEaYv3fquZFCMXFZAWm2lCJdd 2EdS08XoCjn9r+ijCF9kr2ntThVDdejK8szPIgR27pGamULuv02PSy82idC+ S047JkmMNRldP817RZAoxiaX62J8sdo5NZclRnXcZamUM2IMRplduGkhxosW B61Kcn/WUZns5V4uxtKBsoJ48txAFFd52VcGq8oXlzsZizDn/Hk9Hy8Jdo2e 7d7PTkK07/zebN4twR7L5KntJt95fWcdnXtIkr1/INDsuTkfwf4enlP+SbKr c08cNlKhYZ13y3JKoBSbIyGZUk/uPf1CrxBprhT7rMUBExcbLu5+O/38UIA0 e+s6m97VLRzwPU1djwqk2fous9p1VoxAQxTj6HdsDDvsFtXz/voQuiwiq1hj xrI7bbrybE4N4O38asyIHMseY3DsY0npX3ix0sbMlh3HbvH+HRKzsAf5d+aa vo0Zx1ZV66xy0+pAjbFJub2CDDu10Cn+sEMrKK9bm12jZNg762f28iY1ocI2 eav8FBY7OjtA/cGzWrgbmaSnX2OxP/O6+T/TSrD/38fRH3EstkZkYKSLawl8 77qsUbzJYmcoTK38Oa0EobJn20Jus9j3iuTcmi4VI7GpUs0+jcVupRyWh3YW 4evRbdHCfBZ7b5Vu1cOQAlgW+B+1+85im0xfLBHzMBt2h8ZUhLew2NtWc4zs 1bOxXTNuSuEvFjv+mXCe4pWn2BfxMmd+B4vdqF4Yqt6bhbCdEv2CPhbb8/VJ 26GTGSjiX3ZPE7PY5etsDyLjLsqzZmZ/l5BlJ0base9duYNq92xmsrQsmz4V f0fmTxK+V9UnHpeRZbez7/DDQxNAJah9s50sy87vkft4KCMGjHXmvHBFWXZS r/LQhj9RGCeNw6+UZdlGPxT/5YRGQPmAu8L8abLshs2JOmcyTkNtJsfFUY2s 5922sib0GDTrzmVFa8iyJc0fKcVl+EH7/FRR+UxZ9kRh0aKXGW7QN35oJZgt y9bTv/y//wf+D66Zi7U= "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, {3.506773072438231*^9, 3.506773083584445*^9}, { 3.5067732670639133`*^9, 3.506773272943996*^9}, {3.5067733740672407`*^9, 3.506773395968688*^9}}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s2", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "2"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.506773000419339*^9, 3.506773000477742*^9}, {3.5067732782187443`*^9, 3.506773283674096*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s2", "[", "x", "]"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.50677309190317*^9, 3.506773093551261*^9}, {3.5067732865949697`*^9, 3.506773288586525*^9}, 3.506773406434846*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwd13c81d//APD3vfddiEghIyVtGlYSdV8nlZUQZWYkImQWsiOSIltErsyI sldGsrNCsnf6KJUkScbvfH/+8Xg+znm8z3qd1+vcnaZ2muZUgiBeUgjif/9p VRvaJo460In//7spt2e6Um57hDoQhEnFiwp2+tKrI2Z94cbYrmfHX9PpuQvw gTPHAjvUfPcPPfonLsvFonA7bF5h19e29Id8jRtzyp2wt0f8pnnR0/ZfTiRy XLA1JMe+36dXH5sV02K4Y1soCcRE0vsV7takhntjn7A98vopfUmETcSj5g42 TdhuLJV+T6LHMbXcDwgfYc4XtBw6lyyjvK3AHwh0is/pbz496ZQVuZh9D4jq Ba2476X0w8pS53em3wdCSM5L1KOaXq6xGqXCeAAE4wilP7qWrqTbOOwUG4zN vTKk2UT/YBy+LyH8ERAm3A9el7fRcyUPy0zUheL2UUVP2066y7GIQZeaMDx+ swH72Ac6XW7Rh60qHI9fVqpV3kcnwXBPUnkEHj/SjYM2TG+Wr2k6WhIJhMbf ZorxGD1MYZ9tc0EU7n9kdnFxgq6r8nCzcW40EK+aSbXOKfp2tZ9Fv7Jj8Hqv to59m6ZPXtA2CMx8DISY5VKk2jd61qXytW3psXh+SVtS3GfpjnpCKbnJcUD8 Vzpz49YcXcbQX0mB8QSP1w+80fP0VZMvM/3x8dgPZLaMLNDrzNTD7GITgCjh XGi78JeuacPX/zg8Ea+nclmpbJXOJgNV0YoMICyjkpz6CJgtdeAcq8MWY9vt d4MKRRU9hbdqkv7nhZqRdRALLMzV6BkQjZYbrlYxgccbOf0NVdibTjIll7LA 6TrG6tPyZNzfeGaMYIe9il0a08dTcLvewYx9m2BD07pkyRJsjwf9Tw05oaPF SrGxIBWIUJe543+2QL5aQuxmyTQgXpxfijLghuiO9q+Xc7ELDhUJdfCAYbdU 6M/sdCAmhzTEv/IB0rYYlzuYAQTbtTTbcAHY3RsrFZCJrSSWoHxOEL4MrPby pz8HonIiNPm2ELQaioua78kEQqTQM9RhJ7wauer5Mhk7dCyA5iQMLhONO88w soCwSuKXjNgN+ub/nEK2vwBCYlbyXN4eoH8+VN8bj908H8AY2Avk13CrG7HZ +PxffSg9fwDC5i7nR4e/xPO9KJ9ecBiCueNOVG98BcQMm7rWHjHozPXfcVQT W/Wkm9gfMTD4cvnT9gFs+ZioPy8lgBGg1BixIxeIICJNIEYSJoWlspjNsOnC N8P8pcDWgNVhbgbb8f6NKVdpyP+zoGUhngcE87aUNc9jsBgxLj14C9tkJmc4 SAbutJQu161i7w4/bvpaFiJPWgbGbioAgr9SNfMOQF+fljX7Jey+bbnsZgi2 O4OaXyx27s3Fp6ynID2Hh+uGcCGOt7v3VyzkoWxHXSKSKsLr//lLQecsrJa/ 8i10xfYhs5u3K8Bp3XhzkQps3fYw3q8K0BLqJMqlUAyEnJGzargSjFCEiz/r lACh3G2Xvk0Vdj/dGHc5HtvljzYH23mwlP3r8X4U+5usdQGhBnOOHfLl10uB +MR0+8dfdSAnvdpC3MvAZ2Bg3xCPJij7WOXSqrF7ra+rpWhCyDbtSFeyHHwa TgTESGnB1kuH9E2DsZ1Yx1oNL4JI/cCno4mvgRAQag3v0gY704bGzAlskaCk IFcdKFjNy9qxvwKIr5UXI4R04eSxIAeWXOzLfbW/buuBRobMymBNJfjo2wQV a14GuTqVDfJO1eBTsmxDv3AFNnWntR+LwP7QxvW86ApMjlOjDuVj/z6w7omg KYQQ5Tv4fmHvIiSFZk1hXE706KzjG/BZzepYSzeDwDxWk6eONeBTHzoSbm4J hm8s9kSG1+D5SkQ2TlqCRMfbL/fzsDdk78k3vw6D39xv3ZrD/RcOS+TZWMGR AzNBqo5vgTDi501/ZAM9iS2FSw61UJ1OqfoZZQ9ZOfvdZ8NqAZ1Jejc4YQ8+ FXfRVC5uZ3rUUiLhAAcGTrx7/xO3rzbJK3c5gAdP9miGQx34aMpz/drhBLuC g1l1HOqh2uzRf0n/3YLFJ9MdqmHYqbl6pxWcoSXzbLR8LnZ06t+vKc7g3Lgi dPgndv1zZV1zF2im2Uqvc2iA6nLv3LdzrmDvpnYl374R54eAOt5THqBieyKD ObQRqk9d25mc7QG7TEV+GL5sBJ8NHm4g4Ak9yus9mb83Aoo6Lp//1xNO8lU+ NrRugurThp8z33rDhpJDHUzXmoGIWypyr78Dk1kCWw39m8Gk+r5MwjpfqExk McpLwe3FV8YunPUFh3ufvl6ewO3r9h9yqfeFXu0EpjyTd4Cq/kNv2/0g9Tcb XDZoAeKgwtVvq/7gNb3kn+vWAoyeD24PFQNAd+i/lvVxLTCqTBY1hgYAW12t fm5vC/jsXuQQ2HMPHCM9nNdrtwLj9HikzKVAQJIz2a802kCoTFJvtCsIbpSY h1B3dUC1x07R8H2hcFj5ghBFqgNGr+6RPasfCrN9J/LWznSASSf9iElwKNz8 t6Vn+VoHMLrU1NvnQ8GNXiP4JxO3W61fjG8Mg4Da7dlfJd6Dj6nWX+W7EcDo +PiuW74TTGqjT/mpxYDplbeGXVqdMPpRgTYTEgO75nJ+vDfrBGLlsVdjewyk bQnY0h6A+88Kbx7WfAzZ2lIGTc2dIDSbn+9vFAtlg6FfKjS7gJGmE8Lz8Al0 /6fMkm7aDR0oM0VvJwN+xO4/6+fYDT4vDsa7KDBgwzmmO8a+3aDB6vWhxZoB KLt2ceuzbgj9rRknWMyALAf4L3CsG0wGrshf1kgC3yWpBiuTD7ApqMzbJvgZ HGET8j9s1APEvruZjRKpoFKxWr3BtgdM1FSqOI1Twcx2aHnKswdQrYp+9INU iOuIu5mY0APVs/Vpmp9SYX0Ut9mmIWzVg2JPnqTBoCDr6TmDjzBq/dUtcEsG BB1ZIIr0emH265uSfPEscHNRFp2y6gWGwp5aZqssuF4Vf4nHoxc0OBquZTzL AiX105nOT3tBbOTIxkauF8BkF6p1bKIXhA468QYvv4C7OSJpJTZ9IPTJJ169 Pwe8DhmfK/fuh01m5XzDFrlgeyvv1tfQfhhN7MvpCcwFw4p1DIFn2Kv24wvP c+HE+Rfz7rX9UNKRbJ2D8/w/m78JJ1gGYLSe/ec/pzxwfRExWxE+AL1/uH/s CMoHB9HGqOrUQRDjOTVC+VAIk+aTPoyiQTBhv3jRcKkQtBmEjU/DIPCKT6+M 7igCWe7j8mh6EIR0zohcsS4C6trz71UHh8Cn5WSAAlkM4Z0PFKvyhwCJR3Pk nSyBvNvqfyveDEPja+b7du1lsHTVOmfIdhRC+bM4i2SqwYTzl+tr51GoZjNS JdWroa7S7fQTr1G4uCzrYG5eDaF8Qb26IaPgejvogUl4Nexrz6B2Z4/Cq5Ue b9lv1XBRdkq7eWYUzuyWot9JewM5m66sFVmNQYFETrDLvrdgWqGtEXptHBbV OpRGrtaDRBHvZj67cXildFVZ6049UF/2dyW5jIONqkzK8NN6eMYw0skPHIdN N/pd5PrrYdzvmlFP5jio+jmsbdRsAFMVZ5ttP8ZBbEtiEZ9CI5h+jArMcJkA e74zIhPQDFd/dldXB07CCbc8ctCtDR6KFdulBUxBjv0dY/HcLqBWFx+76/Yf zFVnzefm9gKnyLm2kcdfgP+BX2pD5zAoJconz4bPgFSM5FX/6HHY+qNFwbv4 O2zvTdQL1p+CuIYyCu36LDw3EHz0RPcLnBA8tSZk9hOGxcs3uqt+B9HRTZOe N+dAkb0666z5T8jO2GxZ6PgLpBtkTdNCf4HHsGGXaMA8tOiyiJ368xscTsic exr5G1gK4w9f1VmEpcQzpl9DFyDnraub0IMl6LCPM3F59gdG2FRePRpbhuOK wqtDSYsgy2Sv9/3fKjSdPZ6B4v9CRdbuSGNXAqXmxh4fz1oCHrqkfvBNCuLe ddDK6Pk/CNmQ3BmnTEWh4Q+0n2f/g8ZgQwvKeSraQP0qP5/7D/60+ghd06Ai Yuy5QFDZP1iw8/13QIeKZp7uay189w92rTEffWJGRbX8u8Q2fv8H/gc7y4W9 qejmZv6Fcoll2J/79lJlHhV1Uph9+V4vw2Uj9/wvW2joe3askUb1MuTt8j5c y0NDLPqicvdql+E6t0T8Ez4aQnlq8/Mty7AQUHDuzA4ayjGNutYxtAwPlDNG PERo6MFb4XP31pYhPEGbCEI0dMb/JNdv+RXQF/lsvNGahkzE22dFFVegRLdB LfkGDbkPmbSanluBlxyenMfsaSjv6N2ADq0VWAhPY9e9RUNCU82LWWYroPuq sNXbm4aWFXSHTANWwHxwT4h5BA0VMjuldTStwEG1mXS/Uhqa8rjzrbJ1BfZP h8dnltMQ789HUtnvV8ARTUe0V9CQR9+Lmvt9K3DgxJt7W2rw/DKnhuWnV+BV 1rydXzMNdZ7T31rIvAred/Y8ow7Q0GzIqcBYxVXgs7KOv71EQ8I0jfZ751bx OzorwHiZhi66GPE4q6+CrzKf4elVGioxdk/R1FmFe/DmHUklkbdYYTWrxSpU 1kGCLQuJ2Dv3//UMWAVpr+nbQ1tJdJB7k5Vp3SqkGDxw2iVJoi0vy1+kNq1C TYtH239SJFpSsvjxXytul2BKzJImUaNH5U27nlWgS6UmHJAlkdmkjbfH51W8 Pu2l9adIlJDfFBnNsgbpL3M9FdRIdPf8rY99G9eggOP++3F1Etl8FuIX3LwG pxsPhnhcIJGsgGtiMv8aHGwppmdcJFGP797MV6JrIPyQ3WJUH89X06+q+fwa fPlN3d91jUS/vx6msmuuQef92qyzliQa9O8/c0F7DeysmR8WXidRZql480ej NYA2HuNgGxIp7BztnrRbg7MR12UFHUnkNXviy2rYGvzW8hGq8CDRj5AFLsme NZg+a/Bk8RGJZma31xzqXwPpmmFrahiJvmgq2u0fXgPFa3UDLOEkmuR53CQ4 tQb24BfDGUmi/qfHvZgX1uDDPRU78jGJTHUqf33fQCC1scI9LokkuhKoqTLD RiCZA0mZ+gwSmZROMabZCbR85GS9XBKJDAU41CY3E6i363rVwjMS6Y4YZ/Tx E2jrpuFM9TQSnbegGNaKEOgX88TPhy9IpPo4Kv/NQQKl8ygkK2eTSKXpwIaq wwRCEdwTtBwSKYlqFpdKEKiabZHV4SWJ5H8843wpSyBpro/zh/JIdEromOWL EwTaE5fG+hEbXXhX+ZxOINL2ywvPfBKdzP9lnSJPoDadgYdvC0gk43KmPlaF QMMB7wvEi0l0LKN3W4wqgfQLX3I2YEv32ThFqhHI32Xvb70SEknKRQk90iTQ R53F866lJDq89sntrj6BFngosjHlON7E3N7fuUygi+o3K3lfk0j0Cvt+byMC 6XG8qYvB3v9W+sNtUwKpSG4yCKkg0a57947YWRHoQHNFhGEViRx7pLxMbQhU kstCNGFX7xlvuWRLoNGGh6RENYmMak9YnXAkEJdHUPcydhxlLoXFjUBp4aV3 b9WQaFoj8deyO+4fxJneii3DUJWf9SQQd6a60a63OP7o6SM9dwiUMT10vwF7 s8dl/pT7BHLe+adprhaf5zuW6zEPCHSYTSLwWB2JXvEXFwcF4/1SE+y9ja1W ynnJIYxAA9yOon+wE5irks0iCCSrsuWwRD2OLx2bOZ0oAjGku6utsIMW6h/R Ywlkr3Ugqhu77+zNYfEnBOpLXfywrgHvR9TOQ3sSCOQ7b5gqhe0y2ebOm4jj YfIP9Qp2vaRHM2sSgfwemH8Pwub2O8C39oxArtYKFnnYZp09FnMpBNruInvj IzbVQXxdXwaBvNcPb+dvJNGF6mGtlkwC/Y1rbzqGzeB4+KzqBT4/D11CC/uH 0fGfeTkEEn/HX2ONTc+ZgrRXeL1cpey+2MErESGxeQSi6/Z8isIeVD019LCA QIs0HsV0bNH476I+RQRyXBCQKMJ2+/rEzamEQOD1MK0Gu0lWuelaGYFE9NlS WrB5gxa26r8m0PlSJNKNbdGXfO18JR5frl2mD7to/4VCVE2gqR+G7QPY61xX aVI1BBLUjfj2P19syNLcV0ugs+Y8Ef/rn8yjl8RfT6CU2yFV//venPn62Y2N eD6WyY6t2KcK8+mUZgLN3lrJeosdSl4Jnn9HoECds9bF2CNa7IOfWwk0Lrn7 VQb24eRykYF2AlGTT7vFYHvOWd5ue08gk5zzTX7YLad4Gt90EWi1Yyb+BrZA 2Fuewg8EevDn3fxFbKtRe/OMjwRy8InuOI5demR7wZM+Ai3JLR7Zhs3s/Y76 aAB/zyZh8zI+L5021wu+QwSaqZNw7cNOE9zLuDVCoI125iYF2L9tur5bjuH1 EBPND7HPvPY5eXmCQML+esWm2OP6A/3ynwnU3vGViwmb7aROusk0gWjfRMTe 43g7uqPLyesrXq9Huv5j7MCJZrayHwTa71ozIIidV6fQ9/EngXZIxYgP4nge TK9J/f2LQFdoPFEx2EdsyujiiwRi1vX3W4etqybNqr5EIA/R3I0l+L74iuV9 tFkmUHLOSrIFds/8c/sMgoLG5J1/VeD75eEZ+2wHCwVZnXTZoojvY5oxt91J VgrSaDg6P/aGRO2nwuQMNlJQuqbQ8G1s4fX3u6M5KWgzG2sLA9/vxhDX9ez8 FNRbcWn9u0p8vvbznaLbKIjjacheNWwBLftE5e0U9OjgvvNtOJ/YbrWU8Rem oBApwRd1ON9wM3SslkUoyDezKT20DMe3b5c0/yEKuquQ8fMfzl+WZuo0mSMU 9GVAHsywX+9XjHeSpKCAo9cmRXG+M82VbvsiR0G6iknnYwpJ9DAiL46ZTkFn +6NffMH5s/DWYYu9iII8QlvZ5LCZZfcSpmco6Kpoa3snzr85NdwSfaoUNHFn VGcY5+velLDVBTX8/a1pJXzYlHsb33FdoKB1Ww14NXF+v3hunZnGJQrSK3Hu KsX14F/XfFSDIQVpe3eImT/H+f9T199CWwrK8WE/L4rriadoiPtLewq6Nby2 pIDrTZ6D0kqGIwUVbx9gMsH1SGD1NRHvTEGuKfdPBj0l0XeeNCZfLwqK3+S+ pSqORJFKrtxqIRQk6zmHMnH9awqRiFEMpSCTduOGJ7g+rnbP8J4Kp6DHrP3P g0Lxfb1yZZtUNJ6fnbqvSQiu724qu/ifUlDX1vceM/dJNJq1TXwqG6+/+oaz vw/e/7mevJGXFJwvzmSpeuN6JhMm1ZdLQTU/m45zepEov3adTEshBW1jNb4a 7k6igKHv9LwKPH9B4U83nXE94Xij6tVKQaFXNAPLrEnk6mhuyfONgtz9toYr 4vdE4LnvFrI/cLvaHenHmiSK2e1iYfSTgpQSVko/aeB80hN4Le03Bflo9hi6 nCfRL9kXZtKrFCRq8o7nlgKOF9ovE20OKrpGHqb3HyPR1UgfvWhxKtoiJ816 jhfXoxssemWSVOSY+vnmMR4c7wrhusNHqeiei9JrIS6cTxeTdfbKUlHCFYHJ aQ4SDV9uuFQkT0XbPE8/1mbC92UPu2aPFhVNOQ1Ex/6mIbWiJyo8zlSkpOgp Vd9OQ5a/TNe4Xako2SZJy7WVhvzERAq43ajI/r1Lyb53+L2XWSLI7UVFNa33 tLzq8fsw8cPslgAqWrfX6v0G/N5cuMcRwxlNRUtbstcYz2noqZ7fBFsRFa1K ag/X+OD39rKVB22BiszNfhya3EtDerrnDvz9Q0UP9UtT/+yiodp80Z7vf6mI 8+ZyAPNOGoq1mjnSv0JF1mylAcIC+P3ae2Pi1Toa2l5W4HOMg4ae5NurGHHT ECU5KfgT/q6SlTNvqRQNtat9i9eqpaKkj3cKbJ1oqOM66xt//Hthqk5sJAS/ s0s5jnFl4H04WDDC8tKFhgyo1nYN6lRUFHrS+Ic7DfVXhMGKIhW1KP9lsb9L Q7/UgjTPylDRYrm9sUMUDfkyjT9T5KUiNYbxhpvFNKR6Pp2dt4eClixPmtz+ R0MbJ/Iu0ZQpSHAlzMDBDd9jpoklh124jig+aGYm1yHGx+u3OJxX4O3eFtj+ YB36rpr4h/PqElgxp5E7WdYjkT7nqy/P/IFixu6Tb8PWo0029/k5Un9Bm9yJ Ok1OJjTvlnBSlHMWFq2eaJmEMKHas2XvR97/B40aiZc28jAjBaW9jmaMUTA9 fiI9PZIZSR97dsEr6T1c/9b6ezCaGdkofb1MN3gP9knGZzbHMqNyTwf+f1zv wZvFb8wjgRnpjz8bswrsgPi+JgHNNGZUWBR8SGW4DXpu64QuFzOj+D5hxg7X ZlApc7x9YYAZ3Xv7KUAm4w1csCUbA4aYkRLr1AY+gTegKxzN83qEGQ3zT6su BFeDRVBp/t5JZvRU/fOM2udKwG+17/9mmBFvvDajzbMMKpeCTdNWmZHg4pzy 9PNcqMvZkTtAsCBldxMFg0evoMU0d20TjQV9CUyTjpzOgYHm7nh3JhakX7tN le6dCYtxAh81NrEgVZ4Pp/Uyk2BNLXtPwGYWRAk8wnPoy1NYT4Ob5VwsqOiz 7Jsk7zjgsjbl3MvHgjq55Js9MsNAYMe8sYEACzKB0ewm7yAQ7vLPCRVkQYY3 N5VHZt4BkXtbV+p2sKBdqtEfSjIdQFzu+bl/O1mQiHhw28TRMPr/Ad8LEu8= "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, 3.506773002338448*^9, 3.506773096437447*^9, 3.506773288887299*^9, 3.5067734074427137`*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s3", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "3"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.506773009536985*^9, 3.506773009624608*^9}, {3.5067733074211683`*^9, 3.5067733107859983`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s3", "[", "x", "]"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.50677310190316*^9, 3.506773114454793*^9}, {3.506773411386672*^9, 3.5067734163988523`*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwV13k8VF8bAPAxKyJLKCVbSllblBY8J5WEFNmSLaSShIosKSUKCUmRff8p ESIUUsqWZM+edZjBjJ2i97z/uJ/vZ+6cuc59tiNle83wApFAIJzCf/5/JZVz NwzuddWYLPv/1U9j61jZIfGnp+DEtqFTYk+tYTlX2f5XhDUczlko+BlxDYaF Li0W4msVc/HQi4g70KnlX5mGr47yJk1yEU+g1TpCNg5fq4w+33gblgCGTqKd LyISgDzo2D4elAPh0xb5URE50H6gjsi4Xg6HqnS4Na9XgN622q9GSo3g4qV/ Pt+lGririilS4e1w9f2FUOKWRkhjqbzs0emFFvoJrgzbFvCbqltLdR6Aqejt x+67tcCVR5dveXkOALcuzc/6XgsEx//LofsPAMr+srg+uQUUybW3814OwCtX oD/83QL3w98f+1M9APeWVb452rRCsaW4jLX0ICjzSD5QsmqD9HQ9umXjIAQp zxMKz3bAXfm1gQUbhsHL44T8iGMHZM43GZ7bMgyXy2ONRXw6YDidU2FZcRi0 Tx3Jco/vADdt6VWJI8NAuxZ2RnWwA6hZy8Nrrg6D/xu59PdOv8BW8C/BrnwY fBWtdUvvdIK4vmoyh9UION/Mu8kI64SAw+0X0y+OgOVHSuKm5E7ouHeYeMR1 BNROvp71/tIJk+2bcu38R+CP01KcGlcXFCtP1WlmjcCt109ZHyO64IHumWX3 2RFwla9+VpHWDfH6+7Ry743C0IWhu4mF3RCYoHppa/AomCQSnO5+6wbhnRWP I56OwkHhA5porBtMFYN+G6WOAvHff5PlCj1g32ie6Fk1ChFNwcfL83vA4W3E 7iNUOuR5nlr6+KkX5PXbC1r96CBTcGUorqkXGkqmOnQe0SFqMvDH7cFe4LOt WykKo4OXXUWaOqUPsrIkdL0S6KB5cpfhR+0+6Lg5thr/gQ7NkuteffjRB+k5 V/ZenqPDst2VNz3O/eD50cGPcn4MbARmbn1w74eN0l/HeS6OQVWZ15GXvv0g Kxzvxnt1DMJEgzrMQvvhc7/N76VbYyD7I5PYkt0PX8m/je+GjYHRwRGTWmY/ LEivv3u0bAze8J//V+j4G/yrXQh5QuMgVEaveeb2G5g8fWf7RMfB84pL5A2v 37A5Vm2RIjEOR7/e2bE76DcoP27lgh3j0OUdfyb7v9/gvmXplY36OHCOdmWk 0H/DuYc3TO3sx8H2o8npMIcBfP/xBLfscdhduEFQ9NoApFHdb+/IGwdiTmdz kscAGKVcf9dROA7JiVam+Q8HoEQ/Vl2yYhwG7jtYtWUNAKNW98+ZJryejruT 2NQAbGx3Tj89h9c7sl8pbWEAQnzNXEOX8Hpqy1OKhEEg+Cx+/rKC11P0vQ4C g/B+VwHPJioDBvgDvGz3DMK3e2P3nUUYYNv+7GGmxyAU1l3pzt/LgN2Npjq7 7g6ChKJCsvcBBhBrRHlKHg5C4s2+LWrqDEguiXtSFz0Ifx5xXs44iteLS4ua LB2EWB4ZS9kzeD37d6kqhCGYXpcv0ujMADt2S0XFwyH4yXHifF8iA2y8wkzf hw1Bx9L6osgUBliQ9CZzXgyBR1+J9NF0BpgIf96UkDkEj201T4S/YoD2gbfu t6uHwLizVGX4HQOU/B4rHOQchs3B1AT3GgbIcZ/4vIt/GBzjvBYb6hgg+5Rs vgPn6dov3YlSDQyQTPMO3LB9GM6G6E68a2LAuprLA/PHh0HPd7QnposBi/xa L/IDh4G60HvjLJMBs9Ecyq+eDIM1n6O/2SQD2NIfq5KfD0O0mqmkIYsB4yoq M+EZwxD/+QTv3lkG9JhJ67t8G4YfvesVSv4woDJxlaRIGwHByaN8VVxMKNtR EiPDNwKmwxN1zmuYUJp3c5fY+hHwXEk2WcfLhIIvTKs1siNg2yo/qsfPhAx6 Z/GY1ghUmrg53RNhQsjOomvpASOwYWN907IUE2p3t4/cDB2BFIELJXpbmMC5 d8HyWNQIZJp+HYmWYYL/AVW9obQRUM38Ib5NlgnemkXbpatGIHBE6z5VgQnv j7YnsOtHgDfKkHOPIhPmtRZEPrWMgLyk9ay5EhPcdFUpNkMjcNOhUzBuJxMc jYp+x5FGQcGldHBchQmZJu1mV9eMQhxDZNPMXiaMmC38UFs3CkfMH3fP72PC eUvVsi7pUQj9E83H3s8EM4eiGFHNUSi5H5Ofq8aE47eKzjy7Oworiy/HbI7g 5/Vqr7V/OAp/9rH6thxlQqXPwmGVsFHoa97y3wC2hp/qzuaEUdjR3vD1jBYT 9gUV8QiUj0L7Qbc88gkm3Ahpv9//dRTWxdMr07HzQheWcxpGgS3VW3dUhwmK T1XH9HtHwSP0TOcNXSbIxBZVhayMgmHhjWtpJ5lgG9+uZkGhw03HzhpZfSYk Ji7ky/PSYZeT/JF0bLE01eRaMTp0jhLSn59ignmGqWiMDB3cB49Fc59mwov/ PMIuK9DBUG6hzBN73ZsiX041Oly2OvxOz4AJp3Pb59qP0EFJN/9JLnZo3oJT hi4d/HyO5PIbMoG7SPWc1jlc9ybC26uwtYtNm4Tt6OCjf5i+8QwTAko9Tgw7 0kFOmW3ohE2sKFL196LD5uvGOmQjJmTxCqav3KPDoQOLhaexDc85CXkE0yGR uof1Ans58+s91lM6/DW69bcbO2Vekn05lg4J6RoDYsZM0DvqbT2YSodhP0Km GfZseOt3i2w6NDipGYVhH1UMyjpVRoedTju9ZrCZXkMbar7SofL8EkHChAmR 1RqBmj/owClp9VALW00keq60nQ7fRlgijtjDdjN2e/vpQOg8nv8IO/TtyaY3 dDpYrvy1S8Pe9y8DbWfTIVj5jfJH7F49Yk7SEh2St66I/cQOiLHYvIk4Bu4O T3b/xlaiFwZHco8BQWutxwR2216BZd51Y5DSv409h+17/8qlwE1j8EQkKGMZ W/ZnVRtBZgyIgczEP9iN4pLHvBTGICOYOrSIfcvJK39GZQx+7In0mMaWLGmR uqo+BnlgbEvHrqYph40cG4PmTbyvOrFdjB+tWuuPgXj3PbMa7A0pg06/TMZg t6qfawF2BUu9y9B6DBL92v6+xL6s8eJEPe5Tm/8z4riLLRgyXXTMZQwKlX8+ sMEu+aW3rRz3KbLs1nB1bFvZjMj9fmNgKq8otx6b+yYHKe/RGAxZ1ZhO4P3P qzznKh8xBoP2PZIV2Ob8hX2pMWPw3eJ0yBPsV68cPzx/NQZdUwQHGWyjpS9y AgVjsMAtPjCG3/9fLYnooA9jILf2rNhrbL2B5pu3v4/Byf28o9uwZ5WVhuZb x0By5e6DPhxvsbcfGrr0jsF4F201Entig7qy3dQYJL27FD2P4zX0VDpdW2Ac HH4MaDzD8b0vjmBaifumL/Xo9b3YvePmVYekx2HOC5U04fxQDuBLVtozDs+m g2PJ2I0fbp0TMh6H9XeTvLRwvt3ibq55bDkO+2uX1zTi/JQ0U9xPcxgHq6uH x0ywXWZ+Cy27jwMz1DPVQo8JAnK6DX0vcB+870zXxvk+QksQqE4chzD0kOsb rgclw9NGuZnjcLJ3H/EItn1STNfd9+MQESgUoaKN6+GGcbpUB+6rs5FNq8eY YEV7RLJfj+u8cuS6vYeZsGe4W0tPggENniTvpwjX2887g1RkGSB/fVWUBfh9 +HbwU1QZ8L2oUyRVgwmUeVnxdBMGIO6rhQuHmPB66Ot++jMGZFRShg1xffSr 3OjTGMeAivyRxOe4fpokOpe/T2OAV6LKfCeurwQLEa1HuM+F/Kl/YLmHCWea L5yRa2WAfpPmiCGux8ufyM5OQvg91YqKkeVwvUjQTGFFMIHOtWbHazEmBFY3 9tx7yYSHbzwyPm5iwle21QbhVPw9gTanho1MOHbU+/GBdzguK6qZExuYoDmW 73GvHdfJ1XupW4Vx/u7ZqickNgEzHNv47+D+tPMbbU41bQJe22tT160y4Brr mXJt9gSkd5YqbF5hwBtRGUeLwgnIjClPkP3LAEUn1Hf32wSoTNwMUV/G/VnA s6ZmbALO/ftw0XmeATLnxuPOKU1CLkv4PAP31/VT9Vp3iiZB0/y2WUg/A16E l58fK5+Er/FGYgV9DNigkudzpnoSFG8f2dHTi+35PE/21yQIXWlV39PDgI0k W/HG5UlImalWZP1igPj6hTlJjSkQyC7hLGhmQHzxGH+w1hS8F6/jmcX9X8Ki W35OfwoW1yW178WWTPp0vsZ6CtLdiL/LGhkgLR/y3dVvCkK26cSPfmfANpBK q/wyBYLxnAkx1QxI/72uQuH7FPiIun5Y/oY/96d2RbVOQXwZQdwSW7aGwX9l ZAr/H531278yIHLHuTIuMgtsGXsKuj8zoMWrpU6DkwVqlc++n8IWqj/56zoP C469e3a5qpIBz5zRbI8QCyYhVvv9JwZE5W+Vy9vKAm+Bap+P5QxoIyeoju5g Aa1Y5sExbBGTDcfElFjwdreNfmMZA54vctsE7GOBlYGf5uRHBnSc8L9aepAF HtsZPn7YG16ueLE0WCAhp/Z8PfYLddYz8+MsiOx/EqT3Ad8fejnliS4LVut4 rzNK8f39A7lfTrHg8pHL5o+xo++11imZscCRP/loZwkDYr6VcJAus+CwzF7r 6GIGsPpzPaecWFDq2dFljH18OZ3d5YLvv569XRh7VuHp74JbLHh5okc39j0D dLQenU3yYUHuZLaSPXaS9Z2fj++y4EfFy2UlbP2IK58cHrIg+Ngbh+9FDEh9 df7AmRAW9FXDuiTsP19M30IYC9wFqz95YBv2ntyhEMkC2VivWwbYmQtHkja8 YMH214/UlbBX+Q+KUmJZMH562/q12MZyO8PZCSyYtri7hl3IgNdHtnH1prDg i+1XyXZsoqWYX20GC97lbrWswDZzF1wqfMWCn3q1X19j5zzhdE3JYUElq9cu Fpv63yr9ST4L4imPDz7BtqictfEpYsFwwt/TD7DzusY7LpXi/fI2yvbF5prr P21czgKv+WJjb2ybte3Vhz+z8PxpcPr/LpT9jpS+sSDcSi3l//fzHP78fmMd jod1cUb/X8/OvHgn7Qf+f1kRjv//vZLrOZkzTSyQOabG+P/z8D9Ok+xvY4Hn xLvubOyL6S9f1Hey4KrOpmOV2GXl4fzFvSzwhwC5TmyhX4EP0wZYYKTE93QO +8r0bULECP696Xp/IbxflWtu3PIdZ8G1nhaKKvaGrY4sx0m8/3kHxSyxr2nY XDKdxu8rmb8hAPurqUn/kXkW7Na+KFWALeaqZ7ZzmQW3U06KDWNfD9JsFFtl wZDwzy+i+H1LflSqmKOw4WBk975QbPc2mf0DXGzQ2+rB04D9fWpjbgMvGx78 aM4QwPHkJU1LzBBmw+jQ8PFU7MZDK+sjRdnAVEs0m8GWNZ55cnczG/LvbDuu heO1JbDvztmtbGCbPG5dwJZLal04toMNER/t/UxwfPuV1F3brcgGkVdz0sXY ShNF1mv2sqHs82brIJwf/tQ37Qv72SAsE0dZwu6SSD01pMaGlKvpxVdwPj00 DIOPR9nw6ZagrSXOx94rAUX/aePvn9a37cbe+8BHOUqPDYn7vgZa4/wdKLok cc2IDSWLVHO3CgaobT78T9KeDfLf0itqcT3Qtmhxs73EhpksC0tPXC+MXl4c SXFiA41uJaj4Bb8f0dDv226ywe+J0GBKFc5H4a6XCgFsWI3dO/Xj//XKyJnP OYgNMoZnxDPxeSnvKcf9nFA2jHdwJj2oZUCNwHbH3c/ZkPk1o+x0PT4P8d7c vz+TDRq5K7LbcT0kn+R87fmaDeYNqp/kf+J4CnkpUZrLhrrxMLoKrp+y3JVU jWI29Lelr5q24PMbla/1SC0b4gvaBQc6GFCwmul6ismGEAZzC88g7nvqasNh LDZ8fzKxemWIAfU+P8yaZtmwfSW+8+cwAwaX58B4hQ0bP6rn5tAZILigufbc 2mlIUKx4UYD7hctUd5bDzmkQd1K/OYbPWz5KLuKZKtNw78r1xNe4Hz28SooY 2z8N0zV6h9z/MSCBscPT6fA0jKSId4mRmNAw6n7czXAaUhQa777nZoJ8P//Q 7RvTOD78jijjfqk/Klnpfmsahopm96tuxvPG5M7Eaz7TYC4Vv+2YBD6v/T1t cd5/GlxOdv1zw+cvNdHwlqOR07Df9pDGeny+0jMUqFpTMA2RGy/4BeB5wPms VAr5/TQYdOS4svD8EGazy2+ldBq80r9l///80+JsoD71eRouL9VuNsLziEVw +Lum5mlQuHT6SiCer5y+CKRHz+Dn61ySkrmE5606Kf+IhWlIqzJVmHNkQm7T LtvgP9Pgfjesqf4qngv6DcRvk2aA96AQNew6E3xWwqNs1s2Aw0OxcIc7+Dy5 TzBQds8MGEbpXTJ7wYTsTMFL79xmoGNuT+u1H/g81lp+mOQxAwTmoyCnZvw8 xKubDLxnICRK+a0rnhO4Lb41MO/PAOe1rEvP+pjgwOezV+bZDNjzd2w8wsLz mvsw8WnRDBDZF/TU1k1A5JH3cS5/Z0BgICaz1noCrrhc8CgjzEKyVX5Pn/0E aMYJGvBQZiGH8FRu9fIEsOedyJm8syBd1yRucmMC9LOkrvSJz8JlcZH5648m gFMgeL/+4Vko+r7H5cq7CfDptWyWD5iFRyv17y8JTcLscfW4C0GzoOps5h6y cRKc3opdTAidhXon+TvFkpNwzr9rWfD5LIQaRvspK07CQbmz0ssZs8A1/jE3 WGsSlm4auVbXzIJ4/qcumvckuPPq8l3gnQO3WT8pWcYkTLrL/YoXmIPyNl6a 9/QkOPRzpXQIz8EmlfTkjqVJMMmv3qcnPgf+jEe0t5xTsPesltUe5TkIIF9v b9s2BbOph7M5DOYgvf3kzKL9FLiq7deNj5yDDftOV2TSp4DgHHnnyYs5iCjh 3ZTGmoLQBFb+3dg5IKWOKmYtTkEW8T8xu9Q5EJ7dc/ginisGqkUnZQvmIMvO gKsCzw1Gxn/C3jbPgVff4NqjeA7Y51zW9kVwHvac1w+PwX12OeGoLSNsHg5r RXDHieA8X1CP2PVsHmzW8M/LiOE6oq9a6RE9D05n+rfkSbGBc2WHNDl5How+ 9Gp1K+C6Z843IJY/D5XC+15fO8KGnUKd5/Vb52GwpXAuwpUNFx5eO/9WdAFi aoTza3+yodElxsYjeQH84pjO40nTIBfG/+dG+gJEfsqv0cuchvs5Ac/cshaA f/hvcv6badg36VZ7NW8BXAXnvofiPIm7oqtiX7mA6/DQpFfrNDg6/KUZDCyA mDGK28E9A2QLqxw56UUwswwndbrPwIHj0qs9SYtQXpYxoWU5CzXHDmSi2CW4 kHm1imIwD2lvow8MvFoGwTx3Qd2cRRDeouBo9d8fMK9mVdcL/4EmDs57oh/+ gs6IrlNSywq847ye3lizAuaHwj/L6RGQgjC/o23VKkgO55BORXKgqdB5oT1t /yCD0eEVME5EWwIDla85ElBuZbQ/nyAZubWp+No6EVB8sGvmWREyqtg6UG/s TEAaV2TKkzaSkdUXNUc1NwLyuC9TKr+FjGI4plO5vAjIVKUrY5sKGQn6WGxM fURAFX52soXGZER03UX5lUlAXF/mL8o9J6MB865OzVEC8usuMu8VpCAeddMM mzECalvS1xkQoaC9Es3XfRkERGksEBncSEEPB2t5SqYIyGvD2wNd0hSk7FSi sWuRgBq+zhmm7aYgn9vRyRJcHCg3NXRHvAEFCSeaOv6V40C39K1O8D6mII17 zfs2KnIgR0WFufQwCrpkf4q0X5kDLTF8N6tHUtCH7cdjr+/hQJmbRtqtXlKQ 7dt9DeOHOJDXH9Mkj/8o6E2l8O5fehzoTcbK/J8vFKQ93Lz0zpkDfa8TdDi0 REG35UO9c1w4UDPp+Ykdfykoz1V7JdONA7nWN35f94+CNq1+IMS6c6DHi5DT S6aiSZF02j1fDrQgqxaly09Fkdq3hPVDOVB30a6lO9uoqP+V2K6RbA60g+5y +chpKhKebsvry+FAKX7etE+GVKSzP1zl11sO9GloaPWgMRXlf6Hsr3/HgTrv KLC3mFNRQM+kRt5HDsRZujejxo6KFPg+6fl+50DJuhOetu5UdMvtwiWRCQ6E 0mqWSl5Q0UPdyYsHpzjQ6985o+MxVPRcxuOiFZsDJelLq4nEUVFh20OH9DkO pLpoudY6iYpmDr6237fKgZqcrvIX/0dFzqQZGxM+Itqz55xhSDEV3e72tvES IKIEPlsP11IqCnlHtolfR0ROf/06DT5S0auLItYj64koJVTBgPyJiuh1Byzd JYlIdb9TqXI1FdlF3j0btYuIJgOv2cW3UpHbVa6zJXuIyDnn8rF97VR0TyvC rHcvEY0W12rUdFBR4mKK6baDRHT2k5FzfxcV9Vp8My7UJKKwDYu+zb+paGLv aePOo0R0fjS488ggFf1d+8toVYuIoKfnYM4QFW36NH5GS5eI9n0JJniMUpHZ 1rWGbWeIqNFU1qaWSUWXVqMMlo2JaM10YZLgJBV5tEsYiJsRkVlua6vxFBVF Pdp12sGCiAhD33m+s6moecJIf96eiDRpNzx856lIv/Cljog7Ee3SvmrEWMXr zdj+E75FRKI1bqE//1HR/Z1yBcJeRLQx3Vozn0BD77Pebxb2JSKrdl6By0Qa kk5oZa0LICK3rXTReAoNqXXHpq17SEQfy0/MWFNpyFTU3nxdEBG93764fzON hkKeTn8WDCWicZ4QYhAnDc0H8j0XiCKinV832yisoSH+qjZdgRdEtP/apas1 2PLEeIJADBEV5Nb+Os9DQzY+Co788USkPHK2xp+XhryKZ8T5E4noWpfeCb61 NPRsvqSZL5mInl8dlHqGXetyQp0vnYjsDaLbIvhoaCibf3ptJhF9zw7O4ean oX/j7elrs4gotOxb521slQsO/GvfEJHRllYpEwEa0k9WrOLNJSLbrICDpdiX +2Y9efOIqPqkZsImQRqKP3t/kKcQ72dQllYD9vsonRc874mIP+5ogOQ6Gmpu FjjJU0JEIZ8+r3HGnuT/xcHzgYiUBpJbC7E59RML15QR0XSU1cAytnTwxStr KohIb9vNnQeFaEi9WklyTSUR8QY4lN3ANqPMt3B/ISIDi4KgLGw3zY+PuL/i +CMMPO3CDrnjr8FdTUTt3jc6aMI0lPFBd4arFj9P8LSJMnblkmAmVz0RBccP 8Rpid+/rtOBqIKLorpY/17DnrycJcDUS0anNpyQeYQu8vfSVs4mIHOf63eOw FSaVvTlbcD5ki3JkY2vJLyhzthGRl1bQhyJsm0tlQ7QOIjrpU5XxEds77UE0 rZOIOL9YfyrDjhrQ06d147quP0Urxc6VECLReolIkMbjlYdda9FVRO3H8fDi lEga9nB0shN1gIheXDLuisAmtF+Wog4RETG+5Js39kahXW2UESLK2SzeaY2t YrAYRKET0d7HkgKAfSq0HCi4jziesb8iiu1YFzBLZuLnj348Oon3y59T/z/y JBH56mj6l2PHHxO2IrOIaFhEDgVjF9/rFiRPE1G526SoIfbkX0cf0jyOh4BS qZ/4fZ01092xtEBEvykZn4Kwv+TLt00u4XxJHcsC7GhHpnLnCs4nWojRSxwf 5K/13T/+4fhr8hbUxHaWyn5UxUFCyfUDQkM4vo52XB3MpZDQSJT2gCh2zh79 sHQaCeUVDmVl4/jc+ERJPZaLhKpTd+erYbOOTUUF8pKQ09hOXz0c3y/zXXSs hElIZ065ZzfODyqfwcKZ9SS0ufjbvUScPy6Ou1JPiJIQa6nNigtbS2p6RWUz CQn39r6r56ah6dDrb9dsJSGTpsAKUZyfluNnrDhkSShW+/OyDc7f6mMqaxa2 k9Au80zbFJzfcX9n7QcUSMiuZ3uRKM5/bUf3DcUqJETOdjeu56Ch/CqTqjf7 SOiEtkMfE9cPcSlVt9T9JCTrmhDKiT3TvlD3RI2EOnT6zHbh+hN/zPOOw1ES OlkTcld7mYq4ks4qWGiREJ9ZwQbNJSq68ffALwNtEnododKwb5GKTuQv71bX IyGhoYuPBXA9m5X0GVlnREIikRs1Q3C9s/axeMplgvej1TvLikVFte1q6J8p 3g+zd9sVcH1MCF2JHj9HQq+iBO3e43qq89f35Cc7EtpEv1/4DNfbpHa/Aufr JHRoe5iIXTcVjVTt7Au9SULTum1/qjpx/yro48rxICE3l1TOLb9wPwpTt57y JqHJiw2Rdbg/1J9Y4nLxJ6HdJXHn2hqoaLHUxdr1GQnpSsZ8/1lORRpZEkHh z0koLMm+qA33n/svGgreRpPQw335xa24P629qcA9HUdCvCU3yJVFVLRFiV7g lk5CO/IOvzyTg+t3ojX3jSISWuU6JGaO+2Fk6Nq9kcUklL7ZWZHwkop++Xy0 LijF+5OTq5OI+6n92U3vZstJ6FJ3UnrDUyryFGy3vllNQj5+N38OPqKiVH/9 d+6/SEhS4t6FqRtUtHxJ3cbzDwktujilB2rh/SmVQzdXSOiFReOulCNU9JJ3 g6TrPxKS9mf4FiMqUsub7rtEIqN19pss2w5Ske+fDGuzNWSkaBYv9VOJikih gtaqm/Ac51n9tFaYinjyRy3nDpJRJbuuvq6PgiworepsNTK66aMtA90UlG1a uXlCg4waNnDsz+6gIP2/sT1DmnjumyBEev6koLBjhpYtOmSknJexubmSgoQ6 Pljkm5OR59tKz0epFLR5JfycqxcZ8Q/nNJPs8Xw0cLL4uQ+e8/h3ON+wpqAb 37jWl/mS0TX+PT295hRUG+7XxH2fjEY6Nx9MwvOa+zbXE6nB+P41kwtdGhTU eOq0anssGQmr0X/u2EBB95LXrlMvJyPWjCi33Fcyyg6sdbH7REZNxQXLrRVk 1OEU0PDoM/6+p1+DdykZKamuPmr7RkbOulrS73LJqKtuguDSSEYH7VQe98aQ kcpc/WTybzLK3PmTj9cZP8fx4FpOMgV5rOaZ9fKRka2ujeRWKgXZWJjFDHGR UY/+XvfDnBS0+mqEfxjve4txn5QXDwWFc4QktiyQUKXdHk+GEAVpxShfcO4j obg7XbINWylo7W5Nh8fZJGRUJP/g6XEKqs4bGr57jIQ+b6sH8WAKir/g43If zwk6oX06InhOHanQPp5gieeOuWnjtU/wXLr+pHmhCRH1fhF1Wo2goOfFuw+2 aRPRou3FF70xFNQmZEDtUSAihQQiOz6LguS1ZFdosxwoav2BZIlaCtp/U02l B8+ZjpzpZCkuKjrdn3nzVwABFSXKqH8Op6I/O4OiF+z+QsMhtSpDXAcrbX/e fhuwAIuOL8/YhNLQtgXxAyzzaag+nWDMK8KJFH+9MT5QQwfbA2oZGZGc6ENj udBLh064PPF9rjuKE2mozZp/WfkFLknWRwWjORHvhWcXhyJ/wR2u+7994jhR qP+dS1yfOyD2V80mw3ROpFCWuYEh3g5tnqZhf4s40UnD72WKrc2gU+LmadDF iaoLDhQ4etaCgTO5OqCHE10Lczn0L60GzKSjRD70caLTLJ60oKZquBhUnL9t iBPphrfrBsp/A39zwuQfJicStLSQkOz5DGXLj23TV/Hnb00NtviWQNUbibdd BC4UNhYgc63tPdTbvv3HT+JCMWyJLXlKRdBV2xLrTeNCTmz+FYm+fFiM2dR+ mp8LZb0tVTO9kwX/9LO3BghyoVm+U6H3lDOASoIbpUJc6Pa920lpfSkgdMVW YJsoFzqht+SfcycGNknMWp/bxIUKtG+bNPU9BenmB2/CNnOh7L2zit13gkAu cP1KlQQXqpzPfyB01wt2HfpP948UF7K64fuutTFa43+URJHW "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, 3.506773011602584*^9, {3.506773103327322*^9, 3.5067731187201643`*^9}, 3.506773416723123*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s4", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "4"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.5067730157130117`*^9, 3.506773015776122*^9}, {3.5067733157481813`*^9, 3.506773323515428*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s4", "[", "x", "]"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.506773129214477*^9, 3.506773130774065*^9}, {3.5067734208104067`*^9, 3.506773423911045*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwd13c8le/7APDDOYdDpEhSkpESkiKUcd1JlKSiJDujsuVjVAhlZYUQZVVW RGZERrKSJCGRjCSVrDOcY/7u788fvN6vx7Pua9zXI27jZmjPTiAQivCv//0l 1nN3/jh4TZPw/z+xalK/69RE758GAqFrcH36Hs3F4n12X+OtsF9+s0m7qFnC gN6NRVewx9clpXpp/tx0lfky3g2703Al9a5mlHAbb1HNf0AItCAeIKZo5kib ZxCKfLDZFY+lZms2qMwqGGX6AmEk8p+HdInmgE5wY3Z8ALbupajUV5qLMjwy fo1BQBB7XpGm1qgZdqDPI7vmDr4+YyiL/Z3mpsOZNZ3lIUCIXbk+nNWl+fiI I4lZGAaE4m31OY96NeVPKJ0Sz72L72cv0H99ULPmzGqiXmYkECitop92j2oe N2n7/l9KNBCsrTxShH9q9lrF706Lv4fPr1A3e/Rbs0RRXvVHcywQMu/zPX85 remjcv+bT2Mcvn+GfezheU1NNWYgT308EPKK3+1yp2uSwELqcc19IDBXR8cI LM12rcZ3B6sSgOAuS42eW9aM09nt2l6eiI/7OFx/SgATvSh+q5IkIJw7Ofeb nQiiBnMvqYUPgKDwKjgghQzjZ43NwvOTgdBV8CXVgQIF52vWRHJTgNAQYZbt tQ48LopllTx9CASl6+rL9etB1SLkuE7mI3x9nX23pTbCqvWfqYHUVCAkR++N 5RGAZrvTcW4paUBQndO8uFkQDJ2FB5LjM4Dg4XZ1JEkYeFShPkk3E78/eXWN TwRmX13bONqMrT+TnlYsCi9r+yq8Gh8DIfwuJUJZAlKAi9KAngBB7siNnGZJ 8HujZspdj025vjrqKAVHmzNX02ueAmEDr5bgojTs0v185vehLCCYTKqp/5QB 7nfkp4pV2Frf60cm5aCrw1G3rTwbx0Ohdy1NAcoM0lL4FXOAcGlW6VzLfkjq +vjXvAT7MHup4PIBsOhRip0rzAVCYUE5b9xBQMZXxtTk8oDQfffPwKwy7OxP UQrNx45LTtOyUoU/g6v9W3OfAeH9fzvXO6jBB4v9svZS+UD44SJOIWtA8bCt /4un2EvH/rUVa4LPjzZx7cwCIPh0aNqLHAFT+6X/YkSfQyAt27mLWws0f+1t 6U99DgS2ruRytqNA+hvv6JJSiONVusWf6xjEzZuXJcW/gMBHVpViIScgWvCh egNvMQR+4FWZ6dWD7pKQHQcNi4GwMkzcdEAfzP6Y/xQdxHad+C7CexpczdZd m58qgcCPd/VynxlC2QLD6Mr+UiBMnr7GCjIC5v0x5W9epRD4i6BTan0Ogjpe LTevYl+IEKnYbwwJGlfDUzaUQ+DDt4F3d5rC169GTuvPY3vdPP/ogBmIeoPB nRTsrBsHPuiaQ27R5k0uEhVA2OWyNhVmCdU7mjOQ0ksIbHqn+7H4EqzWFN+u uP4SUDnrRMp5GzhqkmovU4ud69pqsGoDHbH/yW7SqQSC/M+oZ2Z2MMwmUfnr QhUggS/+prpXYGc670Pz1CogpP2ufs1zFa4eZvl9GsHHxaQT7fquwrxHl1aN wytAEmItJd6OQBq/1RnjWw0NFvfP3JhygROBjiXEhmpAr370Qq8rxIgYJ1wn 1QDB4nROVqMbCJ3fa2oTXQNigcoh1b3uINMy+PNgxmtoeOJhtH/QA9xsWtvy f7yGwK8/a3Js/oPy1dKCHdK1gGrqvyRN/QcaKhHXuEpqoYH1uGSZ0wvO5Kmu fGusA0L765+eFj6g1qzHrfVfAyDnad+aMD/Y0JPzUeV+AxBsq08E7PWH8TH2 xL1lDRC4w/trRa8/xBBqdghTG6DhVwx31N4AGFOTPTjr8QZGmH5deSuBEF66 zjrdoxHE0o8luXEFg8WbK1IJ8Y0QyPSxG3EPhgNdb//cLW0EJLrOr+BrMHz7 5+vlNY+Ph76NMHkRAvv2TEXoe7yFzCnPH8ecwqAvo6Ni8VoTjDRZLErtjoSC Imnf2bgmEOMrNpPOjoTA2mA0UdIEmQUXjbJ2RsGeQfX3n+aaIDCKL22DdDT4 bS4cybvWDJnuBqYz6B5IRkevu3CtBZAmvf3A9zhwv2lwqcy9Dc5o+Ws7UpNA z1U9jxLbBqh52pxH7wFI2sjMWLxog0AXTbuAxw+g7wSHP2W6DWYVX1kPGiaD hnBdsoXTOzjTJNEcWJ8C3FV7uzgvt4M73+Ea2TepMF6wTcgipB0a/C69UJVK g7oMLsvSrHY4w5ecJxGRBtfCfv41/9EOYjvzo2ON06HfOI2z1Po9dIn2SUyy MiCbzgPmZh2w5Zf/g7iKx3Dr92JIyc0OSDbuvZM//RhMhiY7OB52QLHS9gAV 6SfA09xkWtLfAXmULGpR6hPwSPDz5jD+AKrCx2ZEIp8CUpwqLD7TCRuozXrq t7LBpco+hl2yC5hX3+/Nrn8G8ifOirEpdUH/3OSTFd58mP2qXrqmjU3ZOvrb PB88lwT6li93QeDVIt6A5Xy4qdm4fSG/CxrE7AyytZ5DaJNo4d8Dn0DVzWCd 9N8iyOz68r5HqxvUS+czwy+Ugs2ltxafjbqh3Lnjhnp4KUjOF818suuGnsTg Vs1XpZAjECrwMbQboiIVVPeJlEGhsZLZu/Zu2LTgntj4swyqv8X+qTX8DP02 0Zvfh1VAz+QJrlybHth5R+z5OsormEmRPnbHowey8sT3d2u+Au6TnEFWt3tg ytQibtgL12FhE1PoSQ+UF9YKfRx/BQXXYDJ8tAfcedUfsLdUw+1FpVZH615Q uGG4sznxNezjEQuRt+yD54LjsTcPNoBe7WoDt2sfzH4bW3f+fAPYuQ4tT/j3 QfWEo6eRVwM87HromZHWBzHN4/yvKxqAI1HQbsNQHzyUfZ2mrvoGvm1fd3Te 7AsocXXuWDraCBH7GISXF/shwVbm2WXvJrjpc0J2wrEfsopIQe1pTeBQn3p+ s18/dL20u2DS3ATHTx/N907vB/PdRn/mNjUDp1uskcqPfkiSQxwiL5shuEgm p8r5K9xcN6GpQ2iFW3utTtYEDEAy4vpeWfYOrsm2JTZkf4Pr6+PlbyR8hHH7 8cDMl99gduhWt1TzRzDOJDgHtn4DmUcW0wv0j3BY8JAW+v0NWtp8xDnkuoB9 7dl0vdwQdGiFPWXFdEF8d6RufdkQfCqYyT1n8glKb5xm1b75DtLnn3feY3bD oq1T0ZDrCDzOnjrs4dwHNrXGZ2Ivj0F7+8+WO7eGwHaup6EhfBxORZ1tmv83 BlEKlW45oRMQsxCi8ZH9F7A3VKoE35yEl1FriV7kv7BR5mTncPIfuE4YLPmh OAPHM7SezsZPwfx5GX9ruzkIa+sauv1oCh5+HM0pcZqDljnLLYJZU/BW6F3S qsccHNP2jT5UMQUbj5VURAbNgdbvMp/bX6bwftJ/1SN9DtQVpfQ3ifwD1sca f5cvc6DQyklXyf4Huyrenl48Ng9CMx06AZXTQG6xNAnaRIXkuPpLv+unYb13 fknwVipsUSr1M2qbhlJ/DeZtMewbD0p3f50Gz8hE5C5Hha1EG9GuxWkQvrtw mVebCqJCC3QxzRkQEWG7ctqDCrtAPLuxaQb4OJfcv7dTIWdUoEHuwwxw1b7v PNSFjwdzDCb1zsC5XTpv7vVSYfe7vxucJmbAIWzSVHaECgl7zOq4SLPA3aom Lk6nQlKZlEyp1CysZ3ULkEVp8LC1mo3oMAuH33h0ZzrRYHak+MaM8ywUv+YL WHSjge5iztygO7bjBnTakwY0ufuj5ddnoSDw/uJvPxoYxDu9uRw+CyZaKgfG o2nAbiES1J47Cz393G//FNHAad6fED8xC+oasycP/6NB4zrP67f+zILpH8VC 2iwNtkg5zjpOz0LRs7OUfBoNWi4YjxxlzML1H8fzycs0EKuVb6CT52DLy7y4 QG469IQNB1yUmoP6ct3s4F10UN9+ZE0MxxlNpLY3mdLhuHmPh83VOTDXye0W s6TDuUdXJp46z4HvSNY/70t0cBKO+bDLaw5mpH5abLxKh4eCg4/kQufgXOAB xTVPOjB5vVRV8+Zgt0LsnvpoOpBOUZ7feD4H+9P0Ul/H0mFD1KMdNcU4D2Qu ypbfp8Nu7kYOzVdzcJ339+O4FDoYc/D1Hm2fA3f5QW6ObDref/OunZ6aA9uk 7ZW91XRo0FD/GTs7ByH8U1e8aunQ4ffRpJs2Bxvy0nT4GujwY5EO51fmIHSv 3P39zXTgX9Bab7Z+HnjuG8QpfKSD+8y3/MsK8xDBtj9AeIwOsiMbxv095+Hc vp2vnhIZYPBLrNH7+jyQ6ospzmQGuE8rZLr5zYP6yb4b+zgZUL58xvxS8DyE 3S1uy+VmgLpwXI92wjxk/jI6Y7mRAfqGG5vXlc+DWlVP//h2BrheFH9KqpqH N59uq1jvYECs9f6glZp5eB728GufGAN6XM9qzLydh6zDBnMVkgwwj4yr6P48 D55B3CVqexjg3LQxJ4U6D3L5UQ+uKDIg5r14cPwCfv5b908nKzGguHu/TeTS PGh97vVoOsgA2shZUX8iFQzGu8h8qgzwW4lLshagwtF32vku6gxIJz3xvCiE 68jvCeWmBgMa1pUaGm6jgsIvs8kgTQaQtnav15akwpc5a5VgxIAoZf6w3YpU COb2sDfSZkCRhoS9mAoV8se0xNSPMaBL+8BRYTUq9AiRPMV0GLDJyHCN+ygV 6v+7Nz+oy4BUt3ifaUMqDHnHPRE9yYA67yfnfxlTYfm/YN9x7BH/UsURUyo8 5XTmyNFnwM6o7plPNlSQ2cAJIgYMKMzjv1qB6zjIQPZB7xkGBPfWHyH6UOEb 74WB0LN4vdhdtp31xXW/fUZe0ZAB3OatnVN3qODM1rDd34gBo+GeeYfDqXB8 4lXD1nMMqKoQvx0eRYXa/U9Cy7Av8/kd3JlIhUMMgei+8wzQUN/D55FChVTb R33Wxvh9HPom69Pw827mPT+B/bZRIdUshwohuqvsPy4w4OHMkNezfCqwc1Wp mZowwEMk8vRCERUi7nXVdGCLef9kv19JBaWS8aynFxmw8CT+20gNFb7rGAtR TBnQ+RFeyjdQoTyKf/wKtv+ehw7tbVQwDsrLEDZjwDlj3aNbPlBh/IhishO2 3B2ayOVPVBh777hahT3wzaCLbYAKN8fid+uYM6CEa/nZ6e9UmKa60kKww5Wf 3Ukbo8Lch06tN9jWtsYWfydwfPSrhZjYKrFElUN/qeATiK7LWDBgfW3xhrAZ 3CdzfRxMsCd+W/zpoVKhd4//bBB27eZ1TRJMKqzFefHnYiccrUpzX6bChrtR Pa3YTu72PnUEGmh10dTGsbXS+M/ykGkQpjZ5ahl7a3u9jCkXDb4X5PJtsGTA HMOZlMdLg0Qu39Ad2G2SW7/TN9LgkWZJpQx25pnWyqObaZCnkJm3H9vH3zMu bisNPGuyLJWwDfLFnYZxHx7Mlxg+gC31pVN7ryQN5sqD9+3FXib6ifrupsF2 T/Xzktg9CnuYbbI04L/UeF4Qu8Ci79NmBRp86UhUJmLfjrhTYKdEg9IB9ZUp /LymlQohpao02HZT+0U39v7xIUuCBg2irZFhOTZlY6SqwREaOBLf/43DHtZQ 5U89RoOauJAgJ+yXjj///j5Bg8V/QsJHsGMexDerGNCgI1ehih/bvgkyQgxp 8JQebDeC46E+N3X9szENbhR1SeZjbxJ9aChuRgPjo31LbtiNPjRyrS0Ndj4+ xDuL45+S9XiY+yoNkjZpGOZju38yeGXiTAPS82Ot1tg7ZJ850/C+s57IMmnE +cW4YKyjdYMG9w75B7n8L/+CiWKx/jTw9Xw1twnb77vFZ9lQGihLG70xwflK 09VIs4+ggc4FJfICzmfnEpErGTE0SJg93h6HbRY8uMj/gAY85G0zr3E9HJa5 KLGYS4MZCx6dP7ieSu+rTik+p4HmIy5lF2yZFaGXLsU0qP0y1TuF629rV9+J 0SoayDjLaIzhemV5nbvW9o4GK6Xbz+bg+nYfVlRj76TBb/76K3zYk8cFyOrd NMgttbb0wv2gf1t38osBGijVCJNUT+P6fnO6IekvDeRONw4l437izXuSz56X DsEhBzU7cX+a9pb5mr6RDsUOYRoU7MsjXE/7Bemgd4ovCHA/My5rU9YXpcMf vaDp7KMMOHhRx1JxH/5/ltYWI9wPaVlHCtnO0iFGueqS0iEGXFNXPZmeQAff Atr9I7hfE1wTAu4l0yF1ZFXnqDSOd8ZsWWAqHQ4wHhgd3c2AfPZnIrZZdHBe ko/VlGLAWJvw9O5yOgQ9f6wsIY7r/fxSbMlnOtA4q+HpFgYou9b1NfEzwMXm KW8FBwMWM7Rt/sbiPiB7dsvlETpoLmjE709kwO+rQ3L8w/g6BiqNPin4Pl3L AnVDdKCs7JEgPWEAW/yHG4KDdBA05RsTKWOARd6GO2976aCwaeCSQS8DPqit Rkm+p4N9uNulEuEFkL/2/avsSzrkDV+NW9i+AAYXDnaO4uecUrZ5oyGxANST C0nJZXTw+HlOvF1mAbj26rZQSugQqHV4dExtAb6VcQXSCvB8sEy6tMlyAVyU 4oIIT+jQ5f7Q2ufJAoTSBL5K3qODTOyGJc+cBcgb8dgrFEOHOy9CEz3yF4AV xCbKg+cH5WmPdpfSBXDKUJpejKBDmtNJJbvGBTjpE0b6F0oHx8vLnGfHFuD4 4/LP0gF0aArxeGIwsQArqrXkQ7fosD17Ul3/zwIEJn7QOOmP7/+j55ru/AJs +3VpwMuXDiqXCgc12Jlwxjnff9wHzyvmli9kJJgQvDYmu/caHSx9e05I72LC c3bxz9budKh8qDcuJcME9j8Wv5Pc8P2/KguLH2BCZ+svP25XOnwy5rsjpMUE u4OeDD4n/H7eIdsFdZjwdvPf9xcccR4mLlXy6zEhc/6S9hMHOqj2/JriNWSC q6CiKuB5Kv1sgzHJhgnMj5ojKfZ4nnJXnmO7zIQ6lHp7wY4OhrHPI9cc8PkN CUsXsMkfkxsWrzHh9gh7pLgtziv9azJzQUzYYLT98xdrOrQ4/WqaDmHCwehn Q/rYOyItrKbuMiE8lzHXZEWH7ncnEn7FMSFCF52tw/PeIV2J1aHHTAjwF0jt M6eD0tP28NZsJlRwyQxexpZf8xAoecaEeq1TyotmdJCofCsdXMIE233OJjLY IgLOZS4VTBAvUZNtxfPkZrdNmhdeMUHDtX7/Fex1u+2NZN4wYarVY674Ih04 7vB+F2hmQpGe3UtTbMJwxdWVNibcbY1u4cSmJXHc6upiQuHw/LCTCR2m54so 1T1MOJA+RJPAnjS4cP9pPxMe3rN0HrpAhyGOvDzvESY0hF9+aI7db3NG0Xqc CSqb75qLY3fXMWtPTDLBued68m9jPD9ufXxccQqvn/yKUQV2i/eJzyKzTBhn DSQEYzd0z1lw0Jjg5tZjfQG7Wv7h5MwCE8p3Pqvdi10eofXf1yUm7CFvLuHE fjHxZ6VxjQlWJ3vRz/N0yNe6H/6cyAJ0M92jBTsrXU0giZMFZ4x36Rdgpy/+ SAtYx4L+76Kf72MnG0dJO/CxQF1XhTcQO75UqcxQgAUSs9sI7thR64c01IVY 0G7tXWKLHeoY0ia1jQWa6N8uM+yglr1GfDtYkG2w87Ixtp9E3xBTggV+lq89 z2N737p1dWwXC/6eMjIxwXYf2EV9L8MCdkLwZitsR+WP/hXyLOAwnih3wLaL 96FkHGBBizTfoevYltM77ocrs/A8EpsXgW2i17bd4zALRM8zKY+xjXLc88w0 WZDP6raqwTZgF1Y8psWCO0/zSr9iH7d8Uyuvw4Km1FWOZWytaofjW/RYsLxq bCOB1099M/9nNgMWBDxXaNfHVvaotvh7lgU9Jzi1fbEVOm0me86zYFXZqLcQ Wyq0bCXXggV17CLnduD4io2ZhcddYsF5vhv6lthbNUkCvvYsiK1e5/EYez3j nLSBCwu4t7qYKuH8oRiulKpcY8HsR4J0MDZ7UbaGuBcLEraeU+3HXrBnGNL8 cHzE0pSjcT7Ov0kfGgpkAQyr7ZvGntque7U1mAVDMlMBRji/R3of+D+MYsGT 1QJNWVwP744dykOpLGgU5Wjms6DD9dZb8gGZLGiwDQnMwJY+0VRem8UCd/7K CCVcf6H6p98cLsTxpKVmu+L61DayH1CqYwFTQ7lQ0gbXQ0++9X+NLDD4o5D0 Hfup8exESQsLCqyl2TNw/bOb+lLlP7JgMaDdTwH3jwbrOJ49Iyww5Hv3Ign3 F/exvvgr4yz4blRnewv3nx12IsI5k/h5BJM+OOH+dOtKrpTkHAs8f80NXnDG 8XCt1dzOvggVbfvivP7X/3x/u2/cuQiepyKqOm7Q4fKK/MJp6UU4EVbznB/3 080Bnv4xcosgTxKvsvSjg+fttbvrDi6CSwKbHBfuzwfuCj4l6yxCbCJLJi+Y DmPcZnu09Rah12jAdwfu53FRmS9uGywCzUqZPy2MDrP3ZF+vGS/Cdx/yrgLc /4uSjvSyrizCiC9HmEAczsctYWaqzotgb7GQWRtPB96HHaPe7ovwaGJJzhXv y85pF6ap1xdh/CqlZOwB7sdZLpzTdxeh6qIoYWsGHbJLUg6NFSzCn0+7TFuK cP4vmcn0v1iE+qIIk5fFON+OiW7rLFsEhZFc9eeldHjd/2T5VQ2+v9mJlmd4 f/y8VlAf934RWj7cOT1VRwc2g7pjR/4uQuO9iGfxXbifPAhUVplZhMwV++9j 3bh+R7V276UugsQ7pHII779bvFopwkv4ebZV2DK/0mFfatf7We4lcA8K5X3z gw4Wf8bOZsosgXn8v/pbTNxvlbK1kuSXIN8rcuzAEu5//lcUow4sATu7+aV/ K3i9N05tun54CbynmwK98PdspCr9y2m9JZj2f/S4ez0DXoVyWq45LMGIlfje t7sYICgp52j5bAmm/tFF4vG8GBsfafysEN9vYn+krRX+nmL/q0UrWYLl2/rD 6rZ4vhl9ti2iegmqhB8c43RiwFT67g8V75dA2qPEaukmA5q2SirwTi+BQ568 kW0qAzz5tzJqDixDDGzy1P7JgJmgG2McKstwuC76n9AfBjjO9XeeVVuGFonc NOo0/j7pepD76+gyfDOQfPaWib+nYwQvCpxfBonOL+ktPAsgyb3xtaPPMvwV 2+12UXkButkot4VfL4OSRGxDzb0FmC5MsTzTsAyMv9aX/BPxXGIqqxbWtAxb 1x3m1320AKjUgEbrWAbu91PZ83juKLJJvNw1tAzEO5cz8+sWIPKtxMmwtWVQ VlLckj6zANohGpvoWitwQ+H+k/gLeB+k/JfT9W4FXHcnfIkEFkz4Bf2r+7AC ojIdL9twX9syd0+p8NMKhJsFOPPgPub39Xnj3a8rYO4G5/LMWaCdP/Fd6/cK nJspHt1/kwXdJ02FKiirUHXknkbES9yHYo6Ep+iuwpS7WyxSWgQ5wQ2ONs2r QNrxe9/eo0sg8KLmefa7VZBXS0/v0F+CxeNXZiY/rMLYcWGd/4yXoM2vztOt bxX+fGmW7cNxtht3DvD7tQqmt6FlLnYJ0sreJSRxrYHO7pFy35ElWG94p779 1Bo0nXTZVB68DDMxjE2KfWuwoFdy2mpkBSTDwva5ORLQadvVL8FnCWjMdHBA 6xcBxXS4Ndg3saHjPz+zKlzZUEe7m+mYJRFd97C/uvkfG+o2DsuO7iKh8JPT Vw7PsKGSXV2f7/eR0IOdPlcs59iQ9M/Prg++kdDLvvDLOXQ29Gtm+8ekSRKi Hn5up7zKhjI2b/byIpCRK5FqbczHjkR8c1We7yMj24TAi0n72dHLtfiozkgy Mnj5SG+zNztau/uAzfIQB7pKtVkTvM6OfAbsPyhocqA7CjLlgjfZkdSFOz1r WhyoKr9qu+AtdvSoY8uteH0OJJHROysQyo541L5k3rXiQIwwvgcbk9jRSOWI anUwB0q/eOcHz0t2ZNcTFLHyHp+fpJfMU8WOXomI/dDv4kCfP288xVPNjuY9 bJse9HAgikHmy3V17Eg0q5dbbIgDeWjV3uVuYUd7JzN4F/9xIB3ZhX2UPnZ0 pDBI/ON6TjS97OhHZLCjA8Gfo7/oc6KLJif3sBbYkaLxr283z3CipjLZvmkW O+pi/3RY+BwnSnGc2jewwo5C16vy6ZpxIu1+lx/FZCKqvKx577IDJ3pU5q5n KUhE/Uo/UoqDOREH39kFIyEiotbdDGYP50TujvuzTggTUevXTftOR3IiHfH5 FaXtROQz+6O4P44Tzcf8V7JOioiUo12GC9I50XFH7y2vlIjI+rxvmUElJypr Nm4uUiaiTdIbzPWqOZGouIpHlioRbc5e8EG1nIj6ZeH9PXUi8mYbZ2x7y4nS j90IuKxNRLdvNkTf6+RENDG/CYFzRHQkQorHfpwTPf4SVO76HxGxvMJVn62j oIlmheEYLyKSF42ibl1PQXLlw1wvfIhIK3z6ZsgGCnoZq2E140tENmI+/dqC FNRxgsXlHkxE9T0bFJ1FKYhfNU8pNpSIioeuVDwVo6ALuy5YFYcT0Z38L18+ S1DQGHtF+WwUEUkz9v7avpuCmDXuVtcSiehw6OADk30UpJm/IyLuARExXNju nNtPQXeSO8tLUohopoby47giBa33kuOeTyMijwaPqa0qFCQpP1nukUNEzIDi WFtNCjLItOL2rCSiYNa96NsnKSghZv3BhFdEdGXk0VniKQr66ldrVV6Dz2fz UvEzoCC7i9sqaPVE1M7ncs74LAXd4P9i5dVGRAMZCboFxhRURwiNSGwnIjtr rpipCxREmlGqqOggIpJxSKfURQqKeR/PzegiosZBHplAMwrKCjao8P5KRFs1 Wt9+tqKgPx4rw0mDOD4SDYY91hS079Jz7sohIpq2Va7ouERB1Rrc1gujOD+O vxzNsqWgNdlXEULj+LiD6ZNgOwrS3nq1QmUCx+dfsaS5PQV9ZDRzX/9DRLv4 f5yfv0xBm356HkyeIqLxqtsrxVcoyPSzpHXVNBGZD5gbXblKQeMvgiqY87gv XL+9UO1AQTLpCiNb6ETUJfta3cSRgtyihrkPLRDRg088ov+wF69qWN9YIiJJ Se6nK04UpFcjg7xWiCi+65PWNWcKesS7RezaGl7vHTbBQ9hTVmSCCxsJ0XR2 22m5UJB66fzwVSIJ/UqL+56BHUUaqbcjk1DwU8FZOvaQ8YcMa04SukCQS9R2 pSD5Z9UB5lwkZBJxtj0S+9ZSrpXJOhK6fJwz6j1256lEOMdLQgNe3X1ENwra kXl7xxk+EmKGqOcqYbvPu62d3EhC/+3+zLLAbtC2GNYVIKHfutLvA7A3PtCr PypIQmZC3UIPsW1+q2SAEAklr3P69hy7VE0qQE2YhKp+xAlWYRNj+K1UtpFQ aMHv+hrscyNrmorbSWiiTri/EjvrwD/RfTtISOfDB9P/nU8PHliVEcfP861C OwVb50vr912SJJRoEBp/CztpT0WdhBQJ2YwsIHPsX75P0kV3k9CTklb9A9iq nfdubd1DQtPHKksJ2OFi/pabZUkoKjzKrRW/f7+Hoyb/XhKq+7gxMBR7T/MF 0fX7SGj9iOCoBvZNoWOrXPtJ6NGM071/eH3bHQ58Jyvi9Xz2NywRe+vrHXVs B0nIVOFa60Fsp/W86SvKJLRBckivE8ePp+yXBf0wCYUcYds4ieNtTu7VmFMn oZV9caccsAsvNG7/p0lCpM2Vb8Zwfhgspw6Na5GQ4cEc7TqcT+kGEbUj2ji+ UU6nxLBnMn3SvumQkMX2+qCbOP9ijxla9OiRECNF7ZIQzs+RB6DRpU9C921D OExx/u7/I7e9w4CEGqUz3ifg/O6O4Rx6a0hCuuaVz+ZxPWzqf21eZkpCHMXF 9qdx/djJ5Ku/MMf7mlLsK0NcXxV+D0QKLEmouuPJZgNLCjIW9/j2xIaEOHWd R+XMKSjZcbd5vCMJxZyedInA9Tv5epN6jDMJ+ek9qD+F6/sQH7tIhCsJ3Yxc R+Y6T0EDZd8Ggzzw+x6atL5iSEHbV+LMrt0koauaBMG3+hR0fOzUqwd+JDRs dMJHCvcXz1YuobpbJORUvt/g1gm8/nFB3dx38HqA3ykBHQry3nXtRFYkPl/u lXo77k+P1+3NbY8mIUlq9PSwOu6fs5OkuXsklG7yd/nvYdzPaqwbNBJIKEK2 UvKXMgV1nT6j8iWVhLqMLuo5yFPQkhJP4ko6Cf1R54rbL0dBu7a2zUs+JiHx d+PbZ/dQkN84FLln4/gIeq2dlsL5cmOfFHcRzk/10eSH2yjo9pP1Ahr1JDTI bUc14cDxDWt3t31DQpm3E5yCiTjfnEM7774loe2RQew5BFyfKqt3+1pJaDG1 +M77RU40+P4fwR3PFa/Te5IypjmREr1j+skoCXFlVSk69nAiq4Fw/Xc/SGjZ yjuV0cWJIuq182d+ktDD1lrijQ+caOTua3v1PyQkP/W9xaqFE0WLPv/WO09C h0hvZsrx/jahG9lOIZHRmRO6V/ySOZHNSWsxKQ4yytOUE/RN4ERDBge9j1DI qLBNm8M9lhP1nB8Wv8lDRpJH9xaq4/210Vbxxt9NZORhr/DP2ocTpQUM7u6U IqPuyH+6PUac6FylbMh9XTL6kf3e1ZrMibqqCYMvTpCR9d+IAikCJzpZ16vQ cZKMMkbXNo4uciCt5oBvpDNk5BhdZ3p4lgMpfP6s6G1CRk/aN/R4D3Agnhnf MRMHMgres0FLqJADvd3VAaJ4Lvo5kOvM0ONAejHDepujySjc+O6eWW0O1EWf P7/+HhkxaiRNR/F89L1J2Hk1now22LpuyT/AgZg2V5K/PySjXWPsW3qFOZBc Bvtcej4ZGXl15sdNkFGS0KEnO9rJKKpv7Hb+DTISCdAvFOrAz3+6ZX2CBxk9 nbCq4usko9wpV2kvJzIqrgjtXPtERjv/e8clakFG7416Foe/ktHEbmoONyIj QqybUeZvMjq8btXtDF53R0oOSZyLA93XPxSRHEpC79nDo4+uw+9RGZ/W4k9C cisOmy/zcqCBAfrSH08SmpnbK12wkQP9VfJ8utmWhDwHK04e3MqB8rTUxli4 b/gXNcefkOVADmW2VvM0Ioo991PM4xQH0pb6/bfuIp6bMndqvI3jQLV2ZQW+ nOxo55q275v7HCj3jT0//wobirWwf1WfyIHoWvqvM+fZ0NWtOQdfp3AgJZ6k XzlDbGhrwm75isf4eg/dVo3L2JBfmMyO3BIOdLks7uwJCzak5arAFvmJA42f 8nwXW0BAnWrqzYYbOVHdtpOiIvarwHR8ZGQdw4m2RkcK6HIyoe1MxnnezXif l4haL2g3CzaH1HNzEyiIkazvmXZvFBz+faB/S8L75v6dCgp6o+D+2EqbPwX3 wYiNAq9IoxDAdWfULw3PMX+d/xbeGIHUr++2GeZQUBHtjsOZlu/Qd+NC7HIl Bd2X+uxBdBgAvWqPG2cHKSgeN7vap5/grCupLXSIgvLCf74mC30CE4mkza+H KWjZ5+IL7YguuBLxqmzXOAWVb1ERPTXaCcGmhOmlKQrqi+ohc9xsh7rFaJuc VQrSL3I92J73BpqLdpQMErhQqUp6lWtMA3TYlKxtIHKhRePbUQKTdTDY3pPq y8mFVK+K8Ojfqgbmw21fzmzgQg0RKr4b80tgzaBQKpSfC3W5MH91/C4CDiJ4 1mziQh+Fr+2zD8iHTU42G3cJc6FtjPdfHPMfw7YdNCuzbVwI76J3qwMegsTn kKLY7VyoLdRGMzY/DmTChFaad3AhDx67l5X5QbBf7dnJJXEu5Bpq0/nj4GPN /wOve1nG "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, 3.50677301837755*^9, 3.506773131289506*^9, 3.506773424212586*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s5", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "5"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.506773025176165*^9, 3.506773025255868*^9}, {3.506773326884808*^9, 3.506773331409153*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s5", "[", "x", "]"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.5067731362703733`*^9, 3.506773137486212*^9}, {3.5067734277709217`*^9, 3.506773430935237*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwV13k4lF8bB/DBzJixlLJk38qSSrZSWe6Tn2QpSiVFlCgkJKmspbIlIWm1 RLaEkEhFpJJUKvs6xk7Zssxixnvev+b6XGac5znnvr/38yi5+Ni68RIIBFU+ AuH/n3zVAt8Htpwzbqr6/+dVY5WxKgP5OzZweJest9QdZ2C92OzakegMU/1q mp8SfWBIzJ3xCn/uvHZXyTMxDDrNrtdm4U8FCTNvv4Tb0OKcqJaSeBtUGjs3 NN1KA1svqc77iWnwCGL5PcOKIGHWsTQ5sQjOLVfHbTSrBoOPlgIm59+DWb7Q KmbiDxBpzv6hf+c96AimkA2+/oBBOu/dTaXvYVJAedsLniaII7xRkPr3Hn7p p/o/294EdIMNW6b9aiDcLbZ6KrcJokoEj6f61YLh4r/1z67/hNa0xjLWuTp4 6C/taq71G3wDrU+U+tbDXHXceNeBVrD0NsylxNcDT+jliP1nWmGti8bUsaJ6 gO7qLy/DW6HVghxCmayH6+LGwqbFrWAkVXX/2JkvcOS96vI14TYQqNjUxH+q Abg/f5SE1LZB1rwQODo0ws1OGXOCfAeEjrFuFAc24n17HL9KtwPse0YbyQ8b 4erLuwsrzDtA6GPd0eL2RvjoljH77VwH+CUFB5DtvsGvpoj7DnUdgHT/FLzY 9x3sPxkFFrh1wtkKtzjetU0AX5s6Zu53gabFfkUevSb4TN5eQi7ogukOw5Jl 0yaQdrNm8NZ0gT9btHXpVBMIyIsUF492QaBxrdzisyaY1uGTGtnaDRF18gUT Oj/h0AGVm8+/d0N6U9vXZpNf8ILl2xA+0QMuJz4c+33gF+w1PeoQtNQDa2cL p366/gLp8YvtR4V7IVs0QvRHxC9ICixJ+q7ZCwV2eg5fGn6BUIHBimjfXqjs jh9/Z/sbXJxDLltO9ULzqAU1x6UZ9BW/XxXu7IOpB+q7rvk1Q1zAdTfWcB8I WPFfdQ5vhsWxgrKf//oAFdQx1mQ0g7eGWlsamQb552A0qr8Zcgd4P8cq0CCc pffZ83gLuBT9ZLja0CAlX5Rvt28LFPwTE9U6RIMKx1njtVdaoPDzwcTpozT4 W1X0qiutBeour/2+/xQN7K9pZO/pa4GWzzmZd4NpsFlI8YamUyucr3hnqZpD A8t33PcC3q3w2ErupsVzGrh69ywNh7SCS+cdP5diGjxseuifltIKvltHLS68 oQH5rrirSE8r7POCpwo/aNAtJ/jfrEMbLGxqvntzjgYxmxcIr460g/ijj89H 9fsh8KLFhmHPdkDiydbyhv3gUf34kERwOygqeOaYo34wt/nvWUBqO3A/6WQE mfcDv0/8Af2Bdnj9WrvKwb4frhdqZFd4dUDzB5tJoYB+8F8IaRoN6YC9rqNe iZf74aTxT5bk7Q4w9q4xEg7pB5PvF20uF3dARgwQBq71A89kHWP7Qgf8vf9R VyShH0I3OVu9CesEPq1KVmBeP3hfKLkwEd8JEsrUyqPP++HYO1K6TEYnCAxK hGoV9YPh3udzQXWdMPtGxrTqZT+wvZgphtQu2HHbVNq1uh/GX+6p95LuAs8R j/3zNf3QuZQ2+3hDF2i4dkwG1/VDZazZbs7eLjg4NxPn86UfLj2/M/0usQt4 Vst+GfjVD+5zw9KTmV1QES1yb31LPxw23LFLvgz/vktZ51RbP2xtpD0IbesC EZcEYl1XP8xNbPoPZLthye12guhgP5zbUH/3fVY3KJLqTVf864dBt8Er6a+6 4fMGLcvquX6wSyd4XfncDfa7zM3cF/phh/h2EzTWDX1HtxzJYPYD73LeZPXG HjB+HehVsYz3d/unjjSjHog6cTxPg4cOw+fpdWHWPeAzT9lzl5cODaPSj8C3 B0TXe7APkOiQ+Ovm7urSHqiLdrpzSYAOROFcnbS6HjgRQIsrEqRDwO46ubCW Hoi4efBknxAdjr5d+me82AM0lbaf61fSQTn7bHrVjl5Q1OKcPCNKhyRa9M1U q17IeH7ko6cYHcgy2QGhjr2Q3PIm4KQ4HcZv9+4xDu0F7pat5J1r6FBy2Yb5 rqYXNO8WXiuUpsO6l2cGU371grFLsEigDB2SJyN/hAz0QmiGsDvI0iHw5Pss I1IfsHgGysrl6PAnpTteTqIPvlmEfPWUp4NTOyOIo9oHxZKR42sU6GCyV9v2 nXkfrNmofv24Ih1eRu41SjnSB3GJYfJL2Kq1Huohnn1Qf+MTT6ISHQT0M7iG sX3gH6818FyZDsHnqsZkU/pAnHaZR2ctHSbzO5uXCvqg4y83txj7t6Jo/tsf fSAbEd+cvo4OZg6bkx/T+uC4t8plERU6VNy1uho80wfu8eTRQGxrUu2GVCoN FO+iU0iVDpHK+5RWrKbBfk5Y8iPs99ArESpNg+ce7b9msHUCWTxOG2hAVJUv ua1GhzP3oha/6dKgWXJPQBv205cSf40MabBKTCxaWp0OPT+f0gtMaSB0S5tt jy0xpdMutxf//YFnTyK2jVDNt1s4d0413kb12FHrbT5wjtFgjVTwFiZ2jVlP xVmcO20FYt9U1tOBdfJMYY83DZ41m0taYx9f9e/S2wAa8PIb9Phgf6wK/O9R KA1S/+3hicPW8OJdERiBc+fUwcRc7HipmHb7OBp0+GqmVmMvfFqVqZ9Mg437 qnV+Yzv6PzgrkUqDa4dnjw1g1yopbZvPogGh7fWmaWy1H7m8zQU04PCtfMHE jg3W+lZSRgOJ/pnZZezZ9RX3Et7h+1X1IPJp0MG+DVx8P9IgVy18lhe76vrn jTbf8PVU7/v6/++v07FZ3NRCA1O9qcf//3/Rfa01Qj00cFEMvfD/9SZjnWIn BmnQcnTdyUHsgzuG7Rr+0GBr7wr/FuzKkbNKeTgnL7zwffUBW+Hu/ETkEg2O NYRvK8K+bhLy6hSxH5SXr1HuY49PEa/uEuqHpoEKvVDsfSmxVuvE+iHr1Zmv J7BfWYpJ8Mn2wy2zP50m2Fez1ua/39AP8pLFKRx8HsO2+RfSdHEO/Ck624a9 h6CLQg36Qe/czFQhtqSDSYuBVT9UmY6bHsYOpTSkSR/oB9R4XU8de6Bsvyfz aD/omqqLLOJ6KRQ5sfzKsx8Caq5/jMMWqxr9ctcP51yk2dvD2JfP+Cb5B/bD pjjlDnls009h63Vi+uFzu2d1Dq7HrqDUAwU4d4/c/tOaheuZMtKVkznaD/Sd GXzHcT94J530C5/GuRxQqr/6//2xc8LwBAPn8I+k4A+4n1Ifs37KU/B9Kw+d X4u9xVZq6QFeZ/SQeHkn7keXd3b74k/RYeOuZ9G6uJ91XkmulvKhg8jHjLBW 3O+8RZ2/n1ykQ7cpz4XL2BnpTodLo+jQljiUV43zgX7tlFPrMzqINv63zwbn R0mwuqJzKe57sSOH5nC+hF8Y7x95Q4fs9I6ZB9jKp73dmI10KG3WMBqRwutb BnjJTuF1On21YyXx+v9t08xapEOLHSJvw+Y1ZE1tIgyAV3aiwBDOr4xNoedh 1QC8I7z/a4JNF4kIdNEdAOIYU1tEAq9PNTecMBiAm1VPkj/j/AvnFeCeNx2A WMHc2ivYynO3rt44NAD3ZR69ZeC8dGm7G5V7cQA+nZe35MHWaTpsqX1lALad +8qux/nK+0VKqDJqALwPqwvdwc6oTLn99cEAHHlwPEkT26/Uef/BjAF4e2hc m4Bt8lxJtOcZ/r33lcvNq/H1pWQlT74ZAKFUPtsb2CXJp+0v1g3Ae7Uwigt2 +O310oRvA+D8dO3Lndi2URNdUS0DMChdcHodtvLVgpRVvQPQ9PPXFgHs2cs+ zg+HB2C7+m7tf6tw//ppK62dGgCyT7lXH3bimX/0/MUBWFX7lfUd28W17Kke YRBO9KtO1mDrHLt46h1lEE4JnDpSgc1rt13dbNUgmP9UtCnB/mXNHvsuNQiq rNH+IuyM3e/yDysPQrit5bpibD8UdpamMQhRMQ3qr7BNtu/c7KE7CLErxniq sVfr8M3MGAxCAE2+9is2XeNjSaDpIN7P3qBu7JK1kf58ewfhaOCdnTPY4bIW W2MPDUJiW4bK/+/PVlyQIeY0CHuPe+5Q+//9r/j2OuXUIJyuQYnm/79/8u0g VZ9BaLa7AN7Ytcv7jIouDoILad/B+9iJjNXL+lcGIUxs1cAn7JMzze/fRw0C lTLDYWIfD4w/XBE/CNk6Br2b8Hk58u2ZLLo/CI8Fy367YR+J5b+Rkz4IhUXy f59g24l/kEnLHQQ0rL2djm2bGlqS/GIQzpAzPqnierFR22ERVzEIKt0yT32w zbcXB4TUD8LTsKroFbjedtV6CV9oGoRoQ4UiV2wTK/WnXu2D0HSY6VSNbXAs 7afD6CA4RhveD8f1u234qPuB6UFwomQZT2Dr+UgsWzIGQTr8Rp49rnfNq7c2 7qAMgViOA9kE94eGgMUHbZEhqKeLiVdhq90hHl0vOQR2pG9KgPtLMSsoUlJ9 CGJIZ7z34f6T09SXF9EaAq51SwMNW7p89iX/tiEIV97tFID7V/SLB31h9xBk ZUy5FOP+FrFVuTxpMwTTNu7Tdrj/hbpoK4cPD0HiQa+/PDgvyH8PG7WcHoIm awNvdzz/GSJm90sjh4D3PHH1ZZw3cw94NuffHgLHmLWZVjifZpTffcy4NwTq cptE1+H5Pa6n9y8hZwh4crifhnG+9dgrW/t+HgK9tf5LL3E+d/b3DJ7+MQRr f/MQK/B8afV8EOTcNgSd/pcO12ygQ1OwSJ71yBA4SdHWjGzC9ZDO5dvEPwxn lqP9r+jgebS+8uG6lcMQU3dvf7kuHd6UXNCWXTMMlo3MwTk9nFN1f5wE1YYh u03p5HV9OuSMdr4eMxuGFVePrV8wxPNPq9wnO2IYXkR6SWtZ4Oc5nbbhC3HD MMkp5PywxHm8ZfHYruRh2MofJHlxD55H2/X3DGYNQ4nUf2u7bOgQZFKurvxx GH6t5v/JtqOD58Hy/hS+EXD/e+1qHs7dXLs2+7OCI9C0s2t7rTueP/aLPwxF RyB8RXwv3ZMOJ47pV3Upj4CTdYKkIc5l+1PlD6VMRuBvQWKwzSU67L5UfuDu lRFwsGDu4ovF6we2NbhGjcATwcKatDi8H8GLO/XiR8DTv+SnaQIdjK/qa/1O GwE9yqfW3GQ6bI0pF1pVPQL9ye9iOp7gef24/GMsZwSKozPWDL/G+ZHaZuhI GoWqm1VnRd7RIT19sXSDMHYIefa/93SQzdLPaJAdBeMLUXmfPuH6KSwPpRiO wsbdnB8GzThf3pfrXw8chevyw0//TNPhmfDqbE74KFgaTW8izON+cvASu3hz FELOvl2vwKRD5oLijMfjUcgzFM4M4xkA000xz2yqRuF7yuvXX1cPQMRDRzkZ 3jE4brlO/IH+AGiOvrqZJDAGjiq7A9wNB6B1yyqWsOgYKJIjhv7bOQBqPz+2 EtaNwUM3xioFqwGo598cP7xrDL8/NSWfdh4AgQs8fCXRY9CTmfbEPGYASmod zm1IHIPsHpW+7tsDcFTkVd/Th2PwJdakMOTuAOTne769lz8Gt/++kR9KH4A9 9N8XQr6NQZNd4qo9FQMQZ5M9ar5qHBYLfHSujOEc1rD63nd/HBx/zBfn45wb 5k9bVZ8+DmquXV9dHAehcmj24IvcceiU8L+scnIQXJ887LpSMQ5Sl5RSvvkO QoXk+KhS+zgA31PnvFicC/zRfK5rJqD2eNThhE+D8Hzw07bRuxPQ4bKWqPvf EFytlQ5uSpmAvHHBmBNWOAfSvasrsiZgc7HhyKMDQ0BwlDCLLpsA304vDT3X ITjw2+2ARssERG2SH5y9MQSsGqK3l9gf8PT86Zz3dQjM00wypxP/wB9nq3+L zsMQWd/UE/7oDzR2aPmf8xyGTzNOkuJP/4BIRl0Dw38YdpkG3dpehr9PkJnS ihkGk7HSi+Ftf0DsrNAXs7JhMNRV2SMm+xd2b64kkVeMgNZn/nn9rL+Q/nXd m1dfRmDNVKNZWPkkiIxphma4j8H9hOoTY9WTQFtTS9wQMAaSeiXBB+onQatZ xLv6GvbleyVqHZMwXuldJ5g2BtJ8LvJNrEkIdY4I0m4dA/k1i/OKxlOQvun1 o1yzcVAFpazauil4WTzQsbR5Ah5+ruTh85iG6fPr2blKf8FQbueyousMfO9Z 2BVzaxo20EQGQ/xnIXo4sdq0axYKcle7l/n9g0wQ34V45yG499jvDRFz4NTB HS7TXIS53UYpbjFzINl94e7LrYvgVSx7Oi1uDkbb/EwKjRfB4XoXa/W9ObDL ee6faL0IOzSOKLNy5mB8ptZUznsRmBcOnqv/Mgcsg3ukLc8XIUDYaqWb8Dys +VEUrrOOAZMBGh2pq+bh6YZ7CVc2MOAUjZrZLj4P62iKyfU6DLArrd+6R34e qBJpJ8x2MmDLETMn3c3zsHOVyWbGMQbMPd1ZwLMfX7eGk7ZmMgPOGW6zSk2a BzEbzq0SHiYQvJPCbt+fB17hb/y1/EyIS5suvfJ4HnRsJkO/CjPhGW+e7Mmn 87D1/Mb9jVJMoNdLTaq9nIf+NePs69pMOHiIHV/8ex7sXp4w+u7MhK3eVa11 qxcgMzNF+kk5E+rSpAVfSSxAtvcn65G3TLD9GQA50gtwxaX8n2otE7z1NudG Ky9AZ5DC1cRGJuSw0i5b6yxA6K98U+l+JkhGXpVt378AF84yT49RWMBKM3WZ iF+AYb8dW30PsMB40ShR++4C7O1cf8DIngVXrfVrLz5YgD2Subt5j7GAwlmv TMxYgMvc0vzzp1ggfnQlXbZ0ASrW2q6eu8QCLbHOE9YtCyBzmKvk8ZgF58/8 TkjqWACR4CshJekseFXbWNPZswCs6uTof09ZYHSuWun08AK4J1OeOxawwPL7 0/6wxQXYUnNurOEdC9yifE4USy3C54bbTPEeFuT2uScsyi3CUsXlJx00FvzZ 6lJjpLwI3UHfB5IGWeA3dFCpQWMRvj+9oTc7wYIrJjv66QaLYJsU9283iwUP l4gnxJwWYWZIKtZZnA29B7jxR10WwfFXaupjSTYo5S++Tz+1CL5L6WY/ZdiQ e2RccZPPIjQkmNorKbOh7NUP2q4ri9D6fe6WoyYbmnwfHr+YsQhHp9d0wy42 aMSLsP2zF6HLJ6ayfjcbrhVF3PV7tggDQe/2WlqyYeukX8PZkkUYOzuUrG/D hpQzVnqutYtw6UxRa6U9GzxPLfHvpy+CYPiElZsnG+pu+GVYDy+C8k4LqUAv NshljRruGccuvloa6Y3XH2g+t3t2EYYuHbe75ccG/RMFXUa8DDCxb79tEsgG oqNTkYYyA66oTHyzi2KDU1CzhboqA1y/fPNlRrOh/KHloIoGAxRvSZPv3sTr d2yVUsJ9kK6zUbQ8jg0/7VZeW2PCAHJmMSUnCd9fwA05cTMGvJCkxq9KZsP1 u+zy1ZYMGB14oHThHhu2NY/8EbZlwIrqPb5qD9mQuv+9HdGFAU8/q0htT2MD w3frDM8pBujXStp4pbPBNv75zWUPBuyz93h2/wkbSD/uv2edY4BobHFfdyYb vPac05i5yoCHt7MKRHPZ8OnMSN3kDQZoS00HiOSxQeHmMec/0biPWwSvk5+x 4dcXi6SRBAYUVo1f7s1nw/bdytyeJww4/jLO3LiIDXqZDVGfsxhQkHWigecF GzSX/USL8xgwXejxrwpbufyD+vVinBMyQ1aqJWyQFfUqPVvGgO3B3deasCV8 xIwPv2bA90ERf/9SNgiq4fyvYYC11tu4vJdsIF8T7hX9iHMjRqJ2RxkbCH1l 7px6vH8//as/Ys8lk0ObmhiwqihC48srNkzOFlIqmxlg+yT4yc5yNoxaH76T 2c6AaxvZc6XYPeTc3AAa3t/r900jKtjQ7rJP9/ggPp/pw5bD2L+qGO8sRhmQ qYbfoV+zoVH6ibnuHwbw1ClpJGF/CrD4LTvNAHdh0RV07Pe/Zo6R5xgQ9+/1 9PpKNlRqPhydWmRABEWt7Qz2yxiT8x1sBrADAz7lYBcNj3NqlxlwSKTpQw/2 M5M7Uc/5mPBd/nSz8Bs2PE01EE3GOXclMpCjj53KGkgJE2TC9hcHTR2x79vF qnusZIJviFVhIHZiiV6prSgTpq3eozvYsSt6jAzXMCFjXIEnGzvC80a9igwT xJLocyXYVz9tOrBSgQlrRm8qVWIHK7f2MJSZoDz0LPYNdkBoqDtdlQkf+jsM yrF9O1X/fdVgwuiNKr0CbM+tP0LKNJmwso4akoLtmniRkqbDhMhfF6WjsJ0m Fe5EbWWC57qm1Wex7S3r5fx2MCHXZejMHuwD2b65DsZMmHS9u0EV25pXSneX CROiNL4cZuH9MHeqeadpxgTZ3/4L9dgmlR7mkpZMOHnvnnAitqHE6t881kx4 U2OQeQh7q1/lsYn9TPiYHfBOFFvru8to8yEmNKS4uzTi81GJKOXkHGPCQ+56 t03YinSHqIQT+Hr7fH+04POWNiaKBrnhHC8+1nMJe8XCQXXrs0zQrLrNKcT1 QrHllOifw+vbZMqaYPMWZhkpXWCClxeT8QPX26Lbgu1cMD4/wyt83bgeZ2tS e3quMGGHUovxUew/crvdP1/H10N/uf83rmday72Qh7FMuK//S/IVrvcvu7bn osdMSHrCHTMuZsOlz6GaYelMYJ84OnMD94+6Rd3Ld0+ZkM1/S+0z7reIPTY1 OwqYsEV4r+m2QjaYHnDr1KtiArNlo1Er7te55mfHz+O5RZBtqpjC/ZxpNz1c /IkJTx64PefD5j0a9E/zBxNEPbiKMjm4fo8nCK2n4f3rEbCk4nzwpbcmnh5k ggcP7+1FnB8KrrJS2aNMaJILuU/D+RJ6Okdl7QwT/vthrpiZis/D+52xHC8L ipwUpCYe4PwLGvNdtY4Fvl/Go2/fZsMpjuaijTqeg5r9jZo4/yTC/EPiNrLg edDpi19i2eAfvhwtuIUF97ZkbJrB+akTLZ5JMmNBVNu0peB1NhQm72xhnmbB nf37fp6/yIas4gfb6fks8PZYX+jqgOuR7aDRXsQCdZdzrtlH8Pnvkpf5XsqC YJ73B4cOs+Fte8bS6zcs2NwYLOBwkA2/l/OrE76ygF/qdI/qXjbwWFft2onn Wu2jM03mxmw4Nk7fn66B59TzsaYleTaIr93o6YT3TYgqHefbzYL4xJt2eQW4 Tnse7V7XyQIB3gmTOXxubwdd29raWEDoz5OJwXX41S+pxPg3nqepat/KvuIc 4qMPCTWwoE56rZbwJJ5TeTM15eUs8F8tvfBGZwnickKkn99hwdTVy3Sy/hIE f046HZDAAs+Z9u/7DZbglPcae5PbLDjedC9n5L8lKFzKPdYXw4I9ceJHRA8t QbYUurM5nAVrBVa99by4BN820Ly2nGPBLx5KuNTbJZgUWcFntJ8FkwUPnPa9 XwIX4a+/j9uwgHp0g0Fk3RKIX1jHitzLAlRiPTfXuAR9PEmhNAsWFLrcPdXU swQ5ptuH35iw4OYHZavI5SVw1bmpqo7PLdvnpVoVHwccmvsrI3XxPsqYEef5 OVD5YVvYhDZ+Hjrv8c5FhAO161d8r9Zkgfu6F5uNlTjg6BDBfYzrwvSGkdi8 CQfMPVlnt8jh+9P+Mb1hNwfWzYjb9sqwIKjn+DcXKw6Y3f1hGCvNgpIt1yOa DnDgz601DotrWKA43MDId+XA3kd3NwqJssAw0bGF7s4BuVaX8t5VLDhsPFks dZYDwTc2lrwSYUFc8qozkRc4ILN1ZsPFFSxYMrPvcYngQHzGxccGAiyQ/Df2 +kEMB3oSbooaUFmgmxaU3BTHAb/Pp10Qfr7zXEy1Mb7HAfnOrkpHMgsiMrU2 XnjEAdv51b3nSSx4YlNLeZ7GgdmUfUIJRBa05wzVSOVy4CTt69se3CdzBy6m 7nvOAQEPL3th7JUEalDkCw78UOvQ/o+HBWb2G/XmKzhAdI1oqllmQhnlfHbT Fw4sv/KVFeIwYTj46t+qbxwQHD7icnkJ59bMbb2CnxzI173v9YfNhOCO57XR HRwImlFfGGAxoXDvG+qlHg6I/fWPdsem1XzZd6of3z+TQv3HZILps+FekzEO +Ba8mJPCDpCfV9H+y4GOwAj/Vwyc24l8ZxVm8H6GqlOOYHeSV78UnufgOeb2 mgdbMEiRzWZwwO4ROfHFIhMMpzRNxpc4wFD7+sgN2/ukUXQ7gQvb8r1oitjp bVZNn4hcsK577EFfYMIvq6NryihcqLhC2vkMm/je3SlTiAsylha+l7C36l3M ShDhArWZl2cvtnvujT9hYlyYon5cUsN+KJuk6y3JBfqS9FkqdmN8RqCjLBci fkY6zMwzgUssrrFU5IJqYcTPPmyty9WU7eu44Jcb096MfeLvNxs1dS48K+Ve bsJOPNGdLL6RCw/jdlX/wq5rGe/h0+JCbPHr4i7sBQvmulldLkQbFhydwFav 4vei6XPBdcjjAw9e/6iOROl3Ay40D2nNy2PHZq9jvQUu5I3tYJpgV0nr7sz/ jwsrOeXtZ7Gn43ZGPdjNhbeBPx6nYSvz7fsRacWFHaw063bsgxedJAJsuKBr DItr8P5FTHgdcz3AhUblyjQn7ArnoKe2h7kgFiu2/zn2+O/oCeTABZuDFmL/ Px9Z8/s6m5254L3DctYRO0yr7L3gaS7QPC2UNfB5v3j6gZ/lyQVNYc6NR9h0 yV/Wo95cuHV0RE0M14sZz1R3XQAXzPVOWsjg+rp0gbO2NJAL9687deZhPxsT PPMklAumQycbAdfjil/qzJAILnT/m5+/iusVmekjrxguvMhNNdbkMsGvclfk 0Tgu2B6JFqBjt2a4iOsnc8Hr2NTe4wT8PrTmnKPKQ/z91q2tGrgfdtwMyxRN 5YLDBXs+DnbK+cfa01lceLTO9mwFHwu+jzy71JvHBWGHp5VPcL8RHF9XNxZw gdJf9y0R96OraevevDIu2DFn3GL5WbBRXMTT5SMXPm/Wgl5BFogWvXme9YUL vGVVPIrCOK/MT0+NfuNC6zY7vTM4H+qDq/x9WrlQX2i7Sh7nieugV1jwCL5+ NZ53CxIssAqVrK2e4EJ+es3qG5Is0JGsI/JNc+HxKQdVOZxXhD0yMdEMLvDd aH3uifMtpfRLUjJ1GZo9rhoE4zl5fe+Ftg7hZSArrb5xRJUFXiOK0nKrl6Hc 36oV4XzcIXMpLVN6GeQF3Uo34bnZGq767MWGZfjrbmB9VY8FK2yvVTfsXQbT s9qha3azYH5Ck3eF7TLwfhbd+wDnd/eNTtP9dsuwIyHsmcoeFjx7rd3Q5rQM ng3GWk54Hpgp0ZoHfZaBMO5ubOPIgtBpw3FuwjI8f9lM0/fH74sxoxtNkpfB ZeST7KmLeN6sS/K58XAZMiI5DmmBLJC2n5gTzFyGQO2vXJ2r+H20+sGy5Mtl eHYz82ZfHJ5ncQtiuq3LMKXN0DzwHM/DafnaTZ3L8GnTkMosntvjtrt91HuX AT/DUh/huT0ocf+L3PAy5JeszRfAc7szdXsoZWEZRqX+1Z/A89PlcNW/SQEC qtR8ypwdZ8GJKFvLP0IEJNNQ+UJnCs+P18PpYysIiGg9dyf4HwuOyay0HlxN QFd2HP6jucQC+z7n3A5pAhp8Mg0rVrBh72meY3UaBFRkaidWqcuGPffvltZs JCBVuSVC6jY2WH5ZL1CtSUDST23MY43w3N9gW/5ah4Bef9o/HYnfR02mMlYV 7SCgU9WGA2z8PLLtoumnB5b491Wp/O0RbFgbGbnZx5OAjGirzM8MssGvVS/U xYuAHFN4vULH8fOXCr3xkDcBjR+offZoGj8/1xl6GvoRUNkfuctzS2x4yDP7 lBpIQMpTqfYKEkuwOthR+mk0Af2QHh06YrkEvOe0SR25BFSrUtbkWLkE+9/3 Hmh8RkCbVZ6YlNQsQfrK2Izq5wTkH7uzZNWXJTAuHIbsFwR0dcg/fLJtCQIn HgWeryCgwNjsPIWFJZh1I08L1+P/15c1c0yPA/SjXZ0mIwR0Lut+1RY8l4SM DuccHyMgyXm99Cs1HNii8Pt86AQBRZDCmlobOBA10CBUOUVA19fa82fhubPZ q9JYm0FA2vbHtOr5uBAc8iBDgcqDwjd3aK2z5YJ4+mHPJQ0e5DGsNsq3iHNm 6DezzJsH3Q/VaGrcTEAhG+KCinx50Ma0ynb7LQRUcs6ck+vHg2RTC+mjeN9l uG8JjwN4kHHMylExMwKalMjmDw/lQb2Pe3UfOxJQkvklces4HvRSuuPmyRgC ouXLag8X8KDuXUP7ikcJ6JKfm7vEXx60rJicJlzEg6xfPbKUCOBFuaIdXf1B fGhyyTOYb4EXRTqn5FnpktARe6v1zEVeJPtO6vnQdhKqK93QOsnkReFxDn0h iIQeeP7Z3MnhRbTcEyW5e0nItP3swAsSH2r8ZsgzcpqEHpX6WjqJ8yHjkYYp ziMSMvcMkHytx4d+JBXx2vKS0ZO2qy+9z/MhmTzlKv+PZDT8Uasv7gIfOvry wcS3r2S08WUftegiH9J2t5JX/kVGr+KNnKfwdVKzXU686SWjRgsm1fc6H4rf GkN4sUhGjDe+zufu8qHBDzllyer8yDrdWcC/nA8lpV76wBvBj5LiVmxJes2H FMy++Dy9yY86gt85v3yD1zujewcS+JHrEZmyuWo+9KadsMLlMT+6vLrN+UI9 H/LVrQ+0K+FHT69blwV08KEHcz7+s938iOVudPwymw+5KJkWPNlIQZZvNNAF Dh+quFCoLaBNQY+EJRXPLfOhvyJbSs9soSDDktk+dz4i6nafi5AypqBQdo6z vSARKQcnn1SwoSC+uNXO+jJEFDvUHP/Vh4IO0paNdeWIaIz7/XT1eQp6qvNX frMCEf1VksnMv0hBZm2fe1XXElFxEb/S2TAKilIMcZLYQETyNdW6d+IoSKh0 5Nj8DiKyn7SJP5lPQY6kFqMZQyLiX8HY01FIQQWHa+X+GhPRO+WoDrMSCrJe etwzaEJELVqzRtTXFBS/y/ZYsyUR3epevVXjEwWJtb91LD1KRIfjLpJbeinI VeOZYZEjEf2qoEV+6KegsuB7svlORLR2y6xF3iAF2Sn5dWe4EJEuhXz26DgF 3fdUc0z0JKJHjgIGtvMUJMdJcDgXSET/7U05E0+lInP63tf3gomoYfqlgZIQ Ffl/pq6pCiUi33OEdTkrqKgh4eovgWtEFDeeuzpRlIoCVM9ZPL1JRCLVN9CA LBU9EdyU03ALf3+tyTMZBSpqnB4lztwmoqNDou3mSlS09s3x90ZJRCR+KM3u qgoVNdns0297/P/9kHzvsYmK2HpCdzmpRJR8g6OxezMVqUrXz659QkQJNCuK lDYVBQ9CoW8WEb2wWzH7QI+Kcr6wBe/lENE6YuK4+VYq+lVY7vEuj4icu1I2 /dGnovWXN6sIFOLfy/efWWlARQedJsK1XhBR+sfgA7cNqejKfzk0uxIiEtb0 cOIzpqJWYYXHma/w/7t5vvwzoqLwjBWiRtVExEPz8Xi/i4oKIht8T9YQkW3E aSeaGRW1e0V8j/5ARFUv9mrM7aYiTX1udOtnIhpOilZatKCiI7KVI0tfiOjU xN4dw5ZUdJ0nYNfaRiJ6qNBL/GJFRV1f/xJ8m4joVWJVjMdeKiIX5zkl/yIi w12dumrWVKST7Pb2bTMR7eu292zHPhakJD3QSkRP7hiphNhQUdTxnovUDiLK jb/nIL6Pikp3PWjZ3EVEFrNXiU+wezUO6dr14PqjrV2juJ+KqCKrEoL7iEju 0YuYRGy9+cbJjH4ieh9z2o6B7dwZtefLAN4f66Rz+22pKKba9NnUEBHlNcb9 TsEue0qgSIwSURJ6c74Hmxb91s1wnIiErGIsRA5QkaDPpQ8uf4iomXB5z1bs rQf1lKIniaiLKeJvg+2yfTq0aJqINh4fLXfAviX/vLtllojmuE9W/t8VfO47 luaIyGz/X7+92IOja+8rLxIROz6iQwd75fe+eXMmEXl/3GogiL2j9NEBHzY+ r1+/b7fi63G7f7j4LoeIzt7AEYcdHyK68u0yEU1me83swn7j8sOLzkNCUuRD k2P4fod332ygEEkoPYqv6gq2i9VxRRUyCf0x25UmhN1jvSVgJ4WEQvTFqm7i /bS3FWg8JkBChV+FRLl4/5sP9SkFCpHQ6M+25JPY+468vJi8goSuhGuYvMXn 9dUx+luJCAmdi/0kTMGuPal7eUKMhPjJimOX9lCR8WnKD/41JLTzXtp4Cq6H 154969ZJkZB875+pMlwvL85FNjnKkVC1GWG8ypyKNlxwVL2sQEJU/cmmIlxv 2Ze0g+8qkVBWIjPtDq7HlLAute8qJGRSvatL15SKJK+9CBlXI6FPd8V3TJtQ UVLEjd9kDRKqYCmeStuJz/fW5jDQJKE7KvcFW3H9kxOILQ5aJFSbx754zIiK riZ1aFzSIaFL+2LuteH+ufToWuuLrSQUuuVZa+Y2KppLtd/4bRsJ6bumjM3j /vPJ2BQ+toOEjhaEJe/YQkWn8to2KQMJaSp6ZD3C/XuwfMONO7tJaN+ExuSb 9bj/KwldRRYkBN5JqhlqVGRV1aLVaEVCfx9x6gNxPph8DOsm7iMh1Tddenw4 P7R+/9YNsCehYF4NQd81VPS8NTc68Sg+r7A786NiVKTWGdJX6EhC8RevyB1c TUXy/Wo3R47j/UwqFuERpiKhqSC6vQd2gsq/lzy4f2b3bbtwhoTmzDj61Vyc /wsqcQlnSSg/3TXhDZuCWEs/tjecI6GkzZe9Y3BejgqsSzAIJKGTh/j3Xhml oA+qjSB/k4TsozWy67/i+RPXZylxi4ScgokhevUU1DQ/e2jFbRLS3R3MvFNH Qb11Ul7cRBLKGwpu3fSOghgup+/3PiShjz8/fmksoODnDt6Z1Gck1H8C8ZXF UlAJWWIp+Tk+rydbGo9EUdB27/X8twtJSGd3t9DsNTx/jPbJhZWQULnAkYml QAo60ZVi4VxJQsNXTnQGuVNQ8prtGQoNJPQijJkgu5OCZMP2FKxpxN8PePpx 0YCCMoedK1Z+JyFOxBfrT1sp6EVZxPflnyQU5XT3qBGep18PNLP6OkjoOcFJ 444EBRHifQ6kj+H+8Ss82T3Kjzwp2UQlKhkRWXHXe67xo6+8Ubf+EyQj6RN7 WXHB/Ggjx0PilDAZregZc9O+wI+mZjap568iI/uS93IWp/iRf1eZ1RZpMqIn 1wrV7eZHIYUfEy02kBHvTCL/KD8/ij84pOi3l4yarq9h/gkmoxnrz3lJNmQk sVy+8O48Gdla5OmU7ycjCsOa74onGYkbnzVdOkRG3qdE9rcdJqOHavOnI5zI aJtkOOOXNhk9ZRGLHvqQUeLLUyGEAbwP6euMPiSQkSlP9zpzXLfrlk2Dau6Q kdsqecLSZlxHx9xeV98lo1GFRrVM3Ffu0tlb3j4gI4TeenzFfS2dpKZZ9gQ7 f2nN9WEiCo7UUMgpJqOXSZEWD/DcM/HW4rn5E1/nyHUBn3Y+9N3A8KPtKn50 pcE3/9cuXhRTcYFtJsqP+E1eGlZv40W7txRpG4jzI7dXEZ/SN/Ci95rKqWul +NHue67dJqt4UakS5eKcIj8iZO6p5uvGz638zerJWvxI/XMuI8SHB538fSa2 w4Yf3cy8qnMtjoAYno8OHI/jR2TXads2Rw7U70s7JIzPcSty6OWYz4HLdsOc nCQK+vmCyD85MAQef7/NdydTUISnYFX3rSHwfeJsuvoBBZ0/UBX8Wn8IwqjX +oNTKGhOKGyT8c1BeNzxRcY2m4Jq106rBWsPQOvlw/FL5RT0EYmoUoNoYFnp d3l/FwWpqPLJ1lBaYb83sT6ih4K8d2vx6x9pAXvlZIm3fRTU8qhC9FFeM5yO eV2qip9bElaGdm22/A3XjxIm2X8oqIqxe8vjmCaoYt1yycZ9qqnRk8qz+hN8 LFQo7iLguaQ+6G9QXAeNLsXLInw4V0/emTu57wN0NTQ/DuLHuVY3FHcj7j0w Hsq07ROholyqo+BhsVewbF2gEoFzItVyK2d+fymQ+cD/Dc4R72eiVddvvwCx My6rVKWoKDA9q2NeLBtkFOacHWSoyFH47fy32+mg/PtGYbwcFUHnwHEt8WTQ iFzD+YifezTUi3NdxSNA2yDPio1zC3kp1DpeyzL+HxdGYeU= "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, 3.5067730271446743`*^9, 3.506773137881304*^9, 3.5067734312532597`*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s6", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "6"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.506773032722248*^9, 3.5067730327870827`*^9}, {3.5067733364111557`*^9, 3.5067733420172443`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s6", "[", "x", "]"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.506773144414053*^9, 3.506773146534007*^9}, {3.506773435089899*^9, 3.506773438831147*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwVl3k8lG8Xxmcww2j5kQgpEhGlzR7OnbQhCVFSSQtJtlDZkyRFdpGy79lJ KEnKGspelGRfxowtyyzv/fZPn6+ZeZ7nPue6rnOebVYORtc4CASCEyeB8P// OT/wtvxVctIi/P8fSjooPV51cGvEKSAQ/A/MD6trrRTsudobfgnzLUX1YVut wkXo5M+zxjzgvrMwQGt4o83Sm3AHIFRHM8uH4rSeitSvy6u8jTlhSeFwtla6 rEUCIe8OEBK/ROcUvNGqVqHtNU70wBy/r5uzRuvHUf+atHAfIBQ0cE7/bdRa kVsr51lzHwht2rYxUu1aj/Z3OadVPgAC7cGikPYPrY3qiZUtJQ+BcJey7cK9 P1pJh2y5lnIfAYHnvObl/BEthROKJ7dlPMaf82spd09pVRqyonQTnwABjYp6 csxqHT9b/+t2bDAQpMZMLHcsanVeCpd5Gf4MCJEje4z/rGgVHlBQ/fs5FAj6 C7r5WwlwRyWi705NGBAYIQ5HJDlB6+CS79oP4fhzKwsHXzJwwQXppMoIIPiL BezR4oVG7ZoGpbeRQHi36PzIcj2EHZWxbyyJwvcX6z7oxg9ndZ9uuFQYDQT7 X/0+cwKw1YD+Zi43BtfzPelZthAMnTY9H5j9HAg1DxdHX4pAzplKtlhGLBDC Ez7ytImB8zmJ1MKUOCDsG79Vtk0CVC88PH408QUQDAOf6DG3ActyYupHfDyu x7YW1up2+Hz1VJhD7Esg7A+cXS++A4zsRH48D08AQtG1NQe75WCtKnyIPpYI hPmQjDb73UArd+L/8xnzs0sqPzfthTfvu0pda5KA0FlUsVfkAMQChacaJeP7 E8INKhXB8+NBc94PmJMHJ4JclOHw50TWq8oUXI8vEu0K6rDjWLvhuFoqEJxG rYX3aQBvAynlwFvMnC3EGX0taGu2PVZfkgaE0GCZgRuHoNjgZeyGA+lASJBS WU7Qhui21kmLQsxnLptvGDoMFzoUQ+m5GeC7P67ZPeYoIFPrwYO7MoHgyFFx lfs4SPXEKgZkZ4Kv3fXFBwEnYOInq0c0Iwt8jzYwoor14euFffLXpLPB1+SF kqSVART8vuKVn4JZql7/CZ8h3Plbv00nMQd8eQrul4ydBvNrq7dDtr6G6k2H nuf/MQKt0d1feuJfA+qdmnD7awxck+G2t2JzoTpvypPIYQphsxbF0eH5QNAT Hd2ebw7BgnEa1esKoJqq5398vQV8L3wormRUAL7r6p/J3rsA5ycshrf+LACk s/nvTTVLsD+/xml2qhAIdX4Xg7yuQPG/RWPrfUWAEiYHX1y8CksRg8p9rkVA eOC95ejRa3C/uZzxmYX5zPfW6p3WEKlpExjLVwJoj39Q6+Gb0NtrfHP9Gczi GhkyFnaw1Q0MHsSWQHVDenKLxy3IyBPaeEuyFAjNq++svjlAhfjnBKT4BhKN W4t47JyBVVngV3oXs8X2exlCt+Hw2fhrcu/fgC9zeOPRz7ehOfS2/MajZbg+ fdJ5Cq7wmyhZNmr2FixX5b1ND9wFqVfr4izi30L1m3H+bey7YKO+7Plt4C0M 2C3SUes9mHVu0668UQ6ES6+vZXt6ANeQd0uIRwVIrLk0dWSdD5zwtS3krK6A aoPMNf0MHwgRM428y1UJjvsIA8F3fWHTmd3mVsGVUH0jjdx3+z7Iffk5rJTw DkIFB0UPPXoADlZ19dl/34Hjm3l55Q3+UMIqyhGXfQ97pZ+6pSf4g6ZKkBOl 8D1Y5oWNrql5CIaZqsy+miqo7vEetpcOhIOfdXm1b1eDROfLH0m2wcDXkd6q ElENvj03Y2wEQmBokCNqd3E10Bbtvz6vCoEQQqW4yFw1yHqze7atD4XBg/JK NOePMCDyfle4exgEFq2xfOVcAwPLSXwcoZFw4aO1dGR4DVQr02y9liJhf9un icdFNbDX7OzO41ZR0Dft4eo6WwOGuW6U72rRsGfnVJC+8ycInZkXGVyKga6E 5tIVp1owXOt9QuvtC8jJk/WghdWCZVKH5hXlePB9749GCmshMY8ySC2Nh50/ NZq+0WuhrdIrDMpfgqdQ7kCm02dwZEVJT7YlwPbg4DVmTl+gJ8KQ/lEyGRzd DS4XO9aDsLZhxC/pDNC118jkCa0Hm8eRiq3uGbDdSm7mQn49yObnGHq1ZUDX CbIXD7UeLC9GPRfwzgRNkarnF242wF27fecPDGYB79vdbdzXG8GR9EwlrOU1 pC2sBYvzzbDWLXbPUnwheI+vPCx0b4bazZM7X7QXwtn+sWZyXDMMFepHJ/EW wdrPteaFPc0g1SQm1nuvCJwjPd3Ipl+B6z6VtGBRDOjAVG6BYQv0fDZypSqV wq2310I4treBxQ7PXukD5aBw4rQEUbENFLfPFXB5lgOtV6OIrdMGPGSt0HOf y8FlVaCLcb0Nmh0DlK6dqwB3rZot/7Lb4O7e1nscjyohoHZr7uT+b2Co9dTl 8NJ7SGzrburQ/g7P16wJIsd+hI6xE5QMqw7YwOOyMuFRBzOxskceOHdACbv2 +tacOuDV475/ya8DJCNNbHx+1AHKrV3alNwB1QIuoQ1q9ZDjBGOBfzpA6whb 3H2lHvxWFOtsLTthQ3y/qKx/I+xZK/FQ4WIXuDCX1H3KvkLQnkXCm3M9ICza oONx4js4yddHVaf1AUE8/HD+/R+wcuVmXr/9AAjWi+d6+/8Bq/emhqHXB8GZ Q83A6vww7H8jvEHEYRCSKqRO6NwcBo78H+1JdwbBIq6iZYvHMCQnXjQrDhwE 8b4/4mVxwzD44PrFruxB+DqkcsO3dxisdN3sxGYGYUxB47L5mRGw6o4KzLzz F1rs+YJijoxiPZvp7vP9Cxdbj4gfMhkFjgaRtRWBf4GhmZz422oUkitePmuK /Qvv7Lw3r/qMwuDLtGhq5V/wOn1zMKt8FKyulqYqEoZgqZmU2iU3BlfoHdXV gUPAtcQ2mOMcB0v3ULO3oUPQ18j7VpVvHCw49an5z4dgeJj60llsHEwFP21O yByCBr99BZ8Ux+G4WqGbV/0Q/Ip1Se29Og4K94N3qfMMQ623+4/GmnFY4jv6 vPjRMOwyaha85zoB87HEPTnPhkE9+DNBzXcC6JLvPyfHDOM9QGDbVNAETCgq zoVlDENX0a8B+cQJ6D8raeBYNww+O3K8+RonoCaRxbmbewTS75ZnWW+ehKd7 yxzSA0Zgm9ETDYmSSWjc3z3iGjICPZ/W5Kx5Pwk8Sv8uHIkegWa7sfUTnyfB X01FfyhtBLiuhGT4dE+Ch3aZrOTnEUiVdipftzIJtiZlf15yjgK5gJZfpDEF x+6WGUf5jsInnee8/G+nwN+9u/Fq4ChsrVHebfphCmo8/x1SDB0FIx03SsiX KdC6r7K3PWEUGK6jM50dU6AcVLaW/8MoKPTIPvhCmwKp+LLPT5mjUPrdL0V+ xzRwVJep+LuPAWP0ZaDAo2nIXrchnek3Bt9/Xg3eFTwNRuftNt55MgbeCS5H lCOmIWVRgn4jfgwkH9YPb06YBp3dQdmnqsbgdPyT4L1vpiEgzmLLZo5xGKst 1Xr4ZxoUxt48ieQdh58LZrdfj0xDlxL/yjqBcUi/OlNfOzkNMt8+dxGkxkHZ 12OpfmEa6rn3hI4cGQd9ysYLEhQq8LoSOYsejwNH5vxNgd1UKKo57yQfPg75 uQr/DPdRwZzvze/UuHG4OrBJ01eJCjk5tu9icsahYb2+dIkmFfQH2129vo7D /L/v6c4nqTC/R2FosXMcqvRnj8BpKsR7BRo5/hqHxaFSBtOECtPCmnuuzIxD wVjN4GkLKoScSh87zj8BQTZqCya2VFB+STCrEZmAd5lxJcW3qPBrwvzzQckJ cLUkz3E5UWFPwH/JCgcm4Ni+d9t97lCh7d3d8xvPTIDFj9K+9gdU4JfTa/n9 fAIe+o85romjwgh3An891tnO5bLHt+KpUDE8a1KQOQFGXSp5ta+ocDUp7qfv 2wnwXyg3MEqhwlvhibFtPROgab3vylQOFYIXNXfxDkyAsPA2g6VcKlh1hDnM jk5A+ExIwXI+FdaEqi3W/JsAdcKYQH8xFS5yP+a8umkSqEc/DMpUUuHAcN9R ffFJIFVRNv15RwWeT3uDFGUmoWtbtlJoFa63dw8fSWUSGoIv32r7SAXSoszW dNNJODr83u5HHRV+tHtcDrk4Cerv18TqNFAhr7A11e36JMj+OLUzrZEKZ2/d kT/mNgk/0nxKTnylwuuhL6pjUZPwK/X+fsnvVLhfI+rZ9nISHl5vUT/UTgXT RPsPb9Mm4ZG3ooxZBxUIFkJHH5dOwpiMJtW6iwqdaraPnbCvDmUKTlh1UyF7 U1XzOeyrvP9urz3TQwXj9mvGcp2TUJ2tyCP+gwqyheXRG/onAQmHcf7DzAhZ 92NlaBJswqxufPlJhXTdUsumefz9p+blev1U8JClpBYzJmFdkvIX4i8qGJIv jL7gmgLxyFm/fMwrH7ns7TZOgX7lbaPZ31RoTThbaCI2BYN16YGPBqiQ6vV6 XkNqCuT4o0o3/qHCvfMEVeldU3CyZfdkLGYDNROPdYpTcMTB7eCmQSps35RZ tXBwCrydg94+xbw0v0r8dXgKLqq/cFnBnFSQEphnPAXHNw7PVv2lglvIv6bo 81Pg2zfVKzhEBV07vf98rkzBsnfIiWuYxXUTjKxvToGj3nWTXMzzMnNRp25P gZmT9Doq5gbSsV4VjykYaw8LkBmmwqu/cWISD6agpP9h+znMtz9SL/E8mYK1 JjTyQ8zHE7RTaOFTcFqu40AW5kf1bf1+L6aANiIYVo/5C/2isGDqFAj8XPj5 GzN587RRxuspGEha3jWD+YiOR7Ba6RRU5X6MX8Tsf4tS3/R+Cuo4KTr/59ro GI6LOLfyF1MPUjFzVktr0lqmIPSPf/wvzNrjxXf8uqdAdbDQpw7z/Q3aRRsH cP0jDFiZmKsPtk2lj03B+OfofQ8wE65dlFGjT4HIwd/7TTFDyNTlpuUpoFpE bZbE7F3mHn+BA+fWPy3SKK5H1QBP9wzvNCDaPUoaZiYlht9PYBrsCYxDFpg1 DkjrbxSbhkrb8Pq1mD0sigPSpaZhpHhb2Rvcj4qHhz6q7p6Gr+fSZMwxq/Vc UL6gNQ1ffowtBuP+3SVOOc4cnYYMxn9BWzG/lXPPuX9qGmxdl7mzsB6UvaIl 0i2nYc1Q2+7XWD+u6VLnVW9Mg5DNd15pzCWtRVGNTtNQ0vBO4znW2wHJVt4Z v2mIMD3Da4/1uLeOe0ElbRqadXdq/cB6dqBF7WnMnYaYTy7FspjzRKRsLXAu H88tOeOM9b/bDv32rZuGjffvhfzDfpHjv9fQMD4Nb9LKvzd3UkHq/MTL8wpU qPSZGatoocIV/7s908pU+D23QbIB+zc5lyzgC9inPBJHOpqpsI2wPTDVkAps qX0Vf7Dft6add552poJivodH3xcqbJppPupTRgXPfdbmtjhPnod9uDz+gQqa nO7p595TQVixyNO4ngrf/s4XHsP5I3wvpkimlwrvFPJcJCqoIMpptbVthQr/ VdzJqivF19/0b0FCawY87VOHuXDevSof53tydAZqC5m80zgPxS365BcMZsCP 4ZLZmU0FiaSPlxsuzYDPc7eKzEwqSMo//ep0fwZaeZH2uVQq7IBtaTW1M9Bt 2ivOeIHz4I9A9a6vM6DFue/TEs7nHf7kn9GdM1CoNhj7L5YKMg2TfDdHZiA2 mWjIiKFC5M7zVRQuGhRduzwsFUmFDveOJi0eGmhkV+9UjqDCxuaTvbfX0iBY zt9bN5wKUfZovn8jDcgV9nWeoVSILpaWK5KmQV/E9l7eYCp0cSWojO6kQdML wRSVp1QQMhU+IqZAg9Llw+dsnlAhZonXMkCZBnLdtf86H+N6atKizI/R4Pf7 rOWhACr0hNxIeaZHA9WXRElFzMIDgwW1p/DzcSbwBT6kQqxfZ5PCWRpY1nLm avlTIa6ugsh5gwYfT2d0jd+nAm2g4N6MHX5+kTdbbmI+tpJO/+lIg16vb0fo vjhPdkX8KblLg5mXC8/WYtY9+vhckicNzj/W7U/ywXl1yedbsC8N1Ek6VhqY DcJvfrweiM/XYnjjvjfOx5zLasZPaaDnYym0C/NqrVkhhNLgpci6031eVDD6 dXLnrkga1ChUKIRjzvx3OEn4Ob7e8erak5hZfOoipHgaHCqyk/0P8xm5vWH0 BBrIHiU6dHni+XJ4B+VXCg16FEtyUzBzXBC735hBg13f8pfdMJ9127D8JocG KeYbbAwx5z/jcUrJpwF3/fS6vZjJWayxZ8U0EA0/RhDCbFEzb+lZRoMob2ET DsxFPyd6bCppsGirv3XBgwqUhQHDMx9oELqp5jYVs+X67vpDn2jwaVb3xv/5 jcxXpFBHg7VD2QL///7aQ5/eijbRwHPT80f/v94V8/K93K00EGqo6P3//Spu 52fOfcf14cvduh8zX3CaxEAXrkfOiq0JZuv0F8+bf9BgrFmi3Qtz1YcwvvJf NBj6G3wzD/PG3keBaYM0CLiZdHwE881ZL0L4CA1sSnO8pXG9ata43PWeoAGz dHqbHWZhaVuaLZUGlG/Pj1ZgdtCytDGbpcFcWguBD/fni5npwOFFGhzvS7x6 C7OYk/7ZvSs0eEzjC/iO+XaQdpsYiwaDBL57gPst8V6heoFEh5P+u7bvw/pw 65JSHaTQYTG0h/gG89cZ0YKWdXTQsd5LPIz15S7JnZghSIeIdYcLXP3wvnSQ uSlShA7ukcRHm/G+JHNm7pnvFjp4UJ2bGzB3PPrtc06aDgsncdOwnuWSOv8d 2UmHNX+mFrix3u9XNDns300HcfbHNz2YFabLLq1RosPnPSfKIgPx/CHndf9T pYOqc5eYL/bPT/HUU0MadHDTLHzsEkSFQKNQeK9Dh6hIhdq72H+/bgaUZR2n w4dv68sCsT+VHnruidang1Fs2WpSCBUGy2zEHUzo0BrH+kTDftbYcogtcZUO cHXTKWI0np8WHc5WNnTY6+z7wQPnhckL65EUOzpwvB37TsR5clMk5OsOVzp0 HJDT3If3vzjBny92BdDhkUJnmDje99JN7P+zD6JD05h98DLOq6II4oP8EDrw 1Nf0/07H85xf1nZ/DB1+vdjU/g3n3dI6V1XVTPx85KLrJ/G+x3WS5/W913Q4 LXnw0lOcn3xPX4hXFtAhekzYtAfnsgxvDVmrnA5yW0XCYnD+mpL/6zzcSIe8 nlsupTi/S1iZTqem6MDQfavhi/ejak2N4VAaHTLezrg8x/Op2bP17Pd5OhS1 aQ/9fz/5u7IAZ5h0yHEzLlSeoMKGf9rrz6+fhXUbgdH+jwqOM33Z1/fOwmOD PU87BHGOKzhuzVSchV+Vcq49IjMQeIszfFx1FkqyYzMmt8xAwuTOe3aHZiFa tVUG7ZiBllG3Y85Gs5D6Bh1JUZkB+QG+IS+XWTjYZjl08cIMGIxK1LjdnYXF SpVcHqsZcKTuTXTwnAXZTMmw6uszUMIwtLjsPwtXZ+M7zB1ncM6FdehEzkKn 9p2b6v4zoG/E/3lNySxYXz/glJc3A/bntqVwvZ0F3vHcF1olMxBque8+s3IW 9Bz5PfrLZ6DD/rTmzKdZ8BpTcD/2eQYsnoSVfm+fBa7TQhe+9s2AXS1/euzc LIjnS7w25qZBSNM2//B/+HNhwsEIXhoUfN9n9WR1Fsh5cOnHOhrMD5ze6sU5 B7IjfC4+eE54MsOiLQXm4IOesoS0JA2eKm94JHNgDo5zbW4Z0KJBbuYGm1Ln OdC4Gjkl400D/84PhzjvzMEsI0i23I8GFhy3Np/2mIMXibERxo9owGtR1zL1 YA6O9m9fScG5e/0/TyWpqDkocZoXLsa5KeE2zBFRNgfn14x+CsI5FXn47UtH xhwsDQlf3CxJh5uO1+5UEebBzMab8U2GDtovN5xeS5qHdM3qvDDsO/qiHVfm unnou6mms0uNDgbZ227+3joPmT9eDn41xLrlf6JqcGge6rqq/qu+TwfPXxfa 5QPmYdowIOnwBB3mj2m+vBY0D7ZNKkULWGd2hWLWCSHzYNLfxMr/R4fz/j9X NsTMw/orBYqapFlQlzsnuZIxDz8mIm6VS8zCsquJU33DPBRp+EYeODcLbuv0 /ru2bgF0N93/zGydBScNVb1XkQsgVsFvJtg+BwT7SJ9nzxdAXfTTB+6fcxCS QCv2jV8AaeshF/bgHGRzZIldScX8yj+BNTsHg/UiVJmSBWj4fI6mLoCf68xq aGH7AtRmK29LMZkHZfuqrtoNi0AbNB6Y/DEPKwk6VpOhi1Cb+ZSHNLcAbY5x lneS/8G2sqhV6q0lUDsmyepPWoKWIol/DwpWQDGlMbAubQmK9IWdl96ugALb WaAwawnWBzMybD6ugGTZJ1n/wiUwpfIIaHxfgTUy+H3n4xK4HTINzp1bgX5y ZqbbwBIEK5VfL1Bahftfdhv/J74M9reDJAZLV8FTsqt/SXIZymQ+Jbx5vwpu 3t42gzuWwc2x/uLDz6tgq9zqVaqwDH43vRz4O1fBON0x87zWMijZrqQOzq2C dEAxM+PCMnxWqf5+aS8DGo6oZaL4ZYjfePyaRyoD7tZ5K/gkLkPA+Xvem18z QPZEbcn71GXI/6F4oriYAQH6pz6q5y7DFciuaahhgI7xtR+KVcuwdeTDQugA A6otw9buHFjGc/eslLcoE8o8xh35pVZgSUzcNeARE64zFf6dkl0Bpef7W8kh TBDycfEK2bUCXtXavl6RTHDxYz9eo7QCx30O1ZxMYsL+x4IppKMrQKWn1N2t YEJe9KHOZesV+K6xVYM+wYS0wli1wRxcZ3KSpaIOC2xXz8v15K+AbtYRR6ET LNh7ZOvmluIVSNfRQTMnWfCuJ5lRXrkCO6d2rn9oxoJ2ds6HsKYVMCNbDiBb FhANqo4cmlyBjs3RLxeCWfAlxldZZWYFSimGyYfCWfD0j7bMbtynXps/Uv7R LBB2reMRWV0B80/sqKlXLNgT39ZE410FYfXrLbr5LLgwMXg6UW4VPs6kCKq3 sEBSMU07WmEV4iyuh019Y8GYl/WBp/txn46duRTVyQIX/qmNd9VXQUCVY6Kh jwVPVBe6T+mugrNqy+OqCRaUB3BfZN9YBba6RmUHFxu82xoMFm6tgvz7hpRJ bjboiD6FSadV+O++T+MSLxvacvm2dd9bhRKHvLYFPjaMdogM5T1eBbExt3J3 MTYIbt9lezFrFTL6KzYV7GNDaPgT06zcVcjW25l2SZENvByT2vOFq8BXFf6R U4UNhD9Zm4MqVsEynyd3pwYbpl7JfC1tWoV3xHavqSNssF7/qJzQtgq+77wK 0XE2DHqNpOl1rMIpIZbfY1029Fikef/pWwWlblfKsgEbakW3711HXYWnU3fp p8zYAEF+YmdnVyGpWNjyxDk2VCz/4UlZXAX+C/MPVM6zoaAn8Y8qexXy5F8u 0y+yIT56a8RVPgZ8OTzEPXCNDZvI3j75GxlQ05Qc5GPNhnDX/psrwgzIyowY FLjBhkCTeJ3QbQzQuxQutdmODS4bRBcr9zPAgb7TPdWJDTP37w2SVfDvHxYq TDqzwZbe03L6IAMkS2gDO1zYYNkWkzF6mAEdUZfPeLmx4Sf8i9h/nAF1lw22 P7/DBtN8U18vfQaoTNuQM++yQT9E8JzAGXw9poB0hjsb6pguRy6eY0BMv8Ot aA82aN/q2Jd1gQFx20OH3D3ZoKofwQvXGeA/utN9uzcbiitnFx/bMuCIkHf6 KGYFeaO/HfYMkFrV25Lkw4btvPzvbO8wYNsWb+55Xza8uueYWerBAMsjTY+D 77NBeLw1kuDLgLPDV1zE/NgQcXbPfT1/BjyK4GtNxLy+PuRWdCADTt6rTBJ9 wIbHKtRzf54yYPsxx/nHmLkyTh7dFcaABFmLVipmH6Hc/XeiGHj/+ap+wp8N Kw/XitfEMuAOXRFiMbsu3Fyz7hUDfklvH/6FmXa16Z9ZMgOOTusqiT5kw80O uaHkdAbwiviq6mEeORzUNp3NAO+0sn9OmC8Xj79TzWeAcQ63ZwjmPskTWQ9w 7vgYZrQkYjYLz4xqKWMA9S11KRPzdyKPn8g7BqQumnJlYKbmxl40rMZ6WGk9 8QIzxVz+4KNa/Dn3i4GHmKXI7zdV1eN6rV3z/TpmVGQwP9+Mn9cwTEYLs8XF gTb5bwxQsnk/sQbzHV7nXKtOnGtbNKXb8HnC33AGxfZiPV3rGwjCnGcVdb2t nwGJeg9lNDA3rpc5zD3IAL8/wDmE6zVc8VZcawQ//+793n6YCda6DJcJBoBw YvImzGICfT05VAacN590T8H9UP1wq3RwlgH1NyL4d2A2uckOE/nHgJLrSk4J uJ9PPknqPWIzoCrQ4Y0b7ne6Q4lMFScTWsI6CzuwHmo2H+Va4GbCoMy3pJ2Y V27feG/Fx4Q5U+unb73YICSxGhu7kQkpnBUvZ7He9jU/dWsTxr9X2/BtO2Yb qYI9WtuYwGPq13wT69W/7dBaV2km6LSpvfa7x4YEz/axnJ1MeNei1B+K9d3V sZgksp8JfU9cr0RgP+g81Ny4oM0ElJ5kvh/7x3JfK03+GBNmRLW3kLC/PPot v1rpMYFvaiWy1YENRUr+AW3GTNAkl3Tr3WKDxEjjUs5VJtjlaov9xf7VCLfo HLRhwnGZP0su13H/taiFIreYsMno0gLrKhtCovlvPnJlwsVNVx6uXmYD4+jZ fqsAJrTzajx5jvNCeG68PDaICTmyLTNTOE8OJHhEt+G5I2VcO6x2Fvv736tT WjFMSLAPr35vgvMpY/ijSCYTTPec/m5/kg2lPLfT2xqYcLrfu+qBJtar5/3p qq94bvUatjw9iK9Pf6aY+40Jvl5II1SNDZ69r2se9zJhWG2bdYASrkf2yC/t cSYkCjne2rcb61XPfFMpDwu0NY6JhmzG/gg5FBh7jAWK12Qv1c7j+cBp2PpI jwWo8PrKgVkWmNy5KOR2Cs+JXZfKE2ZY8PaSR6oRnlt2Oia/b+J54LO3tHqN NQvoq7p3e36zYP132WWvABYECsi78DWyYJcgn63VZxY06gYs2sazQCC/8nVa AwuufPcS14plwcpx65mxrywgFPSK/IfnWb1nlYtDFwuMhYx6sp+x4OqQnY/n KAsull3qavJjwcvihshoChtEbDzav9jg+xk9+NCI60R9sFf+oCILFiYVONYb YR1KJw/O7mVB38MfOqdN2eDux1bI2c2C7PJ9jd04t1WzXf5skWHB0W0DHUNY B7z9T+TXi7LAm6YxwQpjQ0BVlLkCgQUzIYsbD3SxQUW59Pj6FiZM0bbW7P7B BvtGcpZqExMmjI45yP7Cc8K9YM31eiYMCT1v2DLCBjf569sba5jw45WaN88i G6KNcnPKy5hgZVY1R+UloMSk09FHk5lwOdBId2otAf1q8aJmJTDBsnwkcXw9 AV1E3135XzLhwub/DIY2EJAjoddiGuvk7O9Lmb2iBNQ89SvmRzATTloTL9TK EZDZYjDfC3cm6D+PKv64i4CWGlgiuneZoNuwk/eDAgFlfTnhycI6PS5vVFa+ n4CGXslE3XFigvZMMn++OgG90i0UzcU6V72j8yVWl4Asyt/dVjrLBJXMHrEY fQIidvokapsyQbnX7nakAQHFrH4/YWrChAMHoySeGRFQgjT7XJghE++bw+7+ 5gRU36x97ewJJmx/9GiPgy0BVefO56ppMMG5S9Hbyo6AuupyH1apM6FaerD5 jD0B3RwvzNRVwz6q1bDVcCagiNQO/nvKTIgjzqZS3AnoeU6a8t59TBg3TJhj eBDQhNH2PfQ9+HkT9bVpXgTUilTnyxWY0KWV8bvrPgEdzqRuv7KLCRs8LURT HxPQaZ4jnYKyuN5NlBsxTwhIf+gRVUiGCQWiZWVBwQTkWpZhJLGDCQbl/Gec wvD9vLPU9KWY8JLnQ8rVCAI6LuDz03477r+Z3axZFAGNPRMmx0kyIWjxyzOt WAIaeTa8nxfnVu8Rl1/7XuD75cQbn5JggmzUtt3SLwkoPWSr+ktxJtwZavEQ TiCgUzWBC3NbmfDlgGfjmiQCMiBNRBpjFnywU4SdTEB3pLVl3m1hwtXvXdaz qbg/3fcrd2PmcNpH6s0kIAlzBeldYjgXqn8ZN2cTECraI1y+Gfv8v6fJH14T 0E+LQ8dPYZ65qEYvyiOgOiDXUvE+rJU3AukFBFSrzh8XgzmYGRESW0RAxwjD PScw9+kf6n9aQkAa1LkQEmb5eKq87xsC4h1NaGwUYYL75Av3228JyE9OPS4W c4P6iYbrFVgfezjXOmMWDlrcZP6OgKLd5RRMMFv3plw/WYXr59myHmF+I3u6 FFUTkMs1RqUSZtJdFqdiDQHt4yw4/H82qcsxkqkloMmY9mItzClC55JEvxDQ vxIQNcI8e41MW1dPQCYbK/0dMB8qLdYiNhKQnfMKIQZzKNfl4PkmAtpgkxhf j/m38fq+0a8EdFdH8xoXPo9CSqXcz1b8+1EDG13MXrM291q+ERD/C1Qch7n5 kFD9x3YCEpixNV7AvDnsk1BpJ65HuICpOa6n7YDjtcxuArq0+1Z9A+byPVtL XvQS0F/NmLLDuB88Pk0cz34SkA/t5d56zGYtd0/79ROQIOMeMsP9S9+yI9H1 NwEle/LN0zAv2LVTbf5gvbTsPxuF+6/zzlfT4i8Bpdi8uqeD9TJo/vOH9igB fSD+3fEJ62mtplmG5TgBxf19vpSK9aYk3n7be5KANM2rcyKwHgP/Nq6tmCGg s7cMFmKwfos+H+3tphPQMmUwOxfP0b6MmrSFOfz7VuTbhvW+x65Ca98S1n/s nTpNPFfPGiivObVCQNf3h5kFyjHBb29Rtx2DgM4XLx0ekMf+ms9yzCQQ0aDC uN1b7DdPr9hkcQoRaXdKxKxRwue7JOiguYaITg/oJ9dg/7YeCjt4fh0RZX7f 4PVIlQmS5Mcd0fxERJl416OO86A+5C55vSgRUd/mpp7Qwf11nP8uL0ZEamnZ WY5Hcf2NHRNObCWiFOOo8bTjTLDfZKP6UJKICs/anjx4Evsl0cyWIUdEcQY7 uQTMsL792pVFdxOR1c0IlHuOCTZXT3Gq7iEiyf5BUVMLvDfIHou/fYCIAkW3 9LRfxnlcqNwycZCIhL6WlPriuf40oiiOR4uInJtmJcMcmVDqqmC9AxFRhfLp wILbuL/qOwhWOkRUWj9wTQznbV6N4P5efSI61HI+OAu/X/akhrEWDYjoT2FO //4nTCA+Wte08TQRPU/QutOE576JHumq4RkiqnZZypGLZsJq+3xU3QUimpOf 25ychvN5uH251B7XK2pDrGcd1qd8iEe+IxGR/pq3FeB5U+R0nJnpTERf6rY2 zrbi+rDeEeLdiMjFdHRzYg8TqELp3H7eRHTO5dq3RPx+Gnn8rqBBCBF9Cgke 1uJnQUPI/phjoUQUVB9XcFqIBayOKeFD4URkeE3nifNmFlhfviymGE1Edr5W 3r+kWaDurrtd9BURefm6vL90kAUDOWL7RnKJaOTf40O8N1ggONtV9DufiNSN /z1g27NAVzVMsbeQiM47CHJyurKguJak2lxKRMn3pasU77MgoJ+qVfSeiBSC H586HIf3g/8+6nt/JaK9YXsL1rWy4K7zNRuhaSLSW/CaMj2M35f0qNbqM0Qk 8XvgQ6UeG2Kk7lhfpBMRu2X3oX14X3rTFXg9fQGfL3k9MsDvX3Pqr68qs4jo idK/z6cC8ZzmnLM0/Y8DmR1Potz6xoYrkb7novdxoBvOKv5zKgTkfItyruIA B/qxP+CtvCbOtaPhZ38pcaDDFgO/bmrjOb2UYrZDnQP1NEZTOU/iOW1Rd+aN NgfKyyoKCbfCPpNeb9RlzIHed3yRkn6Gc/zNC10hNw5kXn9428I0AdnMWbEF 73KgU2ekssuw7x7slSsRdOdAfg+EnX2XCeht9tstgt4c6LpNcJoUCes0oZMm EMCBHLmbBt9gHyw++i+GP5oDnTxiUsHAOnt17sHftW84kB6bqPAD15nKsPXk XORA7T6zLI4nHCip+36J/W1OtMEz/+K6S1xoxUbT8t4qJ+KKq9Xrv0FGupVy yJXJidr1S6O0ncjoxTphCSc2J+pR2PQu9S4ZaRTN/rbh5EJPHk9ZXHpERt6r GZfOruFCbquc0q9TyYgzZMMllc1cyCTmiVPULzJaWzx6YUGdC4nl7NU/cIob WZA6NekaXMjD9dTBjabcKNesZsu0Fhfy6Xq5MGPBjQwY8f1D2lwIxOYDY2y5 UegRowsdulxI9aG9adpDbrSx551FsTkX0vhv8/jrCm60hRl23smdC2kmSTYt ivOg44Mny2M8udCm6yH8ETt4kEsdZVOVNxf6j75au2M3D2oMu/+d9wEXkp3Z vlVRnQe57XA6kfqEC33cYnViyJgHtZ0yVOmO50LmNd3rAx/yoFXFtVHMV1yI v3sOwp7woB2i9bPbk7jQncubgkPDeJDnEOQ5pnGhWoMJGaeXPGjnvT3SvHlc yOnyOeG3JTzIL3m9gOYHzO9+fND9w4NyHzU6XvmIeUB9IWeEB/XYBbQ8/sSF tHdmrBKneJCCCutxVx2u51bGzqeLPOhn0zTBsY0LBT4mtAutoSDFhWZq8h8u NPI9JWtuHwVd+hGo3/CXCxlQaE7PlSko6INO9swwFzKdE2vYe5CCBh6/u6Yx wYXIjeTOgzoUFLz1dV/nLBc6NqeqUX6GgkaOPWnk4SIhYbd16siNgqz0LCWk ySR0YPN6Mqc7BfUbKLkd4iEh9veFzLdeFNRx5vc297UklET8IM/wp6CaKwfu TW4kIcM1AvsHwylIy5qnlXsTCfF8bfyoFk1B5bb9UlIiJBTz8Fzcg1gKKnB6 1GaxhYTKvxEHphMo6KXPT5kWaRJ6XjHSJfqagoQfFHhNyJCQiIX5F458CooM eNhOlsN8QsWlrxCfL3iPDyiQkJvU5rqrZRR098WDrgJlEhLqe+ZY95GC5l+d 3fVVlYQqsofvHaylIIfk3X7j6iTEZ7+jMvELBV3P6t4tCSRkJnEtRauJgkzK 5B9GHCMhGfH76Es7BbVVEH7mnyAh2vorWjWdFKRX1bm3WY+ErC5O0fO6KUj7 s08flyEJOXZJqZv/pKCqepP924xIyDVIJF+4n4LUmncGapqQkAsTxdX9oqC9 7e0H3M6S0N/DPpGLfyjodVfm43BzElKrdvR3+0tBMj+8fudZkNBgpO7rkSEK 2vpH5smoJa5fq9b1mFEKihtiDHBeIaHM2197u8coSHDsm7LENRJyVtp9nGeC gtbOeAyevUFCIz0SvapTFBQ4a6jqehOfd/lLv+o0BXEuSoeE3SKhhSWrJFkq BXkvr/zNdSAhO/u9gjwzFLTCaFVrdCKhYQsfuW7MboS0ZyO3SajIrOR7FI2C 6JzuwxxuJIRSj7MP0ynIjvvUQfG7JCRq0Zj0B/MYr1TYQXcSGgjpy7GfpaCr 65dHzDxJiHFF5b9JzL/5WzRcvEnojEbme9M5CjIXTAkP9SWh2nb+rELMXcJ3 x1774fNY2X1axXxa7KRWgz8Jbaj6zFKcp6BmccnI4QASmnE/dPIC5uPb/40T H5NQx1qRJBfMn3Y0w9YnJNQ/+mLKHbNuyG9doWASquomXXPC3LYwe2b9MxJ6 ZWo+fxaz2QXyZXIYCT1hFTzbh/lXrYgdK5yE9Jz27/r//a/u2n1nMZKEeB2E P5RinoxAftRofL6pXM3LmJ1XjYNHnpPQUflTL5n4fEtW1s9/xZGQbfON9iDM 3o3uKV3xJGQ/4dnJg5m0PySv5RW+326R2Du4Xk9jk8q/JJKQwOCAQDeu7wZi aW1VMgndWB94UAbzc5v61jepuD6BHSQb3A/xtp8/8tJJaH7tK5tY3L9dCRz0 V9kk5Ct+ufUr7ncRWYgR/ZqEdK9c/dA2ifVnv5P7WR6u59El8Vqsj6Oahlt8 irC/VfLWeGL9fE29InunhIQyvOweIKwvk7V3Dji8wddjz+ksDFPQ5Z8vT1yq IKE9KVd89mB9jmkXmpi9IyGnrV7DJVi/9tm1l05VkVB1QY2D3AAFed6bdIUa ElJt42oe7qOg6E1qyeKNJPQrYDEtHvtHzEc/d1MzCfkLeu9Jxv5KGbn09r8W EjJ+FBQV8w3nQWlAC/sbCa2YtHac/kpBTcYdK797SejdpvQDnNi/RpWjpJ6f JNRWcqMkAPu7R3KVr62fhAI6Z1qWq3B+0bfJVP8hoa74i4V55RRECHUwThzH 3zecNzTKo6CAf34Xn0+S0KLtrdrTORS07lL0jdBpnBcb6BEok4JEFd77+NJJ iEqr2TmVREFKzbyvLZexHlS+WrtHUpAtTzrXNgoZ9Ul77rqF87GJIzD48Boy Ohu7/jvZGfeDeUPo+joy0v/2w/rpLQqaoe+WzeEnI+flyCPnr1KQy89SPSVR MnrWeH6FfJqCvPI+h5+QJ6Oe0ykHQndg/WVmbLbbTUYJDXceDUtQEEp5nBqy h4y6Ffdc2rGZgjien3zTfoCMBu7demD7Hz7P/c7eCxpkZDsqQmbg+RBqMizh fJKMlEx/RUAND6Ib1GVFniIjs6fL5bqVPMjoRNb+stNk1EFfFDqE55Gg1i0d xhkyij/27vpMGg+Kk1mwDrhIRhvUnzBOB/Kg1BWu/DgHMrLjuXpt1wkeVJYo pfkpjIw0JQUFZCu5kRRbx+NjBBltalouVi3C8/nCtfIPUWSUPLOTrJLFjWxE 05XexZKR+czXD4xobiQaKaNQmkRGfNO3Yl47cSPPR3LiGYVk1Bk+mv5qOzfS tt9LfPKNjDY31fD23COjvGZDeNxORo7RH6yT7PHf5Z28HnWSkZ+JUdHZK2Q0 P1q4/KCXjAjxT7aG6ZNR2uUDs55/cH8KVd7v3EpGPGeU/9rTyaharKeM+Z6E Wg5qfDbi50Zpy/sFjGlcKOit6+pRAW6kPJNVtwPPzWNK+fsOCuK944h85Xgn F6pWkHy1XQSfQ2LqrmYlFyrexnNnXoIb1foOcW95yIWec3fIRu/lRslqvv41 glzoSvvNp714r0EXiw73yXGiJdsXxpYh3EgoSGQT2kFEz9xTuH1CudHWbPG6 fAEi2hGUU/kynBs9aHZxWU8kojNZldt/4jpF2dlxxeL3wqLRn3NnErjR3XVe uUN4X7S7KhapV8CN3DJeH6qfYMPAhZcdyt+5USb1+8lZG/x+ZJhwZp0QDxIz vtPHWrcEVmoaGRmRPGiFeEjNX2ECbkx/XeiL5kFnDzvUovpxcEy6pLMhlgeN +l+v+n15HHwoD/544r2Fvd7s65fIMYjvbdhslM6Duj6/pRxdHoGue2ahjDK8 V91pVXN4/xd0K5zvnf7Jg8gH6NWnbv6A0/Zc9QH9eG8JUaXLx/bCWclooXe/ 8fVii+MmvvSAdVB58Y4hHtShtENCQLIb/M0J1FW851jcy3KU726HqpVgq3QW D7J+fk/rhXsjfM4TL/xJoKA3FuydAe310GxVyObjxDnAvGJjsqsOfjZ2xHtw U9AJ9Mknuf8TLMVt7jbko6DdWuslXb0rgG2QKx2wAedWzP6NkwplQOYEl8qN FEQWrNI4+rsYNt604t8hQkH5B9IZbj7ZsFl8/tJ57LNlQotnxe8UkGx/mBe6 hYIaWxLXtPjEgdyjTczP4tjXEhQmn28Q7DuYpbe6Dc+ddc9LO9uytP4HzQvD gw== "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, 3.5067730351977577`*^9, 3.506773146946953*^9, 3.5067734391192827`*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s7", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "7"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.5067730465920258`*^9, 3.5067730470795593`*^9}, {3.506773345851775*^9, 3.506773349904582*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s7", "[", "x", "]"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.506773151334016*^9, 3.506773154077818*^9}, {3.506773442537797*^9, 3.5067734463829117`*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwVl3k8lF8bxmeGGYyS+JGQCmUtIkJ0n7SJFkuWZK8QWSsJkbJVkqUsLUgl FKKFkl32hKxjX0JlnQUJ8573r/l8jXnOOfd93dd1nq0OHsbnSQQCoYODQPj/ J0cptWlEzWvfy5L/fwbv2/arZK9E3ElwGXU7KBRnC0tvlc51x9pC7a6J8A+x HvDzP+fFj/izajfckYkNAtrhkIqX+LNZ985m5+j70G4bK/M09j4UJvVWvLqd AsYXN9ISY1Ngb/K1E+3uuRBDt3oXH5sLQQ18tHTOUrgn9Ei7bO1bOPKfoLFe WCm05oVuVjN+C8YhpLF2jjI489vqp0TPW3j+Us+PFlIG7md4veiTeQDJ7xss Q8vhgY5zRBL/e0ioii75HlQJA0TJgnHzQrCtXJdw3rwGpJPXPrJ6UghHEoXn LsXVgLPW34CWwULYNToibPq9BujezbpFFz6B3IPjclGHa4FzNLApyv8zJASf O9qsUgfy1T0/1VK+QMe3wW4dUgPs/apP1b1UBozFJLddfk3A35b+fU9cGcRz uD81ftMEo8OkhzvelUHsR20P3f4miCIUbd7IKAPj2F3/Ivd/h+G9Cmqz3uVw yMz5ygipGSLyee2SvStgoPom7/GKZuhIafyw5FUFnhIXR7fsaIXXObL+szFV cCxz+4dR3Va4URyCxvKqoOl+2Z1Ii1aQ69FuaJmrgkwOd0b4rVYIEM4ezPD6 ChLffiYodLWC1L17vOZe1TCxnmYuHPADPP1O2L/zrIUmYp3Dupw20HfXzuCO rgW7BhNWV2kbSDnIz1jn1kL7hpaJ0JY26DhKuc49XQtPHM3abzPbQGdjSaK1 ax3kaB9ao6nZDtTCHc1cjvUwcLTGWbm4HUZfi22wDq2H9+0rdju+tUNJCo9N /ot6SPXV8lzb1w5e4T//WI3UA0/b+Saf5XboMnvKlW/XAI8T//hOa3bAS9Ya sDrTCG8vX9fxzu2AwF9LoXl+jVDFN9aQWtwBFn0TjZRHjcAX4Bie39ABa75W WeZ1NcLG12aJQeMd4P0gwIdi9g0Yr299KtvUCUh1MvutYROI9Z6fGQ3pBLfC 81EkqWbYGddzZlGnC3YeNdpC3N0MLtIt+28e7YLZbu189sFm2NpxofLPqS64 /E+wY9mxGVZ7GqesXbvAb1/FpoWsZrj9dP3R8vguCKuSyP6j0gLTzLWcSeNd oGdKhd8HWkDa6cFtmbku4BljNU+caoGafeW7E5a6IJLrG/OnTwscF7ziIbq2 G+L0/bUHP7dAk2ZE4Tvlbkht7mxow32W+e6nety7GxzsK61/mLTCaFVwzPK1 bpCi58y0nGuF8fQ6kfvB3ZAuGCb4PawVvlgzVW2iuyHbbPeZuvpW2Btj8zrj TTe4j2+equlphQRvus2Vd92g7MsbVD3ZCicLR523f+6G90nDaZV8PyAK3kqo 13TD597o38XGPyBubE8w/2A3BLgFBHw5+wOySvlOcY51g86qE1/R5R/AtGj5 2venG8o2g0ph/A+ozjqgorvQDTUOU9fyaT+ARs1dal9Dg7aJozyvHNqgUOAy y1CVBjNJsoduebfB82M1oRf20IBqwBVse7MNake2J7ntpQHKrlrckNYGt3ev TmgcoMFrL5iIGGoDtH/Dk0EjGlRLSkifn2sDv9yBvNOmNBj8sWy7n9gO+83f xpRa0EBY/XPn3y3tcCNhydzYlgY3l3bXuNi1g41PUmaiKw2evhbkOOLZDiYi yoUB7jQotKLvk7rRDm7rHk6c8KLBVEnux56UdjjMcrUt8aGBxS359GMD7SA2 rRredIMGl3bzDMvOtEODgXOI7C0aRP0c30Rmt8PaJ/1U71AaVB15+bBYogOa TuS7tt2mgdKaLaE7bTrg5tGTsT0xNNAvXi2jundAZLnR1Mc4Gpxz71seu94B bMF7R249pMGj5keXU552gEHfh8KZRBp8CL721j+7A479zVSKfkSDZhWLSXM8 B+5Lw+cln9CA8lDoHH9fB+TuPtsqnkKDrYeZKZOTHTBcddglNJUG2gutPbXL HaD5PD1k8BkNvE5HmwSLdwLPaXmKxwsaRFI97lsrdsLrcdfmtJc0SC863qCp 3QmOE2dH6tJp0LuJ9wD9TCd8/vLmNT2DBgtNvwKbXDvhJTHiKzOTBgI3aj9n +XcC02DH3O8sGugNh6qcfdwJt7bU6r1/Q4Ozcefc4XUneA+m0MKzaRB48ECW WFEnEIo59Q1zaPAunSDZRuuEIMulqLJcGjSZD1i//d0JnG25Dc5vaTDBXZIU udQJlTe13lPyaMDx+Um7MxXPlWJkwCPMEq7+6w+JdoFheJGFdD4NNMUtj2+V 7wL6fY7rLzCf+qZxe0WzC151VGwSe0cDj8ANX7vxnBu0+nlEYL6jNE/4eLoL HJS/p09i9rt6VGHMpQssozdonHxPgwulT0yFA7qgUbA86RVmC67ZoMP3ukCo /Pi6ecx6Jw9k+SR3wcFOl16tDzTQSIhvS8/F61fOHPTBLDvwa7WjrAuCRfoi MzCLyOjIcbV2QU7gmcUWzFwe0SZ7RrrA4s3nBjrm+Y8j152YXdBi5mnA+5EG Y6vqGQnkbnDctuGLGOaOw3daa4S74fhzNwdpzNVRfcsLMt1A3GV6axvmjx3K MrKa3UBhNZ/djPmlRIiRhX43yDZyHhXA/MCx0z/iTDesaOz2XcXrheTIpxde 7IZNJuXqo5gvz19vnrjeDfEfFOorMZ/d17Ikcr8bBN3W+T7FbBwmve1oajdY /JQK88Ks23T15LW8brjQoaWFMKsIN1zLrOgG0V1A48EsaSPxovtHNxzj3f2m CdeLOF21qDnfDbNtbqv6mGfVRKRcuLCO5mR4OTAPXnc9/kiEBreKPjsU4H6U rRVIW9LCc2Ejv0YYc+AOW4OiIBok7F9PeIf7734l/8qfaBpYXfgpaorZupic KpZGg3Cx1A8srB/t42+Y/lW4jlx7w1Qx/7v496k2Tw8I7KGZZmL9/X5/rPai aA+QtjnvOoKZtpxCf6LQA/LfXap+Yr1+jjx8ZOV4D+gPdStux+z7Jm62OLYH 4hOuNRS9poEzc0x0+nkPWOYUbHfCbK6tdUjiQw9keR3xEsKs3jiYFNjZA4vf xmf88Xxs/293Vc5ED8zffZW3G7OQVfh0/98eeLtWKHAOzxPzz44DIN4LApU9 Rr6YR1WD3Tx29MKMS8iYLuYf/m0JKft6Yd+9q6kCmCsqZSq+n+wFOzX16nE8 n/m8/pNsu16IX1ZKrsCcZtIkrOzdC71z5e7PMcc+3rrf7lYvDAWrBd7BfHPk smv0g17QsC0V8MXspVD7sOwl/n+XQO+LmEfPj95I/dgLatXbJ5wwm6USLt6o 6YW36zo9XDDX0sTN7bp6odo23eAyZi0hTV30C+8/PK44FPObk6Y7tiz1Qht/ CFcKZok7XiIE3j7IOnTAtQxzdNU9jkGxPniyM1j+N2YSO3O6VLEPbia2hInj 813WrO5O0emD5g2vy80xj10argo60Qdf1jiKP8FskbOaa2vbBxWv9nb9wlw/ IfoYPPsgcvqg+n5cX22pPWGbg/vArvza1TTMOdYmXuyYPugbzO1di/uzJdHD aiCtD6SZSem3MMe23j1S+q4PPtyvFuLE/sW5NkMlpaoPrLVTXO5j9jlStSmo vQ+Egpx+bsN6mAge5LYd6wPq0N7qGsyWX5YZ+xb6wHKR//gVrKfGeZEBCe5+ 2O6V/2kn9rd9u9TqV0X6IXxDhQETs2S6W2qJVj+wl3r6XmD9Phi8fTfZoB+U vp+0isb+RRFL9wm06odcYY6V//vV7/v9x/YF9oNGNiE1Dc+XVf3SHon7/eBn D5ur8Hw3cW6QWk3ph/2eLz4zCrAerp38W1zeD6766TqBn2kg/d519GlrP9gI vkjtLqJB/HT49+sj/bBoEiF8sBj739mylzrkAfBj+iodKaPB5NPe6E3CAyCz Ru3YYDkNbLoW/Ve2D8A6VTWP25V4/o/vMi7WG8Dz9KdwTQ0N3ocf13l6egA2 cd00H6/Feq+4IHvdZQDeLIlPttbjvN+TtqodOQAxu26N9jVhPW8RfP3l+wBc OrL7Rl0nDQ6fUYp/MjgAOd0F+1RoOJ8fGgQHzA3AMGJXZ/fS4AS5QiGZZxCo 6tUb+4ew3/gtEW0UBuHxBf1/clM0cE2IWPimOgic93u1lWZp8OK98JSO9iBo aH6jHmXg+8GMStem44Mw4ZIqU/SXBktnXXP63AeBX5NqnsLVA3brGb5ffAbB kr+2lY+3B76W+B14HDgIYq7bXsTw9UD0xjtdFlGDoH5Wm94i1IPvaRmktuxB aDrl07l/Ww9EBih/y/8wCNcF/Z4ayvUAXa4wIaZ4EPYNPea6vKMHSkJqFE9+ w/utTnb5q9YDp7TGzOonB0GxK/EbSa8HPo+7bc1kDgIpyFik6FgPbH7I+hO+ PAgZp8mHbhv1wO8ZzuBDa4YgmrGh3+lMDwS/lHpdpjAEF+SCVVU8eyCH3579 0WUIlp1rk8WSe+C/kom6h95DUFzn7HPgRQ9cc/V8cNlvCASfJ165ldUDB6uD 5FTuDMHXgEdexwp6oMc/2SQ7cwgeFjmyya09wD3e8+r5xBAwYzQdVNf0gvuD s943Z4dA4JJJ76RgL/zY/0fbfnEIMo6xLpeJ9ULyk6UWCe5hePJl6+WPCtg3 jDcuJ8kMw/Cse8HgsV5wKDYzjHYcBoe3lKeHsO+ofBQR2OgxDKodkRv9knuB lEv78ezqMBBiQzS/Z/RCWqqN+buIYbCbo3f1FPfC8C1Hm46sYRA3E84Jxj7j oO9zUXxmGIRshL8JH+kDlQMaO18uDEMAX84uB5M+IGkvzewgjECA8/CP79gn 0nYEXoL1I/DE/OM2gWt9MMwf5uegOgKNXU271LL7wKHzYUTG1RGYLHxQzSne DyrN5vq7boxArIxhZ4B8P5DqNq75HDECWll5WiKa/ZD2+en9hqQREDamK3wy 64fhpy/jp4tGQOr5yL8Xcf3gcO7Di92EUaCl871Q/G8Azs61lZVFjAKZs2iG X2QQ7PyizQujRyHgv9y48S2DYMVxbDo3cRSO29M7v8kNgplQpVhKxijUJLtp 1u0dBD3NPJ/rtaNQYJ0q7m83CDuD7ylqcf+Eyxeb42vfDMIi/+HEd+E/odmj hjlhiPuWRFR6ff8nyAaGNr8+MwRzksVf0xJ+glBMafp1xyH4vXs3I+bVT7jL v37LiYAh6LOQPOFZ8xMm4jP1nmUMQUXqKscOrjGQXtjay8U5DJHKBR7pYWPg NM03HfZ1GOpVOseuRI3B8a271NtbhoFbbcH6UPwYcCfdDFDuH4YQzT3HRl+O QfJMaMNa3Bd/3QJZya9jsKimNWgvNwIupwqGnnKMQ7T7p1KH6BE44ltg8vDG OAicLbxn6jQKpLKCPSF+E4DWZ+2Y2T0G6+UNmgYSf4PZs6k5qxu/QS9F9/ls 7CRMfP/gdzJpGsJrm/tuPp4EGcczl2KypqF6zkZE6MUk9M7XyTUWTcOhg/73 ND9MwuxLlf0K/dOg++vd1Zudk8ClLKgRKTkD2qrbjv0nPgVfTylGfc6cAeUa Ltael1PwMWPb24sWs+Ax+1CpPnsKmN1DHL52s5CzUdrF6uMU8KprJ153noUd F9HAjZopWLX7cuCq7yzIr79WV/drCkTObJuTTJwF6TO/n57ZOQ1GlW+OnOiY hQ0zjYeDCqZhOaG6Our4HCTGlNr/Kp2GnAu1yc9PzYHI7vwAk9ppaORo3ZV3 BvO1hHyZ7mk4bMFx+uOFORDlcJBoXpqGWFKfvVPoHEhsWGBt2TcDgVuvOloW zcF22PqyomoGdo6KndTaSof0IcEyxW8zMNf2z8xIhg7bQyg98e0zYPOv/bvt DjrI1P3hdx2bAQ3zdQwHTTo8kDtTwsM5C/G/MsWJRnSIf7dNPn/bLOyR+Xsi PpAOj2o+EzkuzMJ5z4A7rFY6zA6+vTZzcRYcjOIjEjrpcGQpfa7HE39/wffs rl46MBXjht7junAV8aUd+0mHE7Gu5Y4Rs6BzN+fXlgU6kKzFg+tfzYJeo/7u fRsZYOEj8Pfj61n44PAp1WoTA3Lvc3s9z50FdVvuMu+tDLCqYNoFFMzCfd8Q /jA5BnyU+YZ21szCVHHqdz1NBrjSrxNix2bBfVmhQ8ecARW8l30Df8/C4Nmy /g5LBohsc5l1mZ4FIqTfdbJhQLW52eCB+Vn83hPZ6nGeAVuKd5axyHPgWzkg Jn6JAW3hA0Gnt83BIzH+XaORDJB/1r5wSG4OHqa2f1m4z4Dgzw0eKjvmQE9Z eokUx4CdUwW2vGpzsNXSL5qQxIAI42goPjgH/d3Ms4kvGKC9aT97y7k5kCmu LNP+zAA9qzZvB+c5OLVPK4qjmAGnHjuNPb84B70XuqrLSvF5NkZ9235lDtD2 6LsSXxnwSKjnsWLYHPxFDr+cvjMg/ZT7Ovc7+PeGQQ+HWxiQH0e8lRs1B0Tt rDaTNgbUrZd1UUmYAz6+KUnRbgYsrr2ioZExB/fCi9LVhxnAeZz7zbU3cyBt 9iPGcZQB/JGPNxe9nYOmVcP998YYIEOtoOz7NAcdprPcpb8ZYEZZ136gfg5i HJZJH+gMeL+a4XVycg4kuaes5ghMKNPR/hk9Owc5PKICMSQmNAZ8t2hlzkH6 lChVlpMJI0ssMF2ZAzZJZnwvFxMEFnT5zvDR4bzAeuvlNUyQUO8IfiJAByW+ u0rmfEyQv3KB1SeMdVgcGZO5jgn7Gfd77TbT4RCv6A41ASZ4zvRmOSrTgdJ2 e2JCmAkBOz0lMnbTwbnBz4oowoQIN47YXxpY9+OnPqzfyISUP3LXLu6nQ0T9 X11RMSZkyRdPZh+iw5sP+VEC4kz4eMHQbuYoHUZKlKdIm5jQNO5zxNuYDuS0 qvWNEkygbacWvTOjg1Ne88yLzUz4ef7pTpYlHQwW7/H7bGHC8kilkO9ZOhxu dzMgSjKBW8r89icnOlg+vh1YhPk/h9/LS6508Hyut91digkKg/yj1y/TobaB wFUszYQT41sqfHzpcN/oqPzJbfh808qpHgF0iMy+PE7D/H7Z0Mo+BM8hFFoO bGdCB4e9lmUEHQZ5srdbyDBhkeolYhJJh5xoncJ6zNobY9oOPqCD8M5fFk9l mWCz5Vm+TiIdbHiTAlcw35DJi1Z/gud0am2CuRwT0naWuyul0qGroD77NeYq tZZjsi/oAC+dm/5iHtMekt+aQQdJuQROXXl8voNz3KJv6BBWJ2YVglnegDgu 8JYOwf9aBsswHzNe/5X3PR16V7OSFzC7n976nLOQDo6fsp/JKjAh2m5X8EoR HXhj51kmmPOd9tvOl+LzGRS8uoa5zd1IZ6aSDioD6pVJmOev2ItN1NDB1azl 1HvMIte9/g420AFfApzrMGuFBHd2f6eD4S2lNd2Yre7GfGj9QYe2Q4IGI5gD Y5/FNWCfohUYqUxgTk3K86rqoYM9I7tpHHNFavnJ4gE6vNBkKw5jHn3VsuPj CB1Qg7JlJ2ZK7hBv7jgdVkv3n63BLPtx7terP3Q413/QNB+zfjGxNnWGDpyX 7HQSMV+sWp+exKDDFZkm2f+fJ6pha0gs9r1/XTRpU8xvW3c53P1HBz6PsX2K mFu796MQNh388s6GrOJ6MQeNJK5zYJ+Q6CI1YhaesF++wsUA69KemgeYNWa8 aO68DPjOFhmywBywEhNvJ8iAgpmDR37gfiVzpl0+vYEBfF3Dubcxl/HmGxuL MeCin8iLvZg5RVv5DkoxYNjF1SkW62H71uFJbRkGCO+qMt6DWU+WXq+mwIAz egqkLqynSHWBcBlVBkxXmo6twZyjI3l+yx4GKB7v2fMM67H5oMqBjXsZoCnM CNuF+T8TYzb1APb14/wWh7F+n3jEXp02ZkCOOtNOF+u/xCfNdNyMAY3+kZqF eD4Gr+erDmKfJm78FCqPWTqydabFgQHo0vR7zq1MyM4QcP7gzYCjkxXCMXge Q9pL93NcZcCPAPaRfjyvViQ3MSN/Boz4EwZkMFOtapombzHA8jvl3ls8747r AtSkHzLgE++S4CPsD1t8fpLiChjguehrObCeCQ8OFD71XGbAyjZVtQrsX66e 56+WYF87cOnX+UoiE3SfChitITMhvUEjqhL/fW7+ImfGWrwPUp9o+SoDTmRt dR3A+4oqDvR7t8QA7vV3NU7sZ4LLSrtoBPbLgH7rHwpheI5jOdZEYP9lHtF5 ev4OE852/zOPH8J9yRN3SonCdUh32Zc+iOse0rMkkMCE+oHnig39DNCSPy25 9IoJS3HvGhR6/u/3GpOqb5iAkh/LHqXhfFrZ8NHtLRMU25IqnbHfizZ3HB0q ZMK1nTbk3E4G/L1yyqu2jgnD3HfmTuN88BxQ3UtqYsLu8irfuz8YMKEnSNZu xbpyjx4sbWVAl1hrYi6NCcbyKWm7cL4Ulp8si/+Dfe7SCem9TQxQVlC60zyD 67SFORL6jQEZD/hOUZlMOL5/VLqtkQEJTt/Gry8zYdbjtJ9/AwN81hqsO7+W BX7UMykLtVhHPvLdyetZcHDR/KEdZsdBnuddQizI6vyX9a0G5827WvVjEizI CIy59b6aAU3iGYQwSRaobohx24n5cFh4fel2FpCzjL++wfmodvqwjaoSCxxK MnkLqhjwpmKbrJsqC/7cGd1yALO0IpmevocF908qzP2oZMB/7MpQUcQC2+TI dZyYI52fnzx1kAURrrRbzytwPrbe3Bilx4Lvmx+xj2BmvtifTTRiAS/fztOp 5bhffFuv7jVlgch/n61OYR69Sth/5TQLBjhk3q3FbDU0QM21ZoF8p4xHYxnW qX5p24Q9C+Se2zyPxqz/PjlZ0pEFziesHCwxV2wKdLZyYUHd4dQSOcxa4dYq 8e4sKN2TWL+K7wP5s9rL370xl6UkdmOWtxSv5rnKglEFwt7PmNMq/90/4I9/ Lz1bmYpZdEfP6etBLEjwiDt0D3Ns/Gepgls4g1OXWoIwUwmPpmbDWWDdKunv i/nmhWsF8pEskLRjGV/FvNRqEXwumgVbHx9xDcDspa1hkPyABZtDaO3hmAnu D4LuJ7JgzdPZfYmYo1Jm3914wgINlsDhHMziLccmvFJZUPLI728d5ixSpvjZ FywgOhs6/cGssZtsdCqDBbUtb54K4PNWn7cPPfSGBZc/JGQB5lMJxZ/U37Jw TnE/8cY8XLtxWuY9C9R1R4NeY/ZcuiK5sZAFdkzCud+YVxVazahfcD+bt5op 4fpHWu+8+6+UBft7Fs/6YRa7f6d0spIF+6y2P27AnFU2xuirYYHCGw0eKdxf Dbqu7PcGFhwjvym6gfmU6b/ovB8sYJAMpE5ifQyHmX9N62SB+w8BRilmz8J3 f+N6WDD+8pL2HqyvSLGLDj4j+HmOzp6aWI+ix2vjncZZQN9IuFKFOSNQusHi D97/6h4ZM6zfr0O9qnsZLHCJK6i5h/V+SlDTWXGBBb8az31XxfMwfPDhk03/ WKAzGVAwiHn11XEygWMeLr7vsjxZzwB195KOKoF5kP0keiQYz19ViijvR+F5 8C24/doWz6dxiw+8Ep2Hunkh40P4vui+WynjtuQ8rHlY/WA7nudXSynXTqjM A1PNXV23HT9PcTkb1OchX/UQ/UwHfp61xbCy1jysP37p2HXsH4Nl/AaCuvOg dQa4O7G/iIQHi3cZzYOVt+X3cexP6YV9hnWm87Cid/ItYP/a/Vsz9PPpecgN 4wpLwf5meJw+9cR+Hnqf7tC8iu+btwXPltp7zUM1tY0Wju+XSykHHf5Ez4N2 S+UT9UUG7FvQid31cB6SEjt/amE/DT6xp+Jq0jykJByCo9inuVfkJDnT5mFu MvdkCPZjIct1w+Lv5iF7E6/wFR4mWORxC5wtmAfpchBo4MX5w03SzSyaB5c3 S5cU8P1SsoD5TK1qHiaGK+/zCjJB+T+a/Yn2edDJs1fXx/lxyfVHzIPueQi9 EOfGxPe9jxWN5bS+eZgRazXNxPmk41W61WlsHnYk6Vmp4rzUb3oxFLQwD3lP yYp1qkw4H+Fhn7dxAV5J8WaQjjMhY8A5ZmHTAnToWbw9Y8iESXWHch3JBVDh cRsuNWGC989TW+vlF6Cqz7E30xLfz3S1hob3LsDYk4Q6zgtMeLTMaf+fzQLM P3Tl7QlnQr/JarSlwwKg9x5qv+4yYevrhbJUxwXwY8V1kqLxeqd/b9nhsYDn qzPGIpEJHz5+Hzx0YwH8zVpUozJxXns+sruatgBEDo4j0jgH5KP5/11OX4CJ cxfeJeEcuJUb9tA7awE8+Xl1NnYyQX3au94tfwEiGlcz1QeZ8NTVYPe5igU4 cGrN3G86zjnHZS6j4QUgTK9laYiygNPKJldechFONRV9tvdkgY1/21HZ7YtA jbNV2+jDgoJH+qPb5BfhU/TgIxr2LZdu9Y1bVRbhNe/aDf7Yl1rM1t3aoLsI KMHHTiWFBclGZWacDoswltIk69PMAs0jkqt9zxZhMa6XrIB1uvt5fUTNy0W4 WFyxSEfzsJPtLZiXuQjbraVLKo/M435XyobkLcKB7g/PgrBOeWXOm8iXL0K4 X/+0LdZhHyUjw2dwERRkvpoUZc1DcPUOk3Wb/wLNQ67widQC1B3SzEBP/sKS 2+SOVwqL4FsTuDMo9S9QeR9WrldbBNmjVe+LX/yFaa9uj1v7FiHs2Mlyrey/ MPytq9zfaBEOmpyn7S75C673ZbVLri5CmV3MGrnBv+B2yPHVta+LUOD/y3O9 9BLcKa3cpXP+L7zMS9Icfr0EW8wspDTylkBIStHFJvMfzM+6Bd/ctgLRsXfN MrP/geAuoffDSitAJf3RZeb9A/tIh7h9WitAGMoUu/P5H1Di02cnTqzAZLLM tw8N/+DuMOsU2XcFqkSllNdO/4OWrEH7w3UrcFlAdL5IZRniVoS1NJ1WYSb4 2jBlzzJw3fEe7vNcBZe5riajvcvwujFb2N9vFeyaE16NH1gG0sKhyuR7q3As Sui0oOkyyF3xfhjxbhWkqOu/uFxdBmXnhpyWlVVoJXLf3PhlGXhvovuP77Jh OjvJxrBsGf5Tab66EscGHkuFveFVy2D7tPGG6RM2oPwTTGbjMuh69KePv2FD jsNDx+a+ZZC+L7Iz9hsb7lZKGoSzl6HLbJR5lUJAB0N1/mPprsCxiKZHmfsJ yG7X91mFIyvAk7ReSuEQAfn32X1zMFgBXv3CV+l6BJSvFhLWbLICFbufR9w9 SUBbxuoXX59bgc2/ovp5rQlo+bBFn0PYCvxccWsc9CGgD9yX0ptxnfYeuJqX +5KAxgKCp0q+rYB73vsstQwCEpm7vzu7ZQX4KteUfsgioIDuNxW3u1cg30BY /kUu3l/WWL/urxXYEd76QvMTAbUaWG74wL0KAd9aDxxsICDOMmeb52tWwb1O 8JTLNwJS3331ZQz/KpieWDW4852AHok/UHUXWYW6LbcnCn4QkP3Ut5MysqvA o1YaXddDQLNR+yOSjqzC/MRAadVvApLkMPwebrAKTyiZ+yImCejUVRthn5Or wC/aGXJomoAKbf1fGJuv4vd6skP2HAEFKX8o48V93zl6Y5/KIgG9fVHJteSy CldGSzoq/xLQsEjriQn3VfDherfj5D8COkyc6a3yWYW+6rH/TFYJiK9V9u/1 sFU4Z73+0zpOIkKH96CLd1Zh5BnXHg8yEXl/PhRuGbUK+rDRs5ZCRB1pDkJ7 4lchtvOwoDMPET299GTX7MtV8FA+vcWKj4iaxrN8+zNXYZBX9trtdUREsPpU 2pi9CnqbnkS95Seicwc7jmd+WAXXtIq5PwJEpCjE7+LwdRUC95Zkb9hARIK5 RW9e1q3CWSs0KyNCREt6TjMT31ah4pByn/JGIqoNKLns0bEKVdI5XxTFiChX 2KUgn7YKVp05+ZvFiSj+rdASq38V6G0kS95NeL3Ri0EB46twmFJX1ShBRAaB IhWlf1YhcuphZNpmIlIRqeLkmMXfR7ryeW3B+z0mduf24ir8fLdNf3ErEY3/ rG5sXMb90z7OkyeJzxfkvY6fyIbtQRz3HKTw+d/VPYjnYYNb9dBUrjQRhRy/ 0tm9lg3/aaq1GGwjoovjW0Q3CbDBH9xDBzFrifmmPBdlA8FFxp25nYi2fpAa HpNgg6RZUeYlGSLiPvldWl6KDbH2VlV/MHfc3J71VoENhx8qplfLElGxeOsk Q4kNVgnmV+TkiOjFx+tKe3az4ea5cNVQzHcN5bz9NNgQY0T62Y3Z+3fb+2Jt Nux9phAlI09Ep0NuLBD2s+FZ4C1Vd8xIQlHr4CE2RC2kd2djlinsDAg/ysZX ipOhY5j5jG+V1h9nQ5yW6V4RBSJi/dlJ4jNmg6VJFuEA5t5Q2kEjMzZcibel OWKu3BwW/sCSDYob077dwpz1aVd9pw0bal4VDSRhjjHpWyN2lg3tXwSEMzH7 TkWctHFiA9VX3icPs2347thnrmx4/iCN/A7z4a2DbaMebPCy3VOfjXlH0d0N spfZ+D5QXvcM83+meyxdfdnQ0aBOvY/53/Twk5wA/LygjJgrmIcjogbmbrCh afKgoynmOkktSbVQNux8aBa1E/PbLz/P+d5mg8Chg/xEzAlmMa+K7rEBeGLo jfj8gbPav1dj2MC9tXdvLObzdyYUdeNxvWYH6YaYj0k/8Ah9xIZ7dB8JHsyq JZBfm8yG2syYr59x/UUt/jB5n7OBIxbNnMdMpMfvOfmKDQn8uWlUzBN3df1i X7Mh5Zz0eAbu78fSJLbIezaIOjegVtz/p6cP6VoVsoGkK3zeGnMIYzYk5Qsb sqUeaQxj/RjL6FG3f2XDpcCcNd1YX5rljGMX6thQuX/3pv/rb8uZlPtvsO8a +/ctf8T6nIma/0+1gw1naG/1A7B+J2clKnbQ2NAbILh2COv7t/ERD9l+NpR5 qIcjzKPCiXWbxtiw+nW5ZAbPBy1ZM5B7ng3aM4UUfjxPXQQHBY4lNqyx+GJo gOet3eFO18oKG3SV1t4LxvPoHOeW9JdEQN0Tlv/6RYnIwbyEMU0loPvpp+7Y 4Hm3jzDWn1xDQL9f/dzvLUxEdp/GUn/xEdC1VgOFYCEishZbd2JUgICMNjW9 jxYkIosB24xuUQJ6lmp5/yr2l+NOROsqeQLam6BGuYj96Vjiw3fligT0keP7 mDr2L/06OWrpTgJquvcybIWDiPQUjAs+qRDQxaEJuUAiEenOpK3P1SKgLsdq 3hPLBKRx9WB1kj4B7erW7lfG/ioVHq7k4UJA7xNkwaCLgLw7dgc6XMQ+qtKy JquDgMq2DTeauhPQizdUCqWdgGyqtF20vQnoMyk8/UML9n8i/QWPHwHt8/7V wqwnIIEAK9EXtwmIrPc2avkLAZG8dpG7cQ4RiJcJN1OwX1v20HTHCaiiNC+C ak9Aa3TMX9n9wutpmn35aUNAapt/XAr8Q0DXG4WVy60IKGKkfs3nGQJSPY3E rlkQkNLFz/t24RzwKpnsmsb5GHA9KW0z9ukkhSP1BCAgoVRzl2WsU/5xE0V1 Cbyvmz/URXcQkeRyko2WOAE5nzvJoaFEREXBfxgI1/mL7JEnl1SJSJZwJ9JU mIAc8tSbfu/FczXjZJ6M+5RTIaTSfYyIOFv3ffRjs0Hv54+/H9xxnTUpekZY h9cVovxzPYkoe16/+UI1G/K99FYyvInoTK2xyp1KNoitfiE88SEi1478meFi fL8QTue6GUhEck3TaCGfDVLWdrf9bxBRyXJfhNFbNlg8F+W9cpOIpuVUg99n s6Fc6T6fcxgRSTgemnqQwYYHer5CJ6KISE18Kr4Cz2FdlErCkWisK/0zh8/j +8lq26TI/ljsU4Vjvuvx3DrZ24vvjieiwrV238MeskHLT19KNJmI/ORZQhOR bPAo43wpmEpEFeOj+d132PCCUrp9bRoRdXNSn7VHsGFtnKo8IZ2IpK74dUyG sGHwtfiusWwisolpdnp8nQ1C9I78gVwi2qxGMxz2Z4O+Rszu7jwi0qYNmOz2 Y8O7KrJG4wci0hgKpy75sGGCWvbpawH23VP7Z9yusEHcyG9v6SecS3ulDacu sSGsb3pffjF+vnfQOJ8XG4qkMstel+JcijtwIg/75OyFs7ovy7HPb6qNsXVn w+n5zkOJX4noxnIo3yD21Sjt2JqYGpyLJLWr+S5sqLh57OjdOrwf6ftiMRew b68rPxb4Deth18rlS9iX7U39m65+JyKewZcWVx3ZEP9YzdCrBc9huGR7+Hk2 1A/NtLj8ICKxmMvEl+fYwJbJMjnXTkTMp0HMJuzzu93PtVt3Yh9U5vlKxuz8 XsLcvJuIEs0Kbx91YEMrirPU78O5bn/76KIdG7jCj/ceGCCiakUbr7OYtb9x 2egMEVHm2+KxHls2eApWDKiPEFFsY16pPeaXpwPslX8SkTtTSoCFc4aWoj4i N05EqX29jIeY+cZmz0n9IqJtiiF+BzEfUHw9Jv6HiN5sTi0iYPb1Pu8sPIVz ef/DxnprNkQYTDtpzWA9bm7iSsWcIH3VyWaOiFYVFPNDMaevsB1vMoiIdM5p zB/zx44Ix3QWngdrrtKbmL/mrnesXyCigu8OZo8wt0U8Oj/9l4gshVOqKzCP 2kudF1jGOf0lV24ZM0PrzTn1VSJqJpklHcb7If2nds6SQEKpTluU0jALTBWf DSSRkJSyC+c6fN6t1YfPpnGSEJqzVLmHWTnlu0M1hYT0No61iON6IV8Lh9/c JMTvV/+vGPNJoyF7Pl4SivgRU+tpzwYbeRd7lbUkVGgTbaiG6+/OwbAzW0dC PqdHX/Pi/lzv9bfzW09CxrFX6AzMkR847ZIFSciUxdw7jfv7JOqebYUQCTFF elOWcP9fOwnbjm0godqGi2obsV4+oxQbqigJ5ae9FdR3xvrYKGuzU5yE7oT7 Gt3D+ppo0LT22UJC2jKfDxlcZMPiiwqrR5IkdMPlo2y1G+5/oIFViTQJVU1p VZlgPW9Xtj5DkSMhOx9r/1febDj74Mbp+F0kRLkYqKWK58fbjef0Z1USiopr UD2Mc//m4ViLfjUSOh0UGnkxkA2pi8/Nt2uRkOh36deMm2zot6ox/ahLQn5n 7xZM4fmeUjM0pR0koV1hF2qf3mfDMl/3qdXDJFSfw9tsH4v9qfy3yWEDEtry PoC6PRH7zzY+4w4TEmrb+nntsxdYz6vxRkumJKR+SbaQjnP9audmIwkLEuIT MB+0wLkef3uXoaMV/v94twkH7Gc/pk6dmD9HQgDp1z3K2XDi42N9YR8SOnHj EeXqCH4ew4Et5EtCyuar6rXjbLilLP9eyI+EnO1fkxQn2VCYVbhJKJCE6KJ6 0QosfG9MaZ8VDCOhxiS/IjInAc2Hr0tYH09C0j7XX2SJEBD/1w6D9YkkNDtY snJBjIAUSMmE9Y/w/nguDKpg/7cLUHThT8Z6avh5bEiKgOo9j+qsS8f9ib/E nadEQMmnb42s+UhCnxP/tW86it8/4vUT1xSS0MSs8HefYwT048f642s+k5C8 WYxHN84b7hOpH3lLSCjsy6/MIjOcl7rFt6nVJJThq/Ef8xzOMYUFJe4OErLy 4+rafYuAppddAjjmcT0qXQ1nqwnotIWB3N8FEmJMdt9yxO9XVe8UOqb/ktAp 4qm+n/h9KsllUom2gvuz79g8G+fxwS63kbdkDlQfWXTuGc7Fx+889W2EOJB/ sQr9IX6/0HPxEfm0mwNRNAs9tjkR0buvZl9z1DlQf/EdKLyIc2PrHu8XGhxI IzklyQTnEqNzoeG+NgdKZi81P79ORMmHrgU5HuRAV1mJIZkPsK9tCRgTPMWB rr2uszxQRUTPOoPfu1/iQFvzbutdwTod+6o8EHWFAxEMy0oTlUlI8f0AT+5V DnQv2Oxv1R4S+hitYzvjz4Ge6xcH7ME6azz6l8czhAMpMTfsvXWWhBaLPG29 HnKgyQ6ZyowUrItUW+rlAg4U9OwIV/EmDrTkrGN37R8HEr/2Z4B/ByfatBJz xsuPE4VKGYxE6FOQ3vDxTwkBnOhCfEz4JxMKulzDs6EkkBO1uvevmbCioPqY 4FbqLU4km9KH9nlQkM92r6Mv7nKiWdXw+YY4Cmo+abin8wkn6v0z8dSol4Ju pvEJ6pRyIhZHzyd5Fy6UHV7vebacE105NXKsx5sLdV0Ma7pdyYkqiHltof5c aOee1dsdNZyIeLN0f20kF+ppmCJ4NnOiwscFPOwcLrSb1TidNsSJgnbEL26g c6GxI3fruTnJyD/NzkPQmxs5GNht2UYhI7/NElMp17hR3wk1n/3cZPRRf/8b yWBu1GY6sNVvDRn9pyN0iRrNjSrOql778x8Zbbm8Um6bzY2eBvXING0jI9tg BWfKGDcSufX2+m8ZMlpQigmdmORGD8JCf1DkyejKTbeFEgY3unNPKQh2kpHB T24bPSIP8n18q+OtOhnlD/3urxPjQacKFELjjpCRiOP7NW4neFDzZ0JP7lEy 4jP/IhN2igcZlLQrNxrg9YU08mIseZDu16BeTkMyyg29nhDkyIOUf/xQ9bEg I7dd+a7vrvOgNTP+wxYXyMhIflHVPpMHRdANNa64ktH8xCyKy+FBHPPbomLc yMhO7d7wh3c8aGn5u2a9FxmpNjh5NBbzoAmqdMxePzIaTX4aureFB1VubwSJ u2R0xj4plpvFg/SjBvSF75HRnfdHJGYW8X5ZdFO++2Q0IBv5rnqZB/VXbby4 GktGDyrCU/U4qWjRwSmx/xE+jyF93UMBKgqs93ve8QSzdMglojAVkVWicpqS yYh6t2eHzUYqEiB+qCpJI6O9Z5tPTGymIsUU0lxyFhlp2ZX3aStSUT5FeDn+ DRmhk5OxckpUpOkux3U/h4w+WVbNklWo6LCO4aagfPz9k2nDe3uoyL7n6VHb z2Sks/+PYdt+KprQzTtl/oWM7J/mLu49SEXuWVW2J0vI6OVP5dTYw1QUcO3P Faggo/PU2MdrDKgofoNm2uZ6zB8GOXeZUJF40LHsDY24f7c4XPlMqej5mG3h uiYyMja+vYNmRkVvP4Q1sVvISIqz5aq2JRXt2fSoe+EHGVXs6+5sPUNFJSHZ ozPtZLQutuWguTUVNZi0LQ104+8VlBbk7KjIuGic3NWD13v2TMjXnoq6JP/x N/eR0eF5CcY7ByqyvcMnXjtARo/C3AL6zlLR2NxWmbIhMnK+55bMPEdFF0+r qRSO4H6bbzz89zwVMcr0dN7+JKNl31C7P45U5CdrpZcxTkYx/wZp9U5URIj2 MEn9RUb88VfSEpypKGzhpk3iHzJK7X31wugCFa21jb8QPUVGry4tNC1iflCd eTlihoxm9rP57rlQkejO4qAbc2T0Ou2KMZ8rFT172HzHl0FGugmK4QGYZVdG HnqysD4W1z/uxJxzbiHVeYGMWjKVAjZfpCK1Ruobu79klFP9WuQU5i+qEgUW //DvO2ttrmDWfbyrwnCFjAzZP7VvYa4jHfqmxyYjslLQs+uYDV0suhCRgg6b 7PA/h7mjxXVEg4OCqkPTC/dgttYMmlYmU1CddoneAl5/NDX2rywXBbX6nRd9 jtmFO51zKw8FTa1kie/F3ECKuHeAl4LeiF0dfYfPp7hyQdhxLQVRLAo1hDBH LRikRKyjIJb/cU5bXI+ZuR2yr9dT0JmroBKD62c4uS7vmyAF7Ukvz36N65s/ Nqc5K0RBbkIqDjm4/oJDPyoERChIumbj3iTcn8s9HwzURCmodl5R+iLuX3t7 Qpu5OAUlWhnwyOD+qjdfs/aToKBhzxsddVgPi1U6HqWSFGTaoUGrtqGi06Wb F4ekKUhY6e2vLVhPnz8RgzllKIhZuz3OAevtes7X2KMKFGTkNe70xJyK+jNe iV3cQUFNrffcHmD9oue3X0QpUZD348nyS1jfpMTjH3+oUhC5MGTtxAkqOhur BPNqFBT2+s5gwDEqqopcXyuiQUGz5cOfFo9ivQS3d1trU1Ae13bNl3iexv0L HG7so6DISdMv7Xje9HyS/qQhCjrWZU+Y2kdFvK7WK+MH8fkFX4Z/16Ci6FM/ t3gfpyCPzLivDgpUNHeiJvPBSQoi7uIPrpHB83A0U6XAiILauG/7C0hTkdA+ t4PLphRULCc7aylORY9kWE5hNhQke1lS/T0vFf3b2jmbYYdzpV/x8FEuKrIS /3StwYGClGYrN1eRqGjz+ut3+Z0oSF0uc9HlLw96scSZ+wjnVDF1c6P/Tx5E Zo3tKfbCeiAu5OkM8iDHmdqygUsURMiuWRyl8SC50chWaV8KUjWe9R35zoNy vv03n3ODgva2mi8nF/KgglRpncoYCrJp3x9BCeVB0uyD/uU499q3XKbdD+RB 0dbnP5U+pKDVxJbzRF8e5CyarvYliYKu7cvjferCg0QfyOz88IyC+sxqOj7g PAgIl9/8Ko+CLh7iW+ssgP35p771y3cUFBCTtuBF5UGmB10fP/9AQaGldsVn STxoJ/HNhtRPFJS2t752dY4bDfjt4E8qpyDDi2w3gWZupOuuTLzbgnN7IH3x TTg3ymk0hNs/KIik7z2sEsiNxBS8roe3U1DqRq0rqZe5EXM87++tbqy/jpP3 Vey50Ut7VXrAEAXNXLngraLJjbhN1Ufc5yioXPSFR+ooF2raq/3VeD0X2lap fk1LjgvdKbzy77AgFxoM3vKPKc6Fjqjl7torxIWaXwRoJfJzobKdkslSG7lQ dRqbkLRAQe+2cl9lbuFCa8SyJEOq8BxwtcnGK+PfW4rPclpS0NkfrpHdJ7mQ Joe/XM8lnIuGLyu+GXEhb+UHfwvOkVFvY/9iuQkXElRrMAk0JSOzaqPzWeZ4 vVzthhqcu3qf9uzzt8X3BCah+cQiJ9qZwjEr7sGFTvUOc6tf5USLLo9N7KK4 0FJttm/hOQ503+85V1A0vpeYr5kzNeJA2++8Lnoay4Xn/fdbmg4HMs0skuqJ 50LHn5gbPhLmQPnjPQzTFC5k+MxJlInvpRfPiT8weMuFLJri6JJSJDRo/bRN vZUL0YZ/XyHWE1CtYYrpWmFu9MfTukgg5x+4VP0s4RLhRqNO2xozgv7BWg1F WZIoN0p9GRMqYfQPjDd/WprfxI0Iz/s+ZTKWoGeqNWVwGzcST1jMOrhnCabv UH6/U+NGnBIo7lPhIgh9dQu0NMXPW7IiCaazwEFT+9WrB9xo5MjHjW/cpuHC 1DdWbzw3uuXILC1amALPZ7YHBZK4UfNK0e7k4CkI4rk1FPCUG5Vsrz3Q/2AS nnTXiRmnc6M11rrbbD79ho5r5tHLBdzoWOi5ooWlMdD/7H3NqIcbCafKxC/U 94ORO2dtWB83uqBTbXS9ow8sJOOFvwxwo5nR3Pz2oV5wuvPp3fZRbmTMUN3B uUiDEEvC9D98j6LYHX10Q7ITSpbuOaSvcqOx28uX/Yab4GvO5rweAg+q2y6I 9rAaodEhj83PwYMEow7M1XA1QE992xN/Lh7EKbK+3FOxBhYfiXUa8vMg2SjO uHMTJcA+kb0tDM/RHeXbv8t4i4DCAZeL/uNB65XL1zB3FsB/rg7rt2/E/+/j dWXyVw6IbWbansH3NKlbRJE0pVcg+SM0J3oTD3J98KXB+XcyyIdvWPm6mQep dbyL//I7CnbtzTT4t5UHVfDLZZ6QyNn3P4e0eFg= "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, 3.506773050142173*^9, 3.5067731544536867`*^9, 3.5067734467151947`*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"s8", "[", "x_", "]"}], "=", RowBox[{"FourierSinSeries", "[", RowBox[{"x", ",", "x", ",", "8"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.506772829212592*^9, 3.5067728558044043`*^9}, { 3.506772947788879*^9, 3.5067729478740377`*^9}, {3.506773056135949*^9, 3.506773056447798*^9}, {3.506773353555265*^9, 3.506773358168169*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s8", "[", "x", "]"}], ",", "x"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096111427627*^9, 3.5050961128037*^9}, { 3.5051045697552223`*^9, 3.505104569861548*^9}, {3.50510693554032*^9, 3.5051069524847097`*^9}, {3.5060811283428087`*^9, 3.5060812001862917`*^9}, {3.5060816638215923`*^9, 3.506081669118033*^9}, { 3.506772686173625*^9, 3.50677281040621*^9}, {3.506772866471718*^9, 3.506772900675654*^9}, 3.506772933535377*^9, {3.506773159397813*^9, 3.506773160733205*^9}, {3.506773451087714*^9, 3.506773455190742*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwVl3c8FP4fx++OO+ekaJCRlSKi7HyN94dKUUlCykxKSbJCklE2WSFENIwU Zc8iUUhSVKSscEi2uzPi9/n1T48nd5/xfr9er/eHuN1V4/MkAoEgxU4g/P9/ tlpa228VV23C//8F5GvsGHutIXL3OBAIPyY01x/SXnq5x7473gaz2N573F7a hQz4ylvggFlj5z73u9rDmy+yyuKvAqHuORcPd452lEATd0G1OxD6P+wJvVWm nS1tmUEo8AICzxHjNLe32nVq03tPZt4AQqYG3/WBNu0fekH1WfH+QJDWs1/m +q69JLNOxrc+EAgo3I96sV87VPGbW1b1bSDsG5f8FzCivfm/zOq2kmAgvDzT bzL3V/uhjiM7Kz8UCM+ZkW9c5rTl9ZWPieeEA2Fo3n6pjKVdbbSaaJAZidl/ OfTXqvZh86Ze95Q7QLB1edu6RIKvNvFS6fExQGCFbpGjckChkvy+342xQBA+ eMo7gwu81O7+9KqPA8Iqd2uGPQ9oa7AC1tXGA2H6dDn10CZgB6sdD6vvAiGB OaZ5gw9adOubVSoSgCCxthpAFoQ4PSnnlpJEIJjXbts6vg3MDaI22hQmAcH3 6dxDPnEQMZwpm8u/BwR/EcVHl7bD0Akzi7C8ZCBUkRdlp3fAM9PqNeGcFCAU ByRbPZcGt9NiTwofpwJh75C3SaYs7LMKPqyXeR8I7xN45drkYdV2fOJHWhr+ /NxVorACNNofj7uakg4BnGx7WFOKYOwk8CM5PgMClhaDNRZVYd0+qE06lAkE wwP0jL3qMF3pyjvQiDlFPg8iNaDs1bfSa/UPgfDESVvuFIIU4KTWoUdAeLXT wKNGB3zfaJyh1WKmjnE6qeyH/Y2Zqw+qH0OAwIYtN+31YOehDqMx9SdAYHul kS50GGjN5MdKFZj57jXdGNWH9lbHQ00lWRDQ4/j5ZuMxKDZMT9molA2ED0Lq Wd+OQ1L7pz+WhdlQ10q80rxmBFadyrEz+TlQt8QnYXfsJCAzh0GN3bkQMPX8 LHuoCUh2pSiH5OUCykpzjfhoCuM9q12COU8BGR+xQLfM4aOVguz5HXmAFhy+ TE6fhpd9526+eIyZ29PY74oFeP1uEj+Q+QwCYtqFNOKs4cz5ZfdokedA2GYa 5yZsC9p0uXddac8BCVR9LWHaAvufeMcrKfkQMBkfuNJgB3GzlsVJ8S+A0NH2 bvrVBbizJVWzjvslECoKbNhGHeBLYbCoivFLqMvS8ZgRugQW45bDIj3499vi cpgPL4OzBZfr7EQhoKpejnOJLlDMZJx0UCiCAF29n/STrsC6O6j681oR9FsN W0zxu0Fga+VK4yrm/BttbS/dIUHrYlgKTwkQkrNNGqS8oLv75OX1piVgu22J 32SzN4h4guHtFPx7o2SPecp1yCng23xFohQyKWdLn636QJVoYwZSLgN0JiS+ Td0fVqtf3ir1LgOeY8ECNrsDYL952nmZV2VQ98H3pERtALTGustu1iuHAI37 Fs8mA6GPKFFOP1UBLyuF7bI9g0DyAXeqZVoFGPVWpZiLB8PF/xZ9P/dXQF3h Y+nET8Ew69auW32pEqb9zrl/UA0F9iG/tugbVTDtue7j8t4I0A9wLGSrq4K9 172OtrMiIFrYLMGbvRrQF/a4Sw2RwG8qd8buTjW4JPL9R3G4AzLveoZVMmog czgYTl6Jhat275vyfteAWM7ghpf9sVCyWvRMVPoV2Bbd2UwziwMttQhXzsJX 0HSQ50K9XjwY5e7797P+NVQcrU5NRQmg0WhA03Wvg0x9zxif5GTg6cz+pHa3 DsQkfA2ktqfA0CApUa64DkZ3UvvKX6RANKFaVGCuDtpdXryOakuFQQ1ZlWm3 NzD9CJ5obk+HsCIu2wdu9TA/HvFk15aHYPXGYUdCfD3sjv11mcfxISi2vx0P L6oH88S6QGbtQ/j598a1a7P1MPT+anKz8yPYs2si4qjbW/i5y8Y1rusxfMto LV1ybQD7w90EnV/Z8KxA+sZ0XAMEHDHVu6mbAwGvgtBIYQNk3u9veZubA7t6 ND98nmkAj8vkK67eueDLl9+f69oIYZ+fb7aQzIPtd+5wnXJ9B0ESG+9XFOSD i4/h2WKXJnhX7RSQ+L4IDJw1c6mxTfBzz6edLZzFsN1OZsrqRRMolr9MCTxa DN/0KTepk01Qsl7lqXdHMWgJvE62utwM717GGQfTS4BWIdfOcaEF/nsr/pog XQ5ZC+vA0qIVjGdjnI5x1oDf2FJwoU8r3DqSfzfRogbMf422UlJbYcnOLuRM QQ2sa2w4U9iFPz+u5n/a9BW4Jfh6Usw+gvBDJRGJp68BKU3kvzRqg39XQyQa cV+uVJyPJm1vh3eH/+SYPXgL8vonxIjK7ZDpDV9JHW9huluzaO1AO9SY/GBM ceC6LG/6tnKhHd6sfk6PdGsAH+36bcy8dvAQaPz9yqARQhpE8v8ofob7fvE+ pZT3kNn+/UOn7heoiwwaG3/aAp2j+pw5dp3AevsltAN9hog9DELZ6S74a3za nCzZDT5e+rIjjl0gmvit+KFeN1yqTTPl8+0CRm6Z13+XuuHw8f15ng+6oHf6 UJtNQTdwXI09qfa7CxTeCn+5uu8HBBXIZFc4dcPlTLA0O9IDfnI2R6r9f0Cf rPi7j5d+gatsU2Jd1k/w552PNaruh6HzQwGZZT/BNuODeVRLP5hlEpwC3v+E NiMe3Zrufvhvi7ouGvsJ7lNbppjMfiCtPZ2s3f0LxO7oLP9QGoD4L5GHaot/ gUlr7m/FpwNQdP344qs3vZC1omF3PHwQJEsuD6V/6YXe4q3Kn5MGIWky9NPN 371gvEXt5P4ng+Bzri5Li9wHFeq7eFmvB0H3mILxq8N9YOli25A5NwgdYpue 1Xzqg4vbOT91n/4NS+cuF/xy7oeGvrZrJwSGwJZ3zrvGsx8unTp1/u/2IWh8 7bP/vl8/5NdI2l6XH4JYgYgu8+h+eA/rD57dPwRSn3JJnfn98Hd/+vWrTkNg 8t+IWctEP1i/5fx1o3oIquhXxJ/O94Olw4LkpsYh3IeFP6Er/cAIvPcxpW0I xqfYAw+uG4CLV1ZErw0MQWDW9md1sgMg/LNvxo4yDAU8Z9fKHAfgiffuG1uO DcPm16PNiW4DMLgoHJxhOgzXL7skePgMgGDIhait1sNw4J3/LsWIAXj+TjTo u/Mw9Nx4cDIf15Hsx6wNixkGKr0n5/HoADymq6WUfRwGu1dmRrEXBiF1/oo3 0hoBxbKtGwWuDkIs7xBL4cAIkF786HjoNQjkS+3xG46MwKNM61PFYYMwl2Wy J8Z8BAZvX7D+ljcIOXX/0TPdRsDOwNNJeGoQQm+7+fM9xuvt3yefxRyEehG5 yo+5eD3NpSk5wm84kKL+zLUAryfn5w68mF/k/fWvxOvxhPjYKf0GSdU9XuVt eL3viWG5Xr/hcFuMWuYCXq/9lIFCwG+wLi0nySzh9ZoF1lWF/YY/GVOhD1fx elXpMR9SfsNIvcj6Mxx0GEzPSpqs/g3u1+iac/x0KEpyMPdqwOs9tef8K0SH WzG7BAkff8PAfITyV1E6SATmp/P2/gZPhcU1Fyk62NmXPlEmDEHIF82pLhU6 KFp5XXhFHYKjf2wUD6vTgWSmLq3HOwSE6syYbE06PDr06tkpiSHYY9K+snc/ 3l+mscjnwBA43z/o7n8c77891IPt2BAULB42czTG+wvrq0aZDsGt/b8kD5ri /dd/rEy/MAS9yw1zLWfocG6ms64ubAius232EDxPB1uf2FMVsUOQf8FnxdqB DpZsRydfJA/BG7Mrh5Mu0cFsy1uhjNwhyO0NuPPrCh0Oqxd63mwaArWjcpGf r9HhYL0T97X2IRg9KfS3wIsOukeknzh1DYGbXP4v/+t00LDK+GwxOgRfjqZ2 rvjSQT7wzu7/qMNgdYWd68JtOsjQ9N8q8AxDWfvI58EgOkjdZT+za+swSP/5 RjAJoYNY1o3QrdLDkPTyCcfmcDpsk1cT4dk7DCVwaeu5CDoIls+WcOwbBjEr KltOJB02NV8aZBwahpaHA93c0XTgMd5xffL4MGTbPyQoxNBhXU//hpFTwxA2 f9BTP5YOlL+ntL46DMMs1bXxTDyuv+emztarw+B3el3Pybt0WFttc2zwwp/f UFqum0AHFo9ecnHoMFyucUSkJDrMpxD3PMM+eFLGJdOBeUbiVeOje8PwkG/A NPUeHcaVleficoZhgufYDFcKHeivpsLDXwzDit9IRhnmIb1nYoHlw2D4t2K9 eSodfplLGLq8H4ajTnPP/e/T4cfAryGHT8Nw36hGmJJGh2+OKTdsvg/D+ma/ j7cxd8yZbDzVNwynTTv7WJjbfXmeGtKHwfu2v8f5dDq0kltBb2oY9p27/LwZ c3N06Dct5jAYLebl7nhAh3f8+6+orA2DS6F3xHXM9ZmrbHIcI9D8ScW9EfPr XVWpkhswD1wK4sygQ3XRNQVh/hHQlq/vO4i5QkOhaZPoCKRK8ub4YC5pmLDm khqBsg/HVnIwFx7LXSDtGYHOPXeJbZgLvp2LWlIdAdYn0e4JzHk2ottntbHP aKZZ7Jl0yBn9UTmmNwIt4WVhWzA/cU0yGjAcAceCsSxRzJlLJ+hdZiOwc7lE dDvm9Nvcfu3WI5Dht7ZVDHPquubNTRdGYFSzvYQPc1Ji0LNa5xGITz7Gx4H5 rgjSLfccAb7qGtsZvH9sznJXgd8IRKwElH/FHLW3/Gp2yAhQjwhpl2BuUfw+ ci16BF5XbP1zBzNVhWl1MGkEbho3H7TDrKfG/3XzgxEojp+6qoA5SF3t6FAW Pu8mh8jl/9dT49Tb4vwR8CZKVtVhJmh7/Xe7dAQ8YhRFAjHf0C2XlmjE9RAd Xz+P+1Nx4HvGTOsIxOSI9GdjZugx+d50jkBvddVVU8xuR9TItkMjYC0hb5KN ++1oUj6QzkYH48CwFUGsl1yz7+ZXuOhgZUWPeIH1NGLO/KS5Cd/738u/CPNZ K7XXPRJY54wfNWew/swvlKcK6NKhV8vQwhnr9ZB3+cnEADrIlnbdVcb6D/L5 3mIfRocuJRNWNvZHvS9TRxn7Zu+nzItbMWsHqu3twPcWCvy7zMI/V40oX8db S4cTL927S7D/JNPKG6P+0SHAxbtPFfvV7sF3TUvyKHAw/DvzsJ8zM5nFstyj 4FkmtVkMs3CW2qMW4VFYipNm24D33VRQ7kfVHAWplqk7JJwHRi+/L3zfPwq9 p9jeBQXTIbqI6ZRzZBSS22cdODHTytUs9CxGgbMh1VsQ5wmprlwtyGcUkoQa S21uYb1xb8z+d2sUZqS/J00H4rpZOG32ihwFZLj0KBjzY4bYzKW0UYje0DZT g+tw9MANm99PRkE5nhBjg3k+7utHy/xRqFTWW8eB+YBcRN7x16Mg6a9lcd6f DhM+Q1ub340Cy7UzRBhzQpN2qO6nUbhw6pBetx8dNPlSFqq/j4LrN6N39zEP n5s7p9I/CiH37yrZY44uPPalYHQURL1TqhQxq67lIOmZUXh360soB+beo6QX DxdHIV4t4f3gTTqEpFpuEyKNASN5a3YDZvnRssgE2hgIn7h5PB/zNxXeJe5N Y5DUUT+Vhtnv9uWLoUJj8MT/Q9FdzFKfG78RJMegv/5MQxzmdhGxgz67x8Bf c7PRPczeTj7Fc8pjQBjwCXyCWayqU/yK1hhcFpm+XYm5iWNP7MjBMdAhFt/6 htnFNHzVxnAM6k/35S5j3vr4t1O32RhMDziJ78Lnr5vW6jG2GQMZe3l+G8yX tJP1Wx3G4PRge0k65o1Rs+UHXcbg3asfksOYq7qP7qz1HoO0vrw4FVxPO6mc hH2BY8A56LUjBjPtGpGtKHwMBP87TpvFXFRv4SobPwbqdpsdrXF/zvCU9T1J HYMYcoBzJ2aSNY+hyOMx/N4U1THB/X72zLHm3rMxOHnBmKsXs8ligwxvCb7v v6MMV6yXFT3RlIiaMdi1bbMsD55XRwc7rt38OAZ2BxS2OGF9ze+RH2J8HYOv Hx4LyWD9pd0MM3bpHYMOEFw/h/nvVq0956bGgDmw61R2KM6jC/fSfzJxf6wM /8VifWuXzHCZEcZBrClSPhTrP/p49uhh3nGon5L4lITnmWo64VS9wDhkWVhF vYzC/R8/06ghMQ7tIS4u3+7QYU/IhkfySuOgueijdwj7r6vjEk+uxjh02cQE xcdh34k3+IkfGIejWqWB49iv7TXeFptN8X5nRwzfJOL+0jqa71iN49xWvISw /8XM5fZxXMDfP8P7vTUZ93NuYPOS5zhUbLOC9ThveGWOtPUlj8PJ3QIKao9x vnBk8DZljkOnhYAVWxbu1/CsycvccajzSBL4mU0H+4epPQEV4yBZOF5cnIfz bev4qHjXODQ9fea6WkSHOwyt3bT+cbglkLdTsRT3tzPu6ix9HIS9b+u5l9OB K1adUc8ch8MPxvaI1NDBmiOczZ7/D1ANBW4KvKOD0vBPvaOif+DzT4p1dRPO 57d7I5Sl/sCdu/qelz9gPfh18ZDV/oDMi4oCRjsdyAwpkWyzP8Cy9++r/kmH 50Pv9o0m/oGxj9zXtzDpEFgv6Nue/ge0l+Vbspbw+yfTubYi6w9knTn1+uAq zm9LPr3w0j9Q1fV3oATn2MmO8ydlvv6BUcacnvEWnFtv2J2dNk9AIpf+3lS1 UfiUYV5oIjwBtgfH3svhHHty8/m8puQEhG6M3P0FjYKhuskNbuUJeERoTj9m MAoPXz4OKzg5AcEiu77zWI/C4Qzdx9PxE8D4oun8NWwUQpvaf926PwHmjhGK zGicCzPWW7c8mQD1KHKdXOIoHDxw44566QRMaoW6dj8cBd2xYq9b3yegsa6p ZHfNKGgq7Ti6WfgvvFTWif04Pwo3LItDsiX/guXvMwydlVGoCtZ5s0/uL5S+ uD7wgQ37qMtK1Ur7L9j9WrkghnNE9WaSWLbtX/hRkMFqVRyDve85FtSy/gJP 5h4Bdc8xuDqduKcl/y+sResXUf3HoEBA0tGy7C/QzI1FJ0PHQM4J9QW8/wtB sq+vL6XgHOC93tw89hfuD15RE6gdA0mL8XQL+UmY2+b/6Ar3OPBPter5l0/C 0+6qrBNV45AcV3t2rHYSkh7a3MtoHIetykW+J5smwZTlNEr8jPn6vSKp7kl4 kmHnzTY6DoJsdiLtS5OgoNA3wuL7AyL8zAUx7SlI3+J6OdP7D+wE8az6himw KDuw4ZLBBKS+ryKyXZqG6TS11l6JSZjuf3l9ymka+vfekr2nMAmHlrJnelym Qe/U762WaBLmd98dKPGehsPj5bu5rCfBMP7ymwth0+Cr27dpOWUSSFbCgS05 0xAgNsdG3TwFl2dvEuJHpkFW/LXdKsc0aG7TWROzn4GOHNdQxoYZkO3nGbrp MQvrfC75rbecA0O6WL2n9yzYWV31cLKfA5fJvZlXfWfh8prsv3dOc1CyYmR5 NmgWqKufPV1vzoGmQFzngYRZuMvb/CvlwRwcNeZt5CqZBWWVDm2p/jlwauDN TpmbBbGRV3n5NvMQ/UE8KJ45CwrjxSe8Hebh5RcFu8jlWWgzdN+ldXUe5vtP iNxkm4O3ZvySpX7z4PsvLsl20xzEWgWbW6bPQ5TqxlAppTkIXG556N09D/m5 Gy+Wus3BN3/L3deOLkDQ11odNq85OFcWa7V4cgEsSVeETtyYg2Exc3MPiwWg Wb5vm7g9ByNVz84aOi7AhQ2+KpKJcxD//XZbbOgCiHkOk+6Wz4ExUZiI6hYg YX9FusvKHBSqfFDp3sWAyy7nvV4T5uFegXEt314G6KZvPLGOPA/td/J36qsy YIbhxJ7LPQ9MQ6Z1lC4DDPPEL/eJ4Hv3VShGnmEAlTdyn6HOPIRfEeI4G8YA 316rDtmQebB/dPyQfA8D5g9ppZ+PmIfUu7su9/YxwKlQ2CEjeh6CN+S03hpi gEVQz9LGe/OgXi+slvuXAf/JnJZYypmHdftCNc+vMWDxmolrU/M8iOx7ZZkl xgSXPiUNUts8yEr1vb8nyYTRw5vIml/mQfGz7kE/aSZ0CX1JfvFjHjjWVtyl 9jKh4s3xuqQ/88BNvJo6rs0ET+4jG85zL0BzV8Q95TNMmPSU6X7AuwA1Hr+P XrRiwoV+zsddWxZgtIxfMtaWCWbFTapHRRZAdqvQgZoLTFA5rWettGcBQi2b noW4MeF5/Q7pK0oLUGKS/MniGhMkd5Nns9UWYGrGSmmHNxM2r70NFkQLwBMF bQk3mTD/RCefeGIB/N+HjNBDmeC0XtxLw3QBBkui020imDDkRdC5dnoBtqlc f/MhigkdBrWdo2cXgFvgo2NgHBOKpjVXPrktgC279LpzqUyQOSP8jtNrAd4H 28z4pTHh0dvlmP03FoD/tqB/zAMmxCdVbS+/jc//T7ss+hETXDX3HXmQsADT n4aiKXlMIDgn+MckLwDx7/rvec+YEJ0xXRyQtgAZWfsCDuYzIY/0VPjckwW4 HkTit37JhMEmgUmpkgWQVhY22FaG+7F0TUKgYgE+S9dFXStnwqrsFzNazQLk cuZ7NVQwQSgmonbi7QJMmslf0atmgonpcmxhxwJs502Z6qnF64Wcanz0fQEK nHdEjdfh9SqKF+/2LEDDhU6J6TdMiBJysvP8vQDOS6mO/W+ZIHisKcmBvgDj NgKKHxqYkOsn+cH8zwKYPwkVy29kQuPATyWNuQWgXq3LNHuP99ukfnE3cwHa eFQNRJrwfgcS07YtL4Cf+4z+L8yrOcfIBDYG/Aw7dFOnBe/X/VR9hsKA/eat zSOYBbkozoM0BoS8d3xw+wMTVJ1ff2vYyIDgfu9NT1qZ0JAhyFXGh3W/xtUm 9ZEJxp89IUeQAZ2H1w48xtxP6nBPFmHAl+GGYL42Jjgr78kNl2BAmvpCeiDm lfORP312MmCiwPD+EOaIe3QeJxkGrAaVRsInJmxt3n/QSh774L7SzXjMOUsZ 1w0VGeCFWDd/YVbdvZIP2KeZjFNpYu34PFbmg3v/Y8CtA60jFpiNY0r4JLQZ UH5j7nIM5v46niObsI/9b8X+V43ZedbJn12Pgf/OiDjbh3lle3Pxgj4DKvf+ nVrGHGG6Y3TkGAN0EujzPJ/xeUIDhbtOMEDpY6u/CObsil9GzaYM0DqzKVMS s/K4enDVaQYkMU3Ob8dcL5RU+cyKAXfPGfYJYjY6Nvs37SwDMiT6tnFh7vUz lIg+z4BoXU6Febyf08s8M/9LDHDcNiP9DfPSACXS5QoD6+DXlkLM4ZvO1Z51 ZYDMNRVqMOatB2vnjK8xQGXuNo8x5mxPIekD1xnw8oU7bMWsnOtlqXKTAee/ tmd9x/Wq7+6I3RnIAC6bMJNYzEZcexv5gxnw9muOpS7mXs2oRWo4/v0Gq09/ cT+WMg7Y/YllQMW6fnUFzNpMrXiFRAbY+Swa1OH+Bhqq1XulMGCos3v2EGbq v10S7I8YQMofOquD9XHEZLuxQTYDzE7NmRVj/UQ/E74Vm8eAVo9YbRHMW85s GBQuZsC2NPL+vmYmmBdSN54rZ8CNN7QYFcxpVJLu02oGlJYxZYOxXiXK5x+q NDDg0fd7FTxY33s3/zhr+JUBavfeNfZgf7hf7ohL6GbA5g9NaK2eCWX1rW9+ /GLAN+78dmHMWq614g4jDHju2XlXD/vNoO3JgD+TASMHjrucqmHC+bCrZwsF sO5NtqoEF2N/9V2MY27D+3o085oVMWFC1e6NlgTOtVXtLIlCJrgNm4i3yDDB q1zI6kUBEwJ0/xsY1Pi/zqgbUp8yIXWF/exmaybsXMyqb8V51O6SauuFc8hq uUfOGeefTCzPskc2E+xesgbJIUy4/SIk0Q3nknhb3HxaENb3pFvLFbwv8vG+ 0xzIhPTLR5Tt8T1sKNfURX2Z4HhhhePEIBMcbts8/eyC9R/s9shwhAkMLuEb jleZsC1rVPPoOBO4CUQ5dme8/+9O10OzTDi2WBj/32UmqJ3N79EisWAqemhD 2XkmsFtav5CRYMGgfI/4PzwfrG906kvvZEGKY5vti9NMKE81GNohw4J/UyfJ 9uZ4/25VAXFFFmzh4+rvNGXCZ7MNt/l1WTCzlhb43QjfzzN42xY9vJ5kaXzG cSYEJS6XbzRgwUfd3BZHQybs66RPcBuzgKKwbwPXUSY8OFFnxm7HgtUvL8Kv HWICy0V1hniBBdORoS6n9bCfY59Hrl1iwSZNdy2dg0wgf0quW3Jlgds281Hh /dg/R11lZgJZcCPMkp8DmPDuMr1hMpgFgm93NqzD80800spmIpwFuQdPb+LX YsKXZv0EehwLSDf4Geq4b+qHJFZ/PWRB8chl02o17J/HLWHvs/B+BwNKJlSZ IL/mtqnwKQuep3Tv2676fz2+lQ4qxN9PFefIVGaC8Can4iulLLhj2nRjRIkJ fFc3a5+qZEHX5e2XFTFzSeH3/hsWqLAy1/coMIFym7t3UyMLWO/GJtQwE/pK L/5rwt8fVUxNxfN7Poni197Ogls8WqWue/C8ni2gVnWyQFci9OiIPJ7/hqfu Pu5iwbqRQfJZzL8oubme/SyQ4lzZe0kOvwfsjJRsh/DnC1I+MHbj+75mvdIf ZUFkD/VHBOZWwYeHlSZYsFP0lssOzO889TuEp1ngtEvq8TtZJtR9mbGizLOA 350U4oy5Sj51dIrJgs7fFLltmEsidN27l1kgcH3D8y/YBy9Gxv/Vr7Hg+N9e vhjMebp3w56zLcJ+G9FAY8xPHmhsSuJYhD+LZ1eFMT9Y+p3uz7UIfmkijyZ3 MSHZLEr60oZFmL5V7P8ec3yRcrHxpkVImLTPy8Ectf6Xlib/Iph9slSJwRzi GNy0Q2gR+K7kKflhDnwnd3KD6CKE8+pWeGD2lfj2iyWxCNpFK1/dMHv6+V0c 3LkIh+7fy/DG7PJj59wHmUVgFyyRCsHsqPrpZqn8IthKfw+4j9k+3ouaobgI gVsvvarAbD0pejdMdRHaUOnUL8zmBk3b3P5bBP3csV1c+D4ns11yLbTx94v5 /BBmQ5KA0kHdRZD5LL96E/Nh6zev5PUWgbSLUvMWs27VpcNbDRbh1mHjZl5c T02+jR1Ew0Vgfn6qdhGzqluV1Z8Ti2AkG7T1Pea9bXajnaaLYCinflMe92tH SPG/HKtF8Pgzy8eP+y02aBEWd3YRVN9TnJMxC2qzb7pxfhHCJjbekcD6WM8w kTa8sgiCFk3nT2A9UY3/Fam5LsIRhhdiYCYVZGmJX1sEuSHZHU+w/pjnGcbz vos4/1WPCSkyYfbNg1+/AhbhonjAyyHME9sOXXwftAhrWaVW5Vjf/V/v3UyN WoQGW71ObxUmNB9Uz0Vpi7C74EvvFXUmeL/3k/fPXISWRH2N+/8xQVq/oeTV k0X4yK/P14n9F3L0+Jv/8hchJz0y7iL2q2pbwqHrhYtwFYmaNWA/Dx//8bG8 dBEkJ3oGZHWYcODk+R/KrxdBQGB7osgB7JfOPFv3+kUweGXY9xTnw2Oz6ZHC d7geo0MqOjhPSGduzMl/WoRHBkpHEgywvm3j1u3qX4TjWzR6P57Aehj8Fu8w hM/3RtS0+iTOC3thgezRRVjlcTMvxfnm55CzY/sM1qeHAPqE81DT+ZX2NtIS GLgkS6fZ4XpMkRotKEsQvzM7ZcqeCfddDx9JpS0Bp0041cgBz1OPjlP8m5bg pzB18z4nnKc3xlx4JZdAb8+4TrYnfn//k2cel16CdL0TbOeu4/zw97gZvXsJ mg4WSMrhvPe4tRbOpbIEvdEFxWN4HiiGb3lM1lsCeetAWXI0ft/RLHYdMFiC r3+4+OXxezkuKvPFLcMlmJVrKbFPYMJ0jGzNmtkSTA7LyC7j93NBks7XRYcl qG4hzn3MxfreGmqxz2kJWFzXz55/judGauuAp8sScPMy3tLw+9cp/dTknDfe f3oqwB+/d2WeXOGYDF+CIKeIGF48j7MKU9QHny3BdZuwtz9HsZ+WLWS6XizB 6nZbZc6/WL8HRYTaipdA1JPBqzvDhJquRyuV1Utw1kNEuHsRv/fXntXGfcD1 Kx9KT+NiAdHw9UGdP0vgniSs5KPAgnf3AlTVppaAdkKcw1mVBVEDulJyc0sg cSjQ2FmDBVuvvacKLC9B5sV4g4SDLNiT1v5hmrYM92Vb4q+dYYHV+OCJTJll eO21fCEyhAUSylm6SfLLsNdGofBgFAtGbzooRSkuQyon+dC6eBZ48E5s9v5v GeaY2/a/Tse5uW/h+3GDZfATPz5dgnO+MoTDeu3SMvCvf0QepeM5uH23o/XT ZVjdu1dVAfs0Nj7S7Gn+MoysazJlwz6lkf7ozhcuQ1fm5dpB+0UgDDwViqha hrh4LrVmj0WYeCD1sfTDMiwJumxSSsQ+Ety+l3tyGaT/XL3m1IV9vlGQUa24 AjVVAZpM3LcvROotgZoV4A5lz8jIXobJ/BRro7oVMKQ1hzFeLgPnGVmN0IYV 0P2y0GlSvQyoyHB+vnUF2DgFt0u1L0OBXeKF9l8r8GPsvZvo0jJEvpU4Erq2 AgVPjJUPHl+BA8Famxd0/4Gzs2tZzL8VKKW6Z7c3/4PKgtv3OM6twohv4N/X H//BjzxbHf8rq7B1JkY5//M/+HKk+BDDaxV8u5/Xh3f/g3VLSsyBqFU4kDfS qzv2D06Ty18/L1vFnzvDX0pdhW27ZVsYnGswHa0TlnJoFdzNBM7cLVgDCTaj T6FHViG89MXQ64o1MPGy5vM8vgoN59KVR+rXoMLmxhPjU6vwR/F2kdT3NfDf W1rH5bAKYS1pNPe1NVj/RXrxZsgqePCo7AuXIqDdW3gc7RpXwfz2TGCXBwFt elH9PKt5FUqjONUWrhPQ0mGHqdGPq3Bwg8p5bn8CavJ97XH12yos5BmM7Qkn IPshJ39f+irIbXhdrZFOQOnFzQlJ+NxGd3aJ2jYQ0Hrj27Utx9bAQ+hrrtN6 Ilr4I09ab7wG1VoO+7o3EtHP4B8HTpitwSM3dAT4iSivUqHlu/Ua2Oiq1DNF iUhPvL9z6Ooa6PBsv7pVgYj8pjXHV+PWoHT92sw6YyKaimZsVvqG95PXVXGM JqKJaZF6uR9rIOnOPFUUR0TjxoeuSveuAbvumxtzCUQ0xJfcvG1kDfZbncuy vU9EPx6o+1EZeD3jjAfDOURkd+r13CSNgL6U7XS/W0tEZ8OMDSbWEVBJy51/ DvVEZFs5kjm2noAahPh4VRqJyEpog+HQRgKSFw2rrGghIvM+m9xuQQLyFLhh e/4rER1zIFo1yBDQnliPKcMxIjqanFj8ZjcBrTz9pf30DxEZNO+i1coTkMq4 wavlv0R0WNa4vFKRgL4NMZXDZ4lId+oR74v/CEjsucC9g8tEpCOmdvG5JgGF TOkM2/4jInTiw+un2gQUI35Ix2ONiLSK5y4/0SUgEcbbzbfZSGif14F3KQb4 PpWfPiIuElLL7RK+d5SABsV15IW5SUi128k9wZCAZN/m3Z5aT0JKGoliMcYE 9LLdnc1vIwnJrw37BJ0hoNsrz7b+J0BCu/f6fA60JKD56DcDnYIkJHt2vbS/ NQG5Z52NcRAmIem3ql+v2xEQseNevIcoCW0PDd1z1ZGArjl93iq3g4Tcvin7 2TkRkPb0wq6AnSRUt2Ow1dSZgHRqhS59kCIh6wZNR003AtJ0lnMxkCGhVOLs E04fXO+Rbxnj8iQ0ZpQxt3ID168rVmRtD75f5lHd6ZsEdFFcrJVLgYS+aef0 fQskIOF7SWXcSiS00ddS8AnWqUPfyu9iVRI6+4Hz0r1IAmosS5wLVyOhl4Ll 5RF3cD33rNMw30dChpW8pq5xBLSvPNz7lzoJpVNrH9vfJSD6VRu3hP9IaOKU 0+ypRAIKk375bL8GCUUw3sVop+DP17cOR2iSUPdBj16F+wSUVuHyR0IL1yNR XG4H9kVeP/xXjNlrqO3G1gwCopkudmpok9A7Jd8WrocEFOd883UN5i23dwms PSIgtncfF1WAhOy/fHOYfUJAh1W4I3Iwk1wVyN25uD/rIsvcEQmdqOs92ZpH QJFupafbMGduiHpU+5yAksezbcR1SGjKWn2mqAD7NFG61QmzdsEIZL8kIKfP ko9fYr7z7250ShEBvd2XMzqB+edRnV9RJQT034OfmeK6uL9pk7IBZQTESdvU bojZ5899H/cKAhorrfTxwNz8n37zhSoCqqSezYrHvDWCwX+mBt8nrsrkKWaH 7scXjr0mICtSyp0KzGXSJ0pRHQH92TVtUoeZ7L3KplxPQDf+dr74P5u8f2Ys hXPjnc7Nx5WYH/Odfij4Dtd7O1J5hnn2PGWau4mAfGMSHRMx65QWaxNbCKjr Op++N+ZY9rN35j8QkEGj77eTmPtOrv9J/0hAF9Qfb5XGLP+4WqbnE84p7+At C/i+N2cvXm/7TECZC9BRhblVh6/pTQeu9+gG8+uYheLe8pV+xTmoczJvL2bH fpfzud8JKPBhWHs/rnflHpGS+90EdEnv+OdwzFT/D6SYHgL6zOZQLIv5VJv3 iVu/cH0UX958h/uXvW1n5rU+Aup4LKt2BvOCU8fkxQECqo9dGhnB/T9QE6Bl +ZuAeqOsE5wwD57p+aFLJ6DrZ++Qz2H9rNM6lWM7RkA8JhWn3mO9qYh2uPv9 IaAy+8A72zGH/W5ZVzVFQAfIPq1vsV6LGvW6v88QkKOW9TgH5p859VkLczj3 8/S3HMD63uNUpa3AIqC68NuvnmA/mBuqch1fIqANAiNGzdgvt/YWfXdaIaAz X722jahgf80/dcklEJHXiz2xVGUS8r2Z8kiUk4h60uKkZrEfs222XNXiIqJW hV9t3divn3TiNCy4iUjm/NsNVXIkJEEJ70ziJaL+tNdx9rIk1BTtTVkvSERB MSoc53AebMk85bgig+fCH+F3vEJYr7c6VAXliIh6eKddOM6fi/bH2fbtIaLa fJbXEj8J1UgfSnNXIqLJoGDD5s0kZFeo2jaugedE431rIZxnBfVbFLuPElGy 4ZBuBs7HridxqwxDInIJPE8sw/lJDOX+sPkEEQlaiOi8x/lqcoRsb2RKRGHn BSK7mUS03DGf+N6KiOoe8ejUTuF8Hu5YLHXGOU/cbJ/RS0Q3ZaNvvHDBHDjE fucnERW5Hv6X60ZEpHyZfs8fRCS0WkNI8ySi+z8tQuAbPidfNsctPyIKSNE0 z/5IRAmHvbcY4rlV83Qqvqsa1+WZsMJIPhG9/0WsPpRERN5u5y/y4bkwHa/q aXgIn+vIpMN/+BxbWkzcMw8Q0T1JLwfrGSKKFPKzn9MhorJvYReyF4iofjg4 LE2TiOb+e26vukpEwyJHM1fx/HRmm7M124BzjHTHaes2fP6fN2x9eHFunGzJ DMZ9iCplt32wCc+JmPN2C3geP3PgsxnBdV4wSZv/ief16Ad1K08x7NOb0Ts+ UYnoXELA6SScuyPr6zTMFgjI7Qrn6Sqcu7e+u5mwZgnoll68eS/WzUWlisQH 09hnrMendmIdCisfZzGxbnst35uWYV/u3xhEHRgkIPMd642/nSShw8HOsY+w Ly+uJp1YMiWhGKgXvYt96/Vd9ISIOQlNh2y8Eo59nRSuYHTBkoREfl/PCm3G vvprYsiwJ6H6pfEDH98QkGHZfQM+T5wTc5GN8cV4vTm7tS3eJKQ+/uAhBefe 7b0yJVt8SIjx/nlHAM7FiryKbVv8cG6sswsNyycgiYyv05tCSCjaUlCfnoPn 0s+0rE1hOIeLLGZisgnolID9mU0RJHSeb2c4ZBFQ1N3Ztxuj8XmT33wpxjnO CN1wjzeJhGiKJd2zeA7wNH47wptMQjvCz9K+puG5S3pA4E0lIU1p+9rXeG7Y +u525HlAQj19sJaL54pP5ZwITybOhdKjBU+TCSiRUdWx4RHuX8YWmaJ7BNTi oq+1IZuEKqwPffqB59JQPs/s+lx8f35Z4eUEAlob/569Po+EqtjrfLdjVj5/ gWd9AQnFV4++jorH9Xkk18j9Evt4QOntRzz3LvXNX+cuwvXVfyDGj/nB6du/ 15WR0EffnbJvY3B9kgyS11WQUONtuaUdmDs6eI+tqyKhLw92XIiLJqBJnm7i uhqsF7s6fzJmqmFmGddrErq3evfULTxnJSIdLnPVkVDJiOAqB2atJnkxrnrs +6Di20lRuP9kRietAedUfwZLDrOb7qtw2jusHzPylTY8t6P8g7RpTXguakxM e2HOqTkyx9lCQpLxkCCDuX5xYy5nKwlZlrdeGIkgoJ+qPyw520iIg3e/9zPM DPeHvJztJPTolVLXdcy8hRffUb/gubSfN+kE5t2Te25QO3E9dfa8UcSsJ8vc Q/2G9SpSf3EbZtuLr4c4ukiovbz3Pi/mG1nBKRw/SIjC73NpA+akwaOGHD9J CIlc6ufD/FJ0MxtHL84pDdsN0phbLHvKKf1Yf0Jz7PsxD6c8cqIMYn2YJ3xy wEz4fkmcMoTfSXsSbyZhFtys8I08QkIhSju2fcKsfIIVQR7Fc2z1RA0vvu/x 6Fogj5PQ8yHKJWvMjh9C5tknSOjys3UKpZiDqIZP2Sdxjv7HKcGH6/ng4BZr 9mmsLyN//UDMlbd+bmSfJaEujbYSBubJFUdfNgYJcdbXRRJw/06bH9m1yCQh l5v26+MxNxTLfptcxO+qTwWZcrj/KY4Te378I6Eh/s7tt2MJiP1d689PaySU 5iC1Wwvrx1k8P7yRyIY4fXndiVhvB7qu/H5JZkMHTgiO5+J31Qslw9hsDjZ0 NDN5bxTWp2CMvFYaJxsqN3IavI71PH1wKimUmw0Jph0q9sB6v1/sYmC9hQ3V XFPbO4b9QtlwgnmSnw0VXW1kiWF/uTgqPNEXYENhvSf8zz3A/ROf/ae8jQ1t Yp+doOJ31my0eyHXDjZ0v6v8+DfsX6vxk9ZEKTbE9Mhbfx6/q5oOKnMxpdnQ i5W3natP8TthZd5+cDcbOmm5OfkkzoPDjp5bK5XZ0EYJ5q9b+J1U3GjWWKDK hvgRW5UjfieJiKu5PdnHhkIXLv20wu+kue/MDzGabOifRSfPhZr/1/+6/4UD bKi3oJWxit85nA9P77bUY0OxYX6NOu8JyGNFvfvEYbxen+WGWJxn+sVLilpH 2RBK/yl7vA2/u8V8RzaZsKHM+k3i5l0EZONreZfTjA2V3Q48x/yB9fVdE62d YkPx4TuPPMLvjozofynjFmzo9JZOISH8rjBY8Tv25hwbumsvoJIySUAPvweW OLvj/bK4DrZwENFI496+6Gts6OKZl0POeI7vLunjfOHFhtZ5nnQX34DnS6yW zdQNNuR++OL5l3x4zusvcroEsSHFFvXGazuJiFXtYuOayIZ2qN799eAwEWnn iUbE3WNDyfe3fJI4RkS3k9tKClPY0NJi58sSPHfXX9tNm01nQ85hUpokCyLa Lj9a4paNP390VvIAnrOGmTY0j3I2tBoiOW9zD8/L6PUqCZVsyLAg3+hNGhF1 +76yKalmQ2YrpWf2PiIi+9NCpfO1bKibg89KDc/R6xu/21xrYkMya74mo2+J 6EmQYalnN77/3ZDZtjkiWrqoZXt9Geunv+6egxUJGVTLoGv/2BBpXWrw/DkS us+9Vcx1jQ3ZbRtUjHLEOV0023eRjR1d2fw7pceLhPyWc2zMudjRuWXW3sV4 EmKL3mijJsSObodeiNn+Ab/XiulWC/+xoxbvquQWXTa07V+chasPOzpJOvLV /gg7Ojx4rPKeLztqL1Xr7DZhRx7vOflf+7Gj8ijbv6bW+HtxgV9ot9mRk+j8 pJ0rO/Lc6ar/JJIdbV4fktV6D3/vuJHa9zR2dMjua+ubYXZ069H6TVq1mN/P XtMOJqORQ5EtVHYykm7p15FvoSC7I7ZiOyhkdF+OFSTcSUG/DFU8dahk1P73 sA21l4I6TfvEfdaR0fHuX4pdMxRUf07p+p/NZBRUqV53UoADpfv3SLXtICN6 IutSogMHMimXDb57iIxMGy9EbiFQUXsVoeeFPhmNSTmunuOkoiOvv+5tPUJG o5d4H+dtpCLdRv+f7EZk5PY27pPoDira29Gh5GlORp7sCd+e6FPRuqkbg+aX yCiBRyloNpaK3u5sBZFIMspwTlWz4+dEBtF9Bnx3yGj86FPp7yKcqH1h1nR9 DBnl1jW6oJ2cqLdBwGk1noye97h5TClzIpadQ3JvKhn/vfTJsPoEJ9qdQZp5 kEdGLnYp0eNhnKiIwreS9JyMUlrVx+/GcCJ1510cMQVkdDFa7vSeJE6kp2W0 zb+IjPaSzw5oPOZEZ3vS9W2qyIhv5OeLnBpOlMSv/ki0hYzSnlRtfTbBiYT9 j+bzt5LRvIzfpP0sJ3o8YlOxoY2Mhl1FMtazONHL0pC2tc9k1OC0jqzARkMf TnYu9XWTkb2+8+aCrTRkXE0nd/WQkb/N5ZnBbTTUJbHM0/6LjA6aut6lbKeh kRlxqboBMmqJ3pcuIEdDhNirJzPHyMjYn8p1GdFQCPOWdfIf3O+/XCc3HqQh bpukS7F/yWiJr/B4jj4NCcq/8g+YIaMy9uv9KcY0pNJKe267SEZC/N0V6edo qEZJpNx8mYzYNfhXCxxoSPe+Qr3RPzKalu76+/wyDRk5mnchIgWxe/XpO7vT kCM1m12ck4IKbCzOs93C9yGF3dnPRUFXhlNma4NpaPe/S3wXuCnouxZHnH04 DU3NyEk/46WgtHZrm/OxeL2JDYUfN1HQZHKh9pu7NFQ0MqM+vYWCPkeQo9nv 0ZBHT+kRFUEKGs+4+Qul09DXr/c6TwlTUFmSX7R6Jg2ptl+38hGhoMBEDV6B xzTEatC6WitBQU1llVORuTR0ulaUNSBJQdnn+/6JPKOhqkpiILsUBQVcjNRN zqehmwWN8fqyFORt6fJNs4iGenNzhJzkKIj4LrfboYSG0OPwJ9F7KOjwY4cb 3mU09DD9slyhAgWZdikkOVfQECn5WFmHEgWR79ezG1TR0Ln4PcBQoSAv6rpH tBoaaojibdq6j4LmK9X0X77C/Qn82m2lSUFtSgsSeXU0RL9RbhegTUG9bfPr Vt/Q0GHPlD+PEAW98S6+qvqWhvJcbng06lKQdo+31MkGGuK6bPWPfoCCYqLe 85g00pDTeQihHaKggQwrqvo7GmqzEd8gp09Bkioqf4jvaWjPGbbk40coaDc1 OKkAc6zJsJjbMQqSXqujazfR0Izh+6cJxynIrSK1pgizsf5TxfITFBTNT5rj bKahkv2R1d0nKej+5x2XDmDeon3lwIop7gfL/d9ZzJ77jn8UMaegf6Gp0XaY uxQVzHTOUNCjP6HLBzGry23qO2dJQZ5Rl7evw5wqteAQYk1BcafKhkvwfsvi 36dzbSnIR09IAmG2FK68/sGOgoxGYiry8Xlf890nTdpTkGrv0fB/+H6ivDcj eRwoiO7R5rEHcwCXzWalS7geW75a7Mf1GCTrpJtepqCWjvOi6rhe+wnbd3pf oaChyZZMHlzPJ0vsL1KvUpCyScKbZlxv8sKI2itXCnoplnzOHvfjwlRTXZ87 BRWLz13sf01DTWN5+iRPCmo34SzRwv3bNRT1RdKbgqYvhEj5VtNQRK+zxSEf CvJQtM6+X0lDE11GQ5d88f00P25KK6ehgo+bGQUBFGRy9vNhKKahDU0Mv8+3 KEhw3/GugZc05FLfxTEfREGKVaoj9gU0pFieJqAeTkE1KQY8657S0N1Cv0cW kRRksKeCsSebhuaf2cr63cH3/bhxWgnrvTxTUuttHAWxXCyLe9JoSHLtwI03 dynIXT3fqTIF99vqfGVtIgXVWh5a8kmioYuC2So1KXh/j0s6T2NwHiRIyZc+ pKAQSX6zlwFYn7OHnIofU9DO5w0heb40NGt0Ma8wi4KCz9OmQ72xv7mf7ix4 iut5in/7xFUa8g2VEc0ppKDBP4St5lY0NDpsYJVVjPNAJ2yrozkNmR64fP9x Ke6/yq1G65M0JE98zp9ZSUHxp71/Tx2moT4fOZ6UN1ifOsc8XijivHHeS4z8 TEG570NHkwi4fq1GEN5BQQd4yLGti5xISNb1ZuhXCpIpD1z5jfN1nl64eLub gio62+bKhzhR1lmlWd8BCioSEuObe8eJqKaqv53xHIu5yj7wPJgTeRSbiV+Z w+efEClZ9OVEA7xeNpcXKGgdUfSplAcnqmor73FYpCB9pZLunXac6PJh9U5b Igf6zi0fWajJido0NBuNeTkQ1Yj8cfYPFUVUXFvW28SB9j4rCg8aoKJDKi8U NLZwoDzplf2sb1RUJy/xYDuem5UJGlnBb6hYV1SveTEOlPz6ZKdaIhUlc3RK J+3FvEsyiaVKRaZB3DYRihzIZZex4VMZKtpIPJTop8yBVE6Uz2qIUFHkUiXR YR8HKmHpkznIVOT3N+OHGuJAG0tbg5Q/c6BzHZejuo9zII3RYaepcxxIzCir /uMJDqT7w2dTnSkH+tnay3pzkgNpKkX/cDvEgczenTifd4oD3Wzs6feT4UCH K9W0b9jg+3yQ9lWYoiD5DLZp4ascSJa44yAH9gXL8f5J22gOxNZbqldmT0Yx Po85/GM5kPT0qzDTE2S0M+JZdXo8BzKSPLalQwu/C55Wb+9J4kChiz9PXeIj oyJ6z5xpBgeq/VGQxv4Ov2vshROOvORAkj+Dd1NF2VG/VXqn6hcOFPmieWQE /53ZZJRhys1HRb8GDBvuSq6BY8Pwa46tVNSqdUVRbnYVuPftliYJUlH0q/cf kmtXwVi0comxjYpsN0iF0k+vQs/fLxn9+J1RqVfr6Bj1DyYjKOPFKlQkLyZT oDO2DFsar/idMaWioHfaNNkgFtipa+bkJFDRVPkx8q/jM3Dp78eFn0lUFPPm issZ7hlweWhzYGMKFbV9G9td3jIN/py3B3zTqUhMYTqC5+A0pHU3CxlnU1HW r0O8D10m4dv1U7Er5VTka9HhMqo4DgZVbtdP9FBRlLX0wOO7A3DCmb0p5BcV HZWqVLejDoC5RBJfTR8VsejKSWu+/eAQUVm8c4iKtidc31r+oReCzhAmlyeo qCT8Wfllpx/weumOXfYqFXl8+Gz65slnaCwQLewhcCLvE+XxQpHt0GpXuMbD xono1eLnng22QU9LZ9oNDk50OAu0hnxagJUq9N2IhxP9N6EtsOHpG1gzzN8R spETPZPaWuQ2+hoobOBRvZkT3X6rJxXpVwWbL9vx7hTgRBU9pzVl8gpBSHTe xkKIE2kkhJGD/PNAoiO4IHYbJ+JxleMPyHsIMqH8/xpFOZFbku/z4rw4UNB4 emRZnBNdkb/Q9lulUPt/wu0lfg== "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{{3.5060811462615843`*^9, 3.506081200781938*^9}, 3.506081669562422*^9, {3.506772713083356*^9, 3.5067728113509293`*^9}, { 3.506772867075808*^9, 3.506772897004057*^9}, {3.506772933959311*^9, 3.506772952142352*^9}, 3.5067730583776217`*^9, 3.506773161113874*^9, 3.506773455498399*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"s1", "[", "x", "]"}], ",", "x", ",", RowBox[{"s4", "[", "x", "]"}], ",", RowBox[{"s8", "[", "x", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "Pi"}], "}"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{"0", ",", "3.45"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]], "Input", CellChangeTimes->{{3.505096305280912*^9, 3.50509632206314*^9}, { 3.50509635251538*^9, 3.505096364253191*^9}, {3.505104612886033*^9, 3.505104612998781*^9}, {3.506081238341742*^9, 3.5060812925443783`*^9}, { 3.506081527448442*^9, 3.506081532635977*^9}, {3.506081817377322*^9, 3.5060818311127787`*^9}, {3.506773462857827*^9, 3.506773572556074*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwd2HlUTd/7B/AGdIvQRFSGTElKhpLK+9YHUTQhQxqJJJqoEBkSilRIkkIq okgqklSKShIVFVFpJI23e8+50/nt3/evZ73WOnfts/d5hr3ubHcfew8pCQkJ aUkJif/FN3I1v1f4rZb4Xzy9el5vkfGMqzY4o1beq3HVBfynenuaYl0w66et emOsDzqVPak8Ei8ViBqzY0PRvC6sNJXE607MmpjYK2hwiV1wm8S220P6VrHJ sPee1hxP4tht02XsYp4gZnhXTlzsE8TCMj7o8hsYl1vKmQcUg5t7o/Txvlr4 HrN2y/GtAO9K041iy0YcfOERJTWnFsOltUMl/b9Q37NBNt29HkMRcznNch2I 0ONK5O1oROs8A1OPsm74Laq4Xpz6A2/invhZ5fwFf/eBrJZDrbBpsd9c7jsA 99cOttF723Hv+dE9xvuGsHuovrj4QgdCJlv5bl8wgktL8n3SwrvQNHLjxMQ8 DqSK8w3DjvWgs/mIocRCLhS0rWp+xf9Bv84E3qUUHtYnm6cMxvZBNGmWze8+ ClMHqteF5vdjsJ99YLsBHwnvCySl9w9C6sXJned3CWCiYcbM2jOEbz/uLru/ WYhFrZM7ThweBuehUVI9WwTr7lmlgcHDeLjlsvKENSL49i+54xMyjDbHWa/N LER4LrTd5RY2jJUTVt1P3ySCybSY+jXXhkGNfVnmtFOEjfYK5eOfD2PuqUVz AgJE8C5TSLs5MoybfYMi9n0RMh8oeub6j8CktKjSWUKMsIY3ZtJBI6DblCx3 SYuxS+qgmt3xEZw/4pm0bZwYcrve1/SdHUG2zrJSiwli7J0UsmLu9RFcn249 KK8qxqzATqmr+SPoNFTN19cT49p/L277CkdwX8XoeIOjGCE/neoWhXNgLFVY diZLDI6F6W2PCA6Uk1i2PU/F8M5W35ccxUF48oZ8qxwxHMO+8xVvcHDKXaw6 4YUYq7R3aPLTORjQj50bUCIGfWSLX0UlB0fbmg2b68QIlLea5CE/CmHy5aXj eWL0B2o3JSmMwsL6cd8imrxvq2xKo8oo9tPPT1gKxHDIqTDYOGMUj+X+zTnN iLFixzrnZXqjmPGnJaRehgHnvlmmpN0oCrp92EqqDPxMVlolXRuF1sMspUED BhKHroVeiR/F/AfFMY9WMohKHsw5lTiKLS8StT1WMciQeqi++/4oNvVbPP5i yqC9Ylr/guejsLM72xe3hsGWrYLo7LpRZBTkbCizY2BwqOhrmSIXuQGG77K9 GJQlTx+fN4WLj2e/HljizcD+cyDSp3OxWzRjYeZBBoeW6z24qMlFwFebP3d8 GaTzk49aL+UifXV2mF8gA9Xzp9Ub7bi4ZtQwNv80A37yGve/0VzsEX249yWO wWqeaaz+dS6WLxqV14tncNrasDToJheyOgOGF28yYIkWao65x4WDxMh7g0QG KjsntavncNG4P7oh8C6DJcrNbtYNXMQZOsVGPGIQcKAu5loTF/+8dvwqfcwg r7S6pLmFC1Z4Vi+VycDU783sfV1c/FUfb+D8lIFlzf22UB4X2sE6j+RzGXhc 8HHLnsbD97pLHOY1gwe/PGN4Gjzc7lGUV37DoM/AvcRUk4e3a1La5hUz8O/c MrtKm4fCL9eKzEsZnDJf1dZuzIO87b21bu8YJAjHuCk78/BDdkGwfg2DWt8E 16B7POzW3TGq8YOBdvRkweE0Yp0VzHfis0/Cr/tn8LA4KVU+voV8j37/qoPP eNiur7JS7heD2weslu8p5eGx1UDJ1zYGXnuFMnbtPOgkUsmTu8n3Oud/z7qL hz6Vzn9ZxBqpPSYb//DQkPISVj1k/d/1fhbDPEw04PSf6GVg6Jb53VSKQndO 2rEPfxmM2eX8RFuTQmTdXMgMMnA+Xr9Baz4FXs369+eI8xMsO+ZpUzCZXmEv NUTWbzKYNnspBdfSlwGjxJ8dJp2dak7BZ1n8j7cjZH+B5zRU1lGIzyg7uZTD IOy6IF/RksLZPoW5ycQr67v75O0pBHWPBPmPMkiyK3YY404hfd2sNZI8BpSv wZDkXgpqbxPFLsT20Y8jmf0UdH1kCguJx36KL+b7UbBwj4YvxcB7o5/20GkK /3G/er6hGbw70F3Wf46C8hbtVRP5DGZGOrn0XaQwW99soiPxl8oN17pjKCR4 pRX1ExtZaIpb7pL162shFjBYnlJ14X0qhRPVPgPGQga6jL9S9kMKC/JO5gYR a+a/1QrLpvBoyc+wXmJ1Je+cg7kUokcWRM0UMZjio7x620sKjhPqMzcTj1/g sVm7hEJh57olecTjzsr/VCqnEFEqc7WDWOJXrqeogsLzxTMnKIhJ/ceNO1lb SyF2oYXZHuL+4SxWQT2F/GJ7UQRxj/W2qymNFFRGMj49IW4Z9+BBYCsF7+CV +SPEje62y1w7KEwq3F+tyJD9FlGvN/RQWB3yi6dHXD397vplZE6c4d8wsiJ+ F7ihTn2Q7Od6TMwe4uIvQ07jOBQ+V1Yxx4kLdBN6BngUNi8xD4shfh5hHtAk oPA9lDsjlfhJ1x9RKUNh+6WuT3nEGeZXLzyWpiFloXDjHfH9JGOlOBkau4qO HK4nTuL/vh06nsbiGUqercTxDpe09k+iEfGkx+8Pceyz5Tn2SjSqGkdjhokv TWwxNZlK46rGqgqKONzrXMU8NRqfZuQqi4hPv1u8edJMGjkJe4MY4hDNry2U Jo0Cb+vB/3fgyZOe7fNpPL7sHSom9m2eP/JBm0acUslcAbGXwacTubo0avQ3 to4S74kNYiUvpTGycuKzfmLn/plXLxjQGIiTSegk3m5ZoeG/isbQ15XxzcSb 03wfOK6m4X/33uOPxNZS05atNaexrHDttyLi9c4lr3XX0YDcHNUsYvOC/etV LWn0Rhr73CI2maJYJ2lNo9I5+kc4sYF/gdNfOxrlrzVdfYmX1Lj31G+lMU6S Q28jnheeI0p3ouGzYIfvbOJZ7Y4XYtxobN00uFGaePrqMUrHPWiIf1TjN8mH idwtWtYHaWhLOnveJmbZi54Z+tF4WDolKYhYKivVdPYRGh0WGn9siHkeXHtO CDlvI41yPsnP4ZKklpZTNExfq235SNynYeH5PozGxGX+9G3i1oYbJxIu0bjl sfS8EXHlWqMH7EQalKvDkx2kPoLfn9QNvUPjiq9vzlRirQ1lz1/fJ+fJdQuq I/UWvtGmZFUmDb3yn6vXEK/Z7NG8vIjGq8+fquVIfXLqM1wDSml0dS6vzSP1 neIw2JX9jobyhsSrrsRSO4+P6H6ike8VsTOT9INi15gJC1tpmAlv9C4i/cK3 /Wvsvg4a3E2l/8q5pB/sUZ+W1kOjumfOMyfik/vS580ZovEuOON4OOlHJode r9aQ4kNlW6Lia9LP8o/3+irM5ePcbfttRQMM9op0eTZafMw3LXBfTjwl9PCJ KB0+/hxv033Qz+DwGebi+BXk+SNxshf/MVh6USVl7Do+RBdfVOqRfpsVZ9ZA 7+ODdW7zSYUukl+q5x1XevMhOJyZsLuTgXxCdVugLx8L64OCczpIf7u9rX8k mI+qW1eCN/4m/fX+QZn+i3x0rF9yaXcrg9Tsm0btj/h4drR9wvxmks8CR+3G J3xUHm5wdG8i+bN2hlpNDvn9J638xEYGhY33hC9f8SFjMPvq+G8M6phHb2I+ 8PHXM6ftcx0DSeuitWZ/+agQxnVIfGTg9Kfd7o62AAslDrb1kPmouTzVPE5X gL2fl33tKiT96MS+ZZeWCiD6PK2p/RXZv0KfcvAqAZ4anZVteMkgcuXoNxtL AU6tiplyj8zbl+Eyzsx+AQTvtAd/knmtMkfHy/mhABaR09Q7yPyPjo10eJgp gJ6ZltxFcj+Qk/przskWgNwtshfdIP2y7aFaRIEArjO89byukXxMWvAx94MA LypZHR+iyDycPmeJfL8ArFk6VppnyfsoTue+WiqEhubVWjVyvxk4fbR9nKEQ ctS1RcGe5LyGGmvsjIUwkW7478teBq61N9K7/xOiY9fFx6G7GWyMUtmhtFWI g9kz3d/sYjBHTqHQK0iIxAm+R79Yk/4qyTozrVAIw6ook/X6pF9n3nS2LRaC fpUW4qHHQHbnIuPzZULol7fHnlrMgP3MmsOpFsK2YZP504UkH9yv761tEWKH Q/rT0dnkvN5qWp1nhFiherdXVZHUwzlT5VFzEaYv3fquZFCMXFZAWm2lCJdd 2EdS08XoCjn9r+ijCF9kr2ntThVDdejK8szPIgR27pGamULuv02PSy82idC+ S047JkmMNRldP817RZAoxiaX62J8sdo5NZclRnXcZamUM2IMRplduGkhxosW B61Kcn/WUZns5V4uxtKBsoJ48txAFFd52VcGq8oXlzsZizDn/Hk9Hy8Jdo2e 7d7PTkK07/zebN4twR7L5KntJt95fWcdnXtIkr1/INDsuTkfwf4enlP+SbKr c08cNlKhYZ13y3JKoBSbIyGZUk/uPf1CrxBprhT7rMUBExcbLu5+O/38UIA0 e+s6m97VLRzwPU1djwqk2fous9p1VoxAQxTj6HdsDDvsFtXz/voQuiwiq1hj xrI7bbrybE4N4O38asyIHMseY3DsY0npX3ix0sbMlh3HbvH+HRKzsAf5d+aa vo0Zx1ZV66xy0+pAjbFJub2CDDu10Cn+sEMrKK9bm12jZNg762f28iY1ocI2 eav8FBY7OjtA/cGzWrgbmaSnX2OxP/O6+T/TSrD/38fRH3EstkZkYKSLawl8 77qsUbzJYmcoTK38Oa0EobJn20Jus9j3iuTcmi4VI7GpUs0+jcVupRyWh3YW 4evRbdHCfBZ7b5Vu1cOQAlgW+B+1+85im0xfLBHzMBt2h8ZUhLew2NtWc4zs 1bOxXTNuSuEvFjv+mXCe4pWn2BfxMmd+B4vdqF4Yqt6bhbCdEv2CPhbb8/VJ 26GTGSjiX3ZPE7PY5etsDyLjLsqzZmZ/l5BlJ0base9duYNq92xmsrQsmz4V f0fmTxK+V9UnHpeRZbez7/DDQxNAJah9s50sy87vkft4KCMGjHXmvHBFWXZS r/LQhj9RGCeNw6+UZdlGPxT/5YRGQPmAu8L8abLshs2JOmcyTkNtJsfFUY2s 5922sib0GDTrzmVFa8iyJc0fKcVl+EH7/FRR+UxZ9kRh0aKXGW7QN35oJZgt y9bTv/y//wf+D66Zi7U= "]]}, {Hue[0.9060679774997897, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJxFxX0slHEcAPDH3cWdre3YObMbQtiwqbVWtzuRCbHEtd6oTg/qnLoXrCLN Kp1G6TzJvHapOaxRJq4k3bJbx2SWizgiIZX3uM4drvrD9/fHZx83XMxLImEY duif/5Pf2vZ82y3dt7nnj3aOy/3DgZubnvsnDhJ8eJIhMLYQYngoNOddNZEN f+IT3pXEPZh3wWmohFDAhUunmoqJZzBHE2EbnKaGJZlRZ5skWvjiy6QCkkcv rJs+SKvBdXCevwFrOfkZlvpqH6irh2FTQkrDiGgMxt8ci5afG4cTFnVq9e0J +M4OlVgpm4JJatWenMxp2M4nsme05Cccrgh+skDMwI7z3aHZqjm47H2rFTl5 AeY677dsS1yEfcfoE9fSl+D6WntBc+pvOOvL6T5f2TIs5e6NfFi0ApsUIfgv uQHulZTFX378B2aHuW+MVBnhzgPs2qCKVbi6sZQ9/tQEO3j4Cc/UmeGPVtQb Tm1rcDM1TdnbuQ77OdCFuGYDni8wMHb1W2CP3Fx/sRAL2nw8Vj8U/B0dPtm3 2iyygq+kJgmYs+iolvII5iUSPLcmzCIb0FUD11+I0siwSRAQn2FGO68Xxkkz KfBUWH4XlbIF7vDqDnTJRwupSoobzRpWPdoe0FGI7uFwNTw7G9goLD8SX4DW RiuObmVSYZzNrakpQifPflgZLkZLqvgh9qXobNrNr1mV6IrBThZPie7POC5f U6EjWlMzYvToGBFFKxtBn3AvZraNos/nvWrymkDnxGJz5hl0u+kurtxAaxpc G/UYDe7GGy10Mlrfpau4aoM2lrEGouloS1S9p8webU0OTH/NQDNScDsvJzTL dZkfx0K7991qkDujfXId1zWu6J2cukizG/ovRrQyMQ== "]]}, {Hue[0.1421359549995791, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwd13c8le/7APDDOYdDpEhSkpESkiKUcd1JlKSiJDujsuVjVAhlZYUQZVVW RGZERrKSJCGRjCSVrDOcY/7u788fvN6vx7Pua9zXI27jZmjPTiAQivCv//0l 1nN3/jh4TZPw/z+xalK/69RE758GAqFrcH36Hs3F4n12X+OtsF9+s0m7qFnC gN6NRVewx9clpXpp/tx0lfky3g2703Al9a5mlHAbb1HNf0AItCAeIKZo5kib ZxCKfLDZFY+lZms2qMwqGGX6AmEk8p+HdInmgE5wY3Z8ALbupajUV5qLMjwy fo1BQBB7XpGm1qgZdqDPI7vmDr4+YyiL/Z3mpsOZNZ3lIUCIXbk+nNWl+fiI I4lZGAaE4m31OY96NeVPKJ0Sz72L72cv0H99ULPmzGqiXmYkECitop92j2oe N2n7/l9KNBCsrTxShH9q9lrF706Lv4fPr1A3e/Rbs0RRXvVHcywQMu/zPX85 remjcv+bT2Mcvn+GfezheU1NNWYgT308EPKK3+1yp2uSwELqcc19IDBXR8cI LM12rcZ3B6sSgOAuS42eW9aM09nt2l6eiI/7OFx/SgATvSh+q5IkIJw7Ofeb nQiiBnMvqYUPgKDwKjgghQzjZ43NwvOTgdBV8CXVgQIF52vWRHJTgNAQYZbt tQ48LopllTx9CASl6+rL9etB1SLkuE7mI3x9nX23pTbCqvWfqYHUVCAkR++N 5RGAZrvTcW4paUBQndO8uFkQDJ2FB5LjM4Dg4XZ1JEkYeFShPkk3E78/eXWN TwRmX13bONqMrT+TnlYsCi9r+yq8Gh8DIfwuJUJZAlKAi9KAngBB7siNnGZJ 8HujZspdj025vjrqKAVHmzNX02ueAmEDr5bgojTs0v185vehLCCYTKqp/5QB 7nfkp4pV2Frf60cm5aCrw1G3rTwbx0Ohdy1NAcoM0lL4FXOAcGlW6VzLfkjq +vjXvAT7MHup4PIBsOhRip0rzAVCYUE5b9xBQMZXxtTk8oDQfffPwKwy7OxP UQrNx45LTtOyUoU/g6v9W3OfAeH9fzvXO6jBB4v9svZS+UD44SJOIWtA8bCt /4un2EvH/rUVa4LPjzZx7cwCIPh0aNqLHAFT+6X/YkSfQyAt27mLWws0f+1t 6U99DgS2ruRytqNA+hvv6JJSiONVusWf6xjEzZuXJcW/gMBHVpViIScgWvCh egNvMQR+4FWZ6dWD7pKQHQcNi4GwMkzcdEAfzP6Y/xQdxHad+C7CexpczdZd m58qgcCPd/VynxlC2QLD6Mr+UiBMnr7GCjIC5v0x5W9epRD4i6BTan0Ogjpe LTevYl+IEKnYbwwJGlfDUzaUQ+DDt4F3d5rC169GTuvPY3vdPP/ogBmIeoPB nRTsrBsHPuiaQ27R5k0uEhVA2OWyNhVmCdU7mjOQ0ksIbHqn+7H4EqzWFN+u uP4SUDnrRMp5GzhqkmovU4ud69pqsGoDHbH/yW7SqQSC/M+oZ2Z2MMwmUfnr QhUggS/+prpXYGc670Pz1CogpP2ufs1zFa4eZvl9GsHHxaQT7fquwrxHl1aN wytAEmItJd6OQBq/1RnjWw0NFvfP3JhygROBjiXEhmpAr370Qq8rxIgYJ1wn 1QDB4nROVqMbCJ3fa2oTXQNigcoh1b3uINMy+PNgxmtoeOJhtH/QA9xsWtvy f7yGwK8/a3Js/oPy1dKCHdK1gGrqvyRN/QcaKhHXuEpqoYH1uGSZ0wvO5Kmu fGusA0L765+eFj6g1qzHrfVfAyDnad+aMD/Y0JPzUeV+AxBsq08E7PWH8TH2 xL1lDRC4w/trRa8/xBBqdghTG6DhVwx31N4AGFOTPTjr8QZGmH5deSuBEF66 zjrdoxHE0o8luXEFg8WbK1IJ8Y0QyPSxG3EPhgNdb//cLW0EJLrOr+BrMHz7 5+vlNY+Ph76NMHkRAvv2TEXoe7yFzCnPH8ecwqAvo6Ni8VoTjDRZLErtjoSC Imnf2bgmEOMrNpPOjoTA2mA0UdIEmQUXjbJ2RsGeQfX3n+aaIDCKL22DdDT4 bS4cybvWDJnuBqYz6B5IRkevu3CtBZAmvf3A9zhwv2lwqcy9Dc5o+Ws7UpNA z1U9jxLbBqh52pxH7wFI2sjMWLxog0AXTbuAxw+g7wSHP2W6DWYVX1kPGiaD hnBdsoXTOzjTJNEcWJ8C3FV7uzgvt4M73+Ea2TepMF6wTcgipB0a/C69UJVK g7oMLsvSrHY4w5ecJxGRBtfCfv41/9EOYjvzo2ON06HfOI2z1Po9dIn2SUyy MiCbzgPmZh2w5Zf/g7iKx3Dr92JIyc0OSDbuvZM//RhMhiY7OB52QLHS9gAV 6SfA09xkWtLfAXmULGpR6hPwSPDz5jD+AKrCx2ZEIp8CUpwqLD7TCRuozXrq t7LBpco+hl2yC5hX3+/Nrn8G8ifOirEpdUH/3OSTFd58mP2qXrqmjU3ZOvrb PB88lwT6li93QeDVIt6A5Xy4qdm4fSG/CxrE7AyytZ5DaJNo4d8Dn0DVzWCd 9N8iyOz68r5HqxvUS+czwy+Ugs2ltxafjbqh3Lnjhnp4KUjOF818suuGnsTg Vs1XpZAjECrwMbQboiIVVPeJlEGhsZLZu/Zu2LTgntj4swyqv8X+qTX8DP02 0Zvfh1VAz+QJrlybHth5R+z5OsormEmRPnbHowey8sT3d2u+Au6TnEFWt3tg ytQibtgL12FhE1PoSQ+UF9YKfRx/BQXXYDJ8tAfcedUfsLdUw+1FpVZH615Q uGG4sznxNezjEQuRt+yD54LjsTcPNoBe7WoDt2sfzH4bW3f+fAPYuQ4tT/j3 QfWEo6eRVwM87HromZHWBzHN4/yvKxqAI1HQbsNQHzyUfZ2mrvoGvm1fd3Te 7AsocXXuWDraCBH7GISXF/shwVbm2WXvJrjpc0J2wrEfsopIQe1pTeBQn3p+ s18/dL20u2DS3ATHTx/N907vB/PdRn/mNjUDp1uskcqPfkiSQxwiL5shuEgm p8r5K9xcN6GpQ2iFW3utTtYEDEAy4vpeWfYOrsm2JTZkf4Pr6+PlbyR8hHH7 8cDMl99gduhWt1TzRzDOJDgHtn4DmUcW0wv0j3BY8JAW+v0NWtp8xDnkuoB9 7dl0vdwQdGiFPWXFdEF8d6RufdkQfCqYyT1n8glKb5xm1b75DtLnn3feY3bD oq1T0ZDrCDzOnjrs4dwHNrXGZ2Ivj0F7+8+WO7eGwHaup6EhfBxORZ1tmv83 BlEKlW45oRMQsxCi8ZH9F7A3VKoE35yEl1FriV7kv7BR5mTncPIfuE4YLPmh OAPHM7SezsZPwfx5GX9ruzkIa+sauv1oCh5+HM0pcZqDljnLLYJZU/BW6F3S qsccHNP2jT5UMQUbj5VURAbNgdbvMp/bX6bwftJ/1SN9DtQVpfQ3ifwD1sca f5cvc6DQyklXyf4Huyrenl48Ng9CMx06AZXTQG6xNAnaRIXkuPpLv+unYb13 fknwVipsUSr1M2qbhlJ/DeZtMewbD0p3f50Gz8hE5C5Hha1EG9GuxWkQvrtw mVebCqJCC3QxzRkQEWG7ctqDCrtAPLuxaQb4OJfcv7dTIWdUoEHuwwxw1b7v PNSFjwdzDCb1zsC5XTpv7vVSYfe7vxucJmbAIWzSVHaECgl7zOq4SLPA3aom Lk6nQlKZlEyp1CysZ3ULkEVp8LC1mo3oMAuH33h0ZzrRYHak+MaM8ywUv+YL WHSjge5iztygO7bjBnTakwY0ufuj5ddnoSDw/uJvPxoYxDu9uRw+CyZaKgfG o2nAbiES1J47Cz393G//FNHAad6fED8xC+oasycP/6NB4zrP67f+zILpH8VC 2iwNtkg5zjpOz0LRs7OUfBoNWi4YjxxlzML1H8fzycs0EKuVb6CT52DLy7y4 QG469IQNB1yUmoP6ct3s4F10UN9+ZE0MxxlNpLY3mdLhuHmPh83VOTDXye0W s6TDuUdXJp46z4HvSNY/70t0cBKO+bDLaw5mpH5abLxKh4eCg4/kQufgXOAB xTVPOjB5vVRV8+Zgt0LsnvpoOpBOUZ7feD4H+9P0Ul/H0mFD1KMdNcU4D2Qu ypbfp8Nu7kYOzVdzcJ339+O4FDoYc/D1Hm2fA3f5QW6ObDref/OunZ6aA9uk 7ZW91XRo0FD/GTs7ByH8U1e8aunQ4ffRpJs2Bxvy0nT4GujwY5EO51fmIHSv 3P39zXTgX9Bab7Z+HnjuG8QpfKSD+8y3/MsK8xDBtj9AeIwOsiMbxv095+Hc vp2vnhIZYPBLrNH7+jyQ6ospzmQGuE8rZLr5zYP6yb4b+zgZUL58xvxS8DyE 3S1uy+VmgLpwXI92wjxk/jI6Y7mRAfqGG5vXlc+DWlVP//h2BrheFH9KqpqH N59uq1jvYECs9f6glZp5eB728GufGAN6XM9qzLydh6zDBnMVkgwwj4yr6P48 D55B3CVqexjg3LQxJ4U6D3L5UQ+uKDIg5r14cPwCfv5b908nKzGguHu/TeTS PGh97vVoOsgA2shZUX8iFQzGu8h8qgzwW4lLshagwtF32vku6gxIJz3xvCiE 68jvCeWmBgMa1pUaGm6jgsIvs8kgTQaQtnav15akwpc5a5VgxIAoZf6w3YpU COb2sDfSZkCRhoS9mAoV8se0xNSPMaBL+8BRYTUq9AiRPMV0GLDJyHCN+ygV 6v+7Nz+oy4BUt3ifaUMqDHnHPRE9yYA67yfnfxlTYfm/YN9x7BH/UsURUyo8 5XTmyNFnwM6o7plPNlSQ2cAJIgYMKMzjv1qB6zjIQPZB7xkGBPfWHyH6UOEb 74WB0LN4vdhdtp31xXW/fUZe0ZAB3OatnVN3qODM1rDd34gBo+GeeYfDqXB8 4lXD1nMMqKoQvx0eRYXa/U9Cy7Av8/kd3JlIhUMMgei+8wzQUN/D55FChVTb R33Wxvh9HPom69Pw827mPT+B/bZRIdUshwohuqvsPy4w4OHMkNezfCqwc1Wp mZowwEMk8vRCERUi7nXVdGCLef9kv19JBaWS8aynFxmw8CT+20gNFb7rGAtR TBnQ+RFeyjdQoTyKf/wKtv+ehw7tbVQwDsrLEDZjwDlj3aNbPlBh/IhishO2 3B2ayOVPVBh777hahT3wzaCLbYAKN8fid+uYM6CEa/nZ6e9UmKa60kKww5Wf 3Ukbo8Lch06tN9jWtsYWfydwfPSrhZjYKrFElUN/qeATiK7LWDBgfW3xhrAZ 3CdzfRxMsCd+W/zpoVKhd4//bBB27eZ1TRJMKqzFefHnYiccrUpzX6bChrtR Pa3YTu72PnUEGmh10dTGsbXS+M/ykGkQpjZ5ahl7a3u9jCkXDb4X5PJtsGTA HMOZlMdLg0Qu39Ad2G2SW7/TN9LgkWZJpQx25pnWyqObaZCnkJm3H9vH3zMu bisNPGuyLJWwDfLFnYZxHx7Mlxg+gC31pVN7ryQN5sqD9+3FXib6ifrupsF2 T/Xzktg9CnuYbbI04L/UeF4Qu8Ci79NmBRp86UhUJmLfjrhTYKdEg9IB9ZUp /LymlQohpao02HZT+0U39v7xIUuCBg2irZFhOTZlY6SqwREaOBLf/43DHtZQ 5U89RoOauJAgJ+yXjj///j5Bg8V/QsJHsGMexDerGNCgI1ehih/bvgkyQgxp 8JQebDeC46E+N3X9szENbhR1SeZjbxJ9aChuRgPjo31LbtiNPjRyrS0Ndj4+ xDuL45+S9XiY+yoNkjZpGOZju38yeGXiTAPS82Ot1tg7ZJ850/C+s57IMmnE +cW4YKyjdYMG9w75B7n8L/+CiWKx/jTw9Xw1twnb77vFZ9lQGihLG70xwflK 09VIs4+ggc4FJfICzmfnEpErGTE0SJg93h6HbRY8uMj/gAY85G0zr3E9HJa5 KLGYS4MZCx6dP7ieSu+rTik+p4HmIy5lF2yZFaGXLsU0qP0y1TuF629rV9+J 0SoayDjLaIzhemV5nbvW9o4GK6Xbz+bg+nYfVlRj76TBb/76K3zYk8cFyOrd NMgttbb0wv2gf1t38osBGijVCJNUT+P6fnO6IekvDeRONw4l437izXuSz56X DsEhBzU7cX+a9pb5mr6RDsUOYRoU7MsjXE/7Bemgd4ovCHA/My5rU9YXpcMf vaDp7KMMOHhRx1JxH/5/ltYWI9wPaVlHCtnO0iFGueqS0iEGXFNXPZmeQAff Atr9I7hfE1wTAu4l0yF1ZFXnqDSOd8ZsWWAqHQ4wHhgd3c2AfPZnIrZZdHBe ko/VlGLAWJvw9O5yOgQ9f6wsIY7r/fxSbMlnOtA4q+HpFgYou9b1NfEzwMXm KW8FBwMWM7Rt/sbiPiB7dsvlETpoLmjE709kwO+rQ3L8w/g6BiqNPin4Pl3L AnVDdKCs7JEgPWEAW/yHG4KDdBA05RsTKWOARd6GO2976aCwaeCSQS8DPqit Rkm+p4N9uNulEuEFkL/2/avsSzrkDV+NW9i+AAYXDnaO4uecUrZ5oyGxANST C0nJZXTw+HlOvF1mAbj26rZQSugQqHV4dExtAb6VcQXSCvB8sEy6tMlyAVyU 4oIIT+jQ5f7Q2ufJAoTSBL5K3qODTOyGJc+cBcgb8dgrFEOHOy9CEz3yF4AV xCbKg+cH5WmPdpfSBXDKUJpejKBDmtNJJbvGBTjpE0b6F0oHx8vLnGfHFuD4 4/LP0gF0aArxeGIwsQArqrXkQ7fosD17Ul3/zwIEJn7QOOmP7/+j55ru/AJs +3VpwMuXDiqXCgc12Jlwxjnff9wHzyvmli9kJJgQvDYmu/caHSx9e05I72LC c3bxz9budKh8qDcuJcME9j8Wv5Pc8P2/KguLH2BCZ+svP25XOnwy5rsjpMUE u4OeDD4n/H7eIdsFdZjwdvPf9xcccR4mLlXy6zEhc/6S9hMHOqj2/JriNWSC q6CiKuB5Kv1sgzHJhgnMj5ojKfZ4nnJXnmO7zIQ6lHp7wY4OhrHPI9cc8PkN CUsXsMkfkxsWrzHh9gh7pLgtziv9azJzQUzYYLT98xdrOrQ4/WqaDmHCwehn Q/rYOyItrKbuMiE8lzHXZEWH7ncnEn7FMSFCF52tw/PeIV2J1aHHTAjwF0jt M6eD0tP28NZsJlRwyQxexpZf8xAoecaEeq1TyotmdJCofCsdXMIE233OJjLY IgLOZS4VTBAvUZNtxfPkZrdNmhdeMUHDtX7/Fex1u+2NZN4wYarVY674Ih04 7vB+F2hmQpGe3UtTbMJwxdWVNibcbY1u4cSmJXHc6upiQuHw/LCTCR2m54so 1T1MOJA+RJPAnjS4cP9pPxMe3rN0HrpAhyGOvDzvESY0hF9+aI7db3NG0Xqc CSqb75qLY3fXMWtPTDLBued68m9jPD9ufXxccQqvn/yKUQV2i/eJzyKzTBhn DSQEYzd0z1lw0Jjg5tZjfQG7Wv7h5MwCE8p3Pqvdi10eofXf1yUm7CFvLuHE fjHxZ6VxjQlWJ3vRz/N0yNe6H/6cyAJ0M92jBTsrXU0giZMFZ4x36Rdgpy/+ SAtYx4L+76Kf72MnG0dJO/CxQF1XhTcQO75UqcxQgAUSs9sI7thR64c01IVY 0G7tXWKLHeoY0ia1jQWa6N8uM+yglr1GfDtYkG2w87Ixtp9E3xBTggV+lq89 z2N737p1dWwXC/6eMjIxwXYf2EV9L8MCdkLwZitsR+WP/hXyLOAwnih3wLaL 96FkHGBBizTfoevYltM77ocrs/A8EpsXgW2i17bd4zALRM8zKY+xjXLc88w0 WZDP6raqwTZgF1Y8psWCO0/zSr9iH7d8Uyuvw4Km1FWOZWytaofjW/RYsLxq bCOB1099M/9nNgMWBDxXaNfHVvaotvh7lgU9Jzi1fbEVOm0me86zYFXZqLcQ Wyq0bCXXggV17CLnduD4io2ZhcddYsF5vhv6lthbNUkCvvYsiK1e5/EYez3j nLSBCwu4t7qYKuH8oRiulKpcY8HsR4J0MDZ7UbaGuBcLEraeU+3HXrBnGNL8 cHzE0pSjcT7Ov0kfGgpkAQyr7ZvGntque7U1mAVDMlMBRji/R3of+D+MYsGT 1QJNWVwP744dykOpLGgU5Wjms6DD9dZb8gGZLGiwDQnMwJY+0VRem8UCd/7K CCVcf6H6p98cLsTxpKVmu+L61DayH1CqYwFTQ7lQ0gbXQ0++9X+NLDD4o5D0 Hfup8exESQsLCqyl2TNw/bOb+lLlP7JgMaDdTwH3jwbrOJ49Iyww5Hv3Ign3 F/exvvgr4yz4blRnewv3nx12IsI5k/h5BJM+OOH+dOtKrpTkHAs8f80NXnDG 8XCt1dzOvggVbfvivP7X/3x/u2/cuQiepyKqOm7Q4fKK/MJp6UU4EVbznB/3 080Bnv4xcosgTxKvsvSjg+fttbvrDi6CSwKbHBfuzwfuCj4l6yxCbCJLJi+Y DmPcZnu09Rah12jAdwfu53FRmS9uGywCzUqZPy2MDrP3ZF+vGS/Cdx/yrgLc /4uSjvSyrizCiC9HmEAczsctYWaqzotgb7GQWRtPB96HHaPe7ovwaGJJzhXv y85pF6ap1xdh/CqlZOwB7sdZLpzTdxeh6qIoYWsGHbJLUg6NFSzCn0+7TFuK cP4vmcn0v1iE+qIIk5fFON+OiW7rLFsEhZFc9eeldHjd/2T5VQ2+v9mJlmd4 f/y8VlAf934RWj7cOT1VRwc2g7pjR/4uQuO9iGfxXbifPAhUVplZhMwV++9j 3bh+R7V276UugsQ7pHII779bvFopwkv4ebZV2DK/0mFfatf7We4lcA8K5X3z gw4Wf8bOZsosgXn8v/pbTNxvlbK1kuSXIN8rcuzAEu5//lcUow4sATu7+aV/ K3i9N05tun54CbynmwK98PdspCr9y2m9JZj2f/S4ez0DXoVyWq45LMGIlfje t7sYICgp52j5bAmm/tFF4vG8GBsfafysEN9vYn+krRX+nmL/q0UrWYLl2/rD 6rZ4vhl9ti2iegmqhB8c43RiwFT67g8V75dA2qPEaukmA5q2SirwTi+BQ568 kW0qAzz5tzJqDixDDGzy1P7JgJmgG2McKstwuC76n9AfBjjO9XeeVVuGFonc NOo0/j7pepD76+gyfDOQfPaWib+nYwQvCpxfBonOL+ktPAsgyb3xtaPPMvwV 2+12UXkButkot4VfL4OSRGxDzb0FmC5MsTzTsAyMv9aX/BPxXGIqqxbWtAxb 1x3m1320AKjUgEbrWAbu91PZ83juKLJJvNw1tAzEO5cz8+sWIPKtxMmwtWVQ VlLckj6zANohGpvoWitwQ+H+k/gLeB+k/JfT9W4FXHcnfIkEFkz4Bf2r+7AC ojIdL9twX9syd0+p8NMKhJsFOPPgPub39Xnj3a8rYO4G5/LMWaCdP/Fd6/cK nJspHt1/kwXdJ02FKiirUHXknkbES9yHYo6Ep+iuwpS7WyxSWgQ5wQ2ONs2r QNrxe9/eo0sg8KLmefa7VZBXS0/v0F+CxeNXZiY/rMLYcWGd/4yXoM2vztOt bxX+fGmW7cNxtht3DvD7tQqmt6FlLnYJ0sreJSRxrYHO7pFy35ElWG94p779 1Bo0nXTZVB68DDMxjE2KfWuwoFdy2mpkBSTDwva5ORLQadvVL8FnCWjMdHBA 6xcBxXS4Ndg3saHjPz+zKlzZUEe7m+mYJRFd97C/uvkfG+o2DsuO7iKh8JPT Vw7PsKGSXV2f7/eR0IOdPlcs59iQ9M/Prg++kdDLvvDLOXQ29Gtm+8ekSRKi Hn5up7zKhjI2b/byIpCRK5FqbczHjkR8c1We7yMj24TAi0n72dHLtfiozkgy Mnj5SG+zNztau/uAzfIQB7pKtVkTvM6OfAbsPyhocqA7CjLlgjfZkdSFOz1r WhyoKr9qu+AtdvSoY8uteH0OJJHROysQyo541L5k3rXiQIwwvgcbk9jRSOWI anUwB0q/eOcHz0t2ZNcTFLHyHp+fpJfMU8WOXomI/dDv4kCfP288xVPNjuY9 bJse9HAgikHmy3V17Eg0q5dbbIgDeWjV3uVuYUd7JzN4F/9xIB3ZhX2UPnZ0 pDBI/ON6TjS97OhHZLCjA8Gfo7/oc6KLJif3sBbYkaLxr283z3CipjLZvmkW O+pi/3RY+BwnSnGc2jewwo5C16vy6ZpxIu1+lx/FZCKqvKx577IDJ3pU5q5n KUhE/Uo/UoqDOREH39kFIyEiotbdDGYP50TujvuzTggTUevXTftOR3IiHfH5 FaXtROQz+6O4P44Tzcf8V7JOioiUo12GC9I50XFH7y2vlIjI+rxvmUElJypr Nm4uUiaiTdIbzPWqOZGouIpHlioRbc5e8EG1nIj6ZeH9PXUi8mYbZ2x7y4nS j90IuKxNRLdvNkTf6+RENDG/CYFzRHQkQorHfpwTPf4SVO76HxGxvMJVn62j oIlmheEYLyKSF42ibl1PQXLlw1wvfIhIK3z6ZsgGCnoZq2E140tENmI+/dqC FNRxgsXlHkxE9T0bFJ1FKYhfNU8pNpSIioeuVDwVo6ALuy5YFYcT0Z38L18+ S1DQGHtF+WwUEUkz9v7avpuCmDXuVtcSiehw6OADk30UpJm/IyLuARExXNju nNtPQXeSO8tLUohopoby47giBa33kuOeTyMijwaPqa0qFCQpP1nukUNEzIDi WFtNCjLItOL2rCSiYNa96NsnKSghZv3BhFdEdGXk0VniKQr66ldrVV6Dz2fz UvEzoCC7i9sqaPVE1M7ncs74LAXd4P9i5dVGRAMZCboFxhRURwiNSGwnIjtr rpipCxREmlGqqOggIpJxSKfURQqKeR/PzegiosZBHplAMwrKCjao8P5KRFs1 Wt9+tqKgPx4rw0mDOD4SDYY91hS079Jz7sohIpq2Va7ouERB1Rrc1gujOD+O vxzNsqWgNdlXEULj+LiD6ZNgOwrS3nq1QmUCx+dfsaS5PQV9ZDRzX/9DRLv4 f5yfv0xBm356HkyeIqLxqtsrxVcoyPSzpHXVNBGZD5gbXblKQeMvgiqY87gv XL+9UO1AQTLpCiNb6ETUJfta3cSRgtyihrkPLRDRg088ov+wF69qWN9YIiJJ Se6nK04UpFcjg7xWiCi+65PWNWcKesS7RezaGl7vHTbBQ9hTVmSCCxsJ0XR2 22m5UJB66fzwVSIJ/UqL+56BHUUaqbcjk1DwU8FZOvaQ8YcMa04SukCQS9R2 pSD5Z9UB5lwkZBJxtj0S+9ZSrpXJOhK6fJwz6j1256lEOMdLQgNe3X1ENwra kXl7xxk+EmKGqOcqYbvPu62d3EhC/+3+zLLAbtC2GNYVIKHfutLvA7A3PtCr PypIQmZC3UIPsW1+q2SAEAklr3P69hy7VE0qQE2YhKp+xAlWYRNj+K1UtpFQ aMHv+hrscyNrmorbSWiiTri/EjvrwD/RfTtISOfDB9P/nU8PHliVEcfP861C OwVb50vr912SJJRoEBp/CztpT0WdhBQJ2YwsIHPsX75P0kV3k9CTklb9A9iq nfdubd1DQtPHKksJ2OFi/pabZUkoKjzKrRW/f7+Hoyb/XhKq+7gxMBR7T/MF 0fX7SGj9iOCoBvZNoWOrXPtJ6NGM071/eH3bHQ58Jyvi9Xz2NywRe+vrHXVs B0nIVOFa60Fsp/W86SvKJLRBckivE8ePp+yXBf0wCYUcYds4ieNtTu7VmFMn oZV9caccsAsvNG7/p0lCpM2Vb8Zwfhgspw6Na5GQ4cEc7TqcT+kGEbUj2ji+ UU6nxLBnMn3SvumQkMX2+qCbOP9ijxla9OiRECNF7ZIQzs+RB6DRpU9C921D OExx/u7/I7e9w4CEGqUz3ifg/O6O4Rx6a0hCuuaVz+ZxPWzqf21eZkpCHMXF 9qdx/djJ5Ku/MMf7mlLsK0NcXxV+D0QKLEmouuPJZgNLCjIW9/j2xIaEOHWd R+XMKSjZcbd5vCMJxZyedInA9Tv5epN6jDMJ+ek9qD+F6/sQH7tIhCsJ3Yxc R+Y6T0EDZd8Ggzzw+x6atL5iSEHbV+LMrt0koauaBMG3+hR0fOzUqwd+JDRs dMJHCvcXz1YuobpbJORUvt/g1gm8/nFB3dx38HqA3ykBHQry3nXtRFYkPl/u lXo77k+P1+3NbY8mIUlq9PSwOu6fs5OkuXsklG7yd/nvYdzPaqwbNBJIKEK2 UvKXMgV1nT6j8iWVhLqMLuo5yFPQkhJP4ko6Cf1R54rbL0dBu7a2zUs+JiHx d+PbZ/dQkN84FLln4/gIeq2dlsL5cmOfFHcRzk/10eSH2yjo9pP1Ahr1JDTI bUc14cDxDWt3t31DQpm3E5yCiTjfnEM7774loe2RQew5BFyfKqt3+1pJaDG1 +M77RU40+P4fwR3PFa/Te5IypjmREr1j+skoCXFlVSk69nAiq4Fw/Xc/SGjZ yjuV0cWJIuq182d+ktDD1lrijQ+caOTua3v1PyQkP/W9xaqFE0WLPv/WO09C h0hvZsrx/jahG9lOIZHRmRO6V/ySOZHNSWsxKQ4yytOUE/RN4ERDBge9j1DI qLBNm8M9lhP1nB8Wv8lDRpJH9xaq4/210Vbxxt9NZORhr/DP2ocTpQUM7u6U IqPuyH+6PUac6FylbMh9XTL6kf3e1ZrMibqqCYMvTpCR9d+IAikCJzpZ16vQ cZKMMkbXNo4uciCt5oBvpDNk5BhdZ3p4lgMpfP6s6G1CRk/aN/R4D3Agnhnf MRMHMgres0FLqJADvd3VAaJ4Lvo5kOvM0ONAejHDepujySjc+O6eWW0O1EWf P7/+HhkxaiRNR/F89L1J2Hk1now22LpuyT/AgZg2V5K/PySjXWPsW3qFOZBc Bvtcej4ZGXl15sdNkFGS0KEnO9rJKKpv7Hb+DTISCdAvFOrAz3+6ZX2CBxk9 nbCq4usko9wpV2kvJzIqrgjtXPtERjv/e8clakFG7416Foe/ktHEbmoONyIj QqybUeZvMjq8btXtDF53R0oOSZyLA93XPxSRHEpC79nDo4+uw+9RGZ/W4k9C cisOmy/zcqCBAfrSH08SmpnbK12wkQP9VfJ8utmWhDwHK04e3MqB8rTUxli4 b/gXNcefkOVADmW2VvM0Ioo991PM4xQH0pb6/bfuIp6bMndqvI3jQLV2ZQW+ nOxo55q275v7HCj3jT0//wobirWwf1WfyIHoWvqvM+fZ0NWtOQdfp3AgJZ6k XzlDbGhrwm75isf4eg/dVo3L2JBfmMyO3BIOdLks7uwJCzak5arAFvmJA42f 8nwXW0BAnWrqzYYbOVHdtpOiIvarwHR8ZGQdw4m2RkcK6HIyoe1MxnnezXif l4haL2g3CzaH1HNzEyiIkazvmXZvFBz+faB/S8L75v6dCgp6o+D+2EqbPwX3 wYiNAq9IoxDAdWfULw3PMX+d/xbeGIHUr++2GeZQUBHtjsOZlu/Qd+NC7HIl Bd2X+uxBdBgAvWqPG2cHKSgeN7vap5/grCupLXSIgvLCf74mC30CE4mkza+H KWjZ5+IL7YguuBLxqmzXOAWVb1ERPTXaCcGmhOmlKQrqi+ohc9xsh7rFaJuc VQrSL3I92J73BpqLdpQMErhQqUp6lWtMA3TYlKxtIHKhRePbUQKTdTDY3pPq y8mFVK+K8Ojfqgbmw21fzmzgQg0RKr4b80tgzaBQKpSfC3W5MH91/C4CDiJ4 1mziQh+Fr+2zD8iHTU42G3cJc6FtjPdfHPMfw7YdNCuzbVwI76J3qwMegsTn kKLY7VyoLdRGMzY/DmTChFaad3AhDx67l5X5QbBf7dnJJXEu5Bpq0/nj4GPN /wOve1nG "]]}, {Hue[0.37820393249936934`, 0.6, 0.6], Thickness[Large], LineBox[CompressedData[" 1:eJwVl3c8FP4fx++OO+ekaJCRlSKi7HyN94dKUUlCykxKSbJCklE2WSFENIwU Zc8iUUhSVKSscEi2uzPi9/n1T48nd5/xfr9er/eHuN1V4/MkAoEgxU4g/P9/ tlpa228VV23C//8F5GvsGHutIXL3OBAIPyY01x/SXnq5x7473gaz2N573F7a hQz4ylvggFlj5z73u9rDmy+yyuKvAqHuORcPd452lEATd0G1OxD6P+wJvVWm nS1tmUEo8AICzxHjNLe32nVq03tPZt4AQqYG3/WBNu0fekH1WfH+QJDWs1/m +q69JLNOxrc+EAgo3I96sV87VPGbW1b1bSDsG5f8FzCivfm/zOq2kmAgvDzT bzL3V/uhjiM7Kz8UCM+ZkW9c5rTl9ZWPieeEA2Fo3n6pjKVdbbSaaJAZidl/ OfTXqvZh86Ze95Q7QLB1edu6RIKvNvFS6fExQGCFbpGjckChkvy+342xQBA+ eMo7gwu81O7+9KqPA8Iqd2uGPQ9oa7AC1tXGA2H6dDn10CZgB6sdD6vvAiGB OaZ5gw9adOubVSoSgCCxthpAFoQ4PSnnlpJEIJjXbts6vg3MDaI22hQmAcH3 6dxDPnEQMZwpm8u/BwR/EcVHl7bD0Akzi7C8ZCBUkRdlp3fAM9PqNeGcFCAU ByRbPZcGt9NiTwofpwJh75C3SaYs7LMKPqyXeR8I7xN45drkYdV2fOJHWhr+ /NxVorACNNofj7uakg4BnGx7WFOKYOwk8CM5PgMClhaDNRZVYd0+qE06lAkE wwP0jL3qMF3pyjvQiDlFPg8iNaDs1bfSa/UPgfDESVvuFIIU4KTWoUdAeLXT wKNGB3zfaJyh1WKmjnE6qeyH/Y2Zqw+qH0OAwIYtN+31YOehDqMx9SdAYHul kS50GGjN5MdKFZj57jXdGNWH9lbHQ00lWRDQ4/j5ZuMxKDZMT9molA2ED0Lq Wd+OQ1L7pz+WhdlQ10q80rxmBFadyrEz+TlQt8QnYXfsJCAzh0GN3bkQMPX8 LHuoCUh2pSiH5OUCykpzjfhoCuM9q12COU8BGR+xQLfM4aOVguz5HXmAFhy+ TE6fhpd9526+eIyZ29PY74oFeP1uEj+Q+QwCYtqFNOKs4cz5ZfdokedA2GYa 5yZsC9p0uXddac8BCVR9LWHaAvufeMcrKfkQMBkfuNJgB3GzlsVJ8S+A0NH2 bvrVBbizJVWzjvslECoKbNhGHeBLYbCoivFLqMvS8ZgRugQW45bDIj3499vi cpgPL4OzBZfr7EQhoKpejnOJLlDMZJx0UCiCAF29n/STrsC6O6j681oR9FsN W0zxu0Fga+VK4yrm/BttbS/dIUHrYlgKTwkQkrNNGqS8oLv75OX1piVgu22J 32SzN4h4guHtFPx7o2SPecp1yCng23xFohQyKWdLn636QJVoYwZSLgN0JiS+ Td0fVqtf3ir1LgOeY8ECNrsDYL952nmZV2VQ98H3pERtALTGustu1iuHAI37 Fs8mA6GPKFFOP1UBLyuF7bI9g0DyAXeqZVoFGPVWpZiLB8PF/xZ9P/dXQF3h Y+nET8Ew69auW32pEqb9zrl/UA0F9iG/tugbVTDtue7j8t4I0A9wLGSrq4K9 172OtrMiIFrYLMGbvRrQF/a4Sw2RwG8qd8buTjW4JPL9R3G4AzLveoZVMmog czgYTl6Jhat275vyfteAWM7ghpf9sVCyWvRMVPoV2Bbd2UwziwMttQhXzsJX 0HSQ50K9XjwY5e7797P+NVQcrU5NRQmg0WhA03Wvg0x9zxif5GTg6cz+pHa3 DsQkfA2ktqfA0CApUa64DkZ3UvvKX6RANKFaVGCuDtpdXryOakuFQQ1ZlWm3 NzD9CJ5obk+HsCIu2wdu9TA/HvFk15aHYPXGYUdCfD3sjv11mcfxISi2vx0P L6oH88S6QGbtQ/j598a1a7P1MPT+anKz8yPYs2si4qjbW/i5y8Y1rusxfMto LV1ybQD7w90EnV/Z8KxA+sZ0XAMEHDHVu6mbAwGvgtBIYQNk3u9veZubA7t6 ND98nmkAj8vkK67eueDLl9+f69oIYZ+fb7aQzIPtd+5wnXJ9B0ESG+9XFOSD i4/h2WKXJnhX7RSQ+L4IDJw1c6mxTfBzz6edLZzFsN1OZsrqRRMolr9MCTxa DN/0KTepk01Qsl7lqXdHMWgJvE62utwM717GGQfTS4BWIdfOcaEF/nsr/pog XQ5ZC+vA0qIVjGdjnI5x1oDf2FJwoU8r3DqSfzfRogbMf422UlJbYcnOLuRM QQ2sa2w4U9iFPz+u5n/a9BW4Jfh6Usw+gvBDJRGJp68BKU3kvzRqg39XQyQa cV+uVJyPJm1vh3eH/+SYPXgL8vonxIjK7ZDpDV9JHW9huluzaO1AO9SY/GBM ceC6LG/6tnKhHd6sfk6PdGsAH+36bcy8dvAQaPz9yqARQhpE8v8ofob7fvE+ pZT3kNn+/UOn7heoiwwaG3/aAp2j+pw5dp3AevsltAN9hog9DELZ6S74a3za nCzZDT5e+rIjjl0gmvit+KFeN1yqTTPl8+0CRm6Z13+XuuHw8f15ng+6oHf6 UJtNQTdwXI09qfa7CxTeCn+5uu8HBBXIZFc4dcPlTLA0O9IDfnI2R6r9f0Cf rPi7j5d+gatsU2Jd1k/w552PNaruh6HzQwGZZT/BNuODeVRLP5hlEpwC3v+E NiMe3Zrufvhvi7ouGvsJ7lNbppjMfiCtPZ2s3f0LxO7oLP9QGoD4L5GHaot/ gUlr7m/FpwNQdP344qs3vZC1omF3PHwQJEsuD6V/6YXe4q3Kn5MGIWky9NPN 371gvEXt5P4ng+Bzri5Li9wHFeq7eFmvB0H3mILxq8N9YOli25A5NwgdYpue 1Xzqg4vbOT91n/4NS+cuF/xy7oeGvrZrJwSGwJZ3zrvGsx8unTp1/u/2IWh8 7bP/vl8/5NdI2l6XH4JYgYgu8+h+eA/rD57dPwRSn3JJnfn98Hd/+vWrTkNg 8t+IWctEP1i/5fx1o3oIquhXxJ/O94Olw4LkpsYh3IeFP6Er/cAIvPcxpW0I xqfYAw+uG4CLV1ZErw0MQWDW9md1sgMg/LNvxo4yDAU8Z9fKHAfgiffuG1uO DcPm16PNiW4DMLgoHJxhOgzXL7skePgMgGDIhait1sNw4J3/LsWIAXj+TjTo u/Mw9Nx4cDIf15Hsx6wNixkGKr0n5/HoADymq6WUfRwGu1dmRrEXBiF1/oo3 0hoBxbKtGwWuDkIs7xBL4cAIkF786HjoNQjkS+3xG46MwKNM61PFYYMwl2Wy J8Z8BAZvX7D+ljcIOXX/0TPdRsDOwNNJeGoQQm+7+fM9xuvt3yefxRyEehG5 yo+5eD3NpSk5wm84kKL+zLUAryfn5w68mF/k/fWvxOvxhPjYKf0GSdU9XuVt eL3viWG5Xr/hcFuMWuYCXq/9lIFCwG+wLi0nySzh9ZoF1lWF/YY/GVOhD1fx elXpMR9SfsNIvcj6Mxx0GEzPSpqs/g3u1+iac/x0KEpyMPdqwOs9tef8K0SH WzG7BAkff8PAfITyV1E6SATmp/P2/gZPhcU1Fyk62NmXPlEmDEHIF82pLhU6 KFp5XXhFHYKjf2wUD6vTgWSmLq3HOwSE6syYbE06PDr06tkpiSHYY9K+snc/ 3l+mscjnwBA43z/o7n8c77891IPt2BAULB42czTG+wvrq0aZDsGt/b8kD5ri /dd/rEy/MAS9yw1zLWfocG6ms64ubAius232EDxPB1uf2FMVsUOQf8FnxdqB DpZsRydfJA/BG7Mrh5Mu0cFsy1uhjNwhyO0NuPPrCh0Oqxd63mwaArWjcpGf r9HhYL0T97X2IRg9KfS3wIsOukeknzh1DYGbXP4v/+t00LDK+GwxOgRfjqZ2 rvjSQT7wzu7/qMNgdYWd68JtOsjQ9N8q8AxDWfvI58EgOkjdZT+za+swSP/5 RjAJoYNY1o3QrdLDkPTyCcfmcDpsk1cT4dk7DCVwaeu5CDoIls+WcOwbBjEr KltOJB02NV8aZBwahpaHA93c0XTgMd5xffL4MGTbPyQoxNBhXU//hpFTwxA2 f9BTP5YOlL+ntL46DMMs1bXxTDyuv+emztarw+B3el3Pybt0WFttc2zwwp/f UFqum0AHFo9ecnHoMFyucUSkJDrMpxD3PMM+eFLGJdOBeUbiVeOje8PwkG/A NPUeHcaVleficoZhgufYDFcKHeivpsLDXwzDit9IRhnmIb1nYoHlw2D4t2K9 eSodfplLGLq8H4ajTnPP/e/T4cfAryGHT8Nw36hGmJJGh2+OKTdsvg/D+ma/ j7cxd8yZbDzVNwynTTv7WJjbfXmeGtKHwfu2v8f5dDq0kltBb2oY9p27/LwZ c3N06Dct5jAYLebl7nhAh3f8+6+orA2DS6F3xHXM9ZmrbHIcI9D8ScW9EfPr XVWpkhswD1wK4sygQ3XRNQVh/hHQlq/vO4i5QkOhaZPoCKRK8ub4YC5pmLDm khqBsg/HVnIwFx7LXSDtGYHOPXeJbZgLvp2LWlIdAdYn0e4JzHk2ottntbHP aKZZ7Jl0yBn9UTmmNwIt4WVhWzA/cU0yGjAcAceCsSxRzJlLJ+hdZiOwc7lE dDvm9Nvcfu3WI5Dht7ZVDHPquubNTRdGYFSzvYQPc1Ji0LNa5xGITz7Gx4H5 rgjSLfccAb7qGtsZvH9sznJXgd8IRKwElH/FHLW3/Gp2yAhQjwhpl2BuUfw+ ci16BF5XbP1zBzNVhWl1MGkEbho3H7TDrKfG/3XzgxEojp+6qoA5SF3t6FAW Pu8mh8jl/9dT49Tb4vwR8CZKVtVhJmh7/Xe7dAQ8YhRFAjHf0C2XlmjE9RAd Xz+P+1Nx4HvGTOsIxOSI9GdjZugx+d50jkBvddVVU8xuR9TItkMjYC0hb5KN ++1oUj6QzkYH48CwFUGsl1yz7+ZXuOhgZUWPeIH1NGLO/KS5Cd/738u/CPNZ K7XXPRJY54wfNWew/swvlKcK6NKhV8vQwhnr9ZB3+cnEADrIlnbdVcb6D/L5 3mIfRocuJRNWNvZHvS9TRxn7Zu+nzItbMWsHqu3twPcWCvy7zMI/V40oX8db S4cTL927S7D/JNPKG6P+0SHAxbtPFfvV7sF3TUvyKHAw/DvzsJ8zM5nFstyj 4FkmtVkMs3CW2qMW4VFYipNm24D33VRQ7kfVHAWplqk7JJwHRi+/L3zfPwq9 p9jeBQXTIbqI6ZRzZBSS22cdODHTytUs9CxGgbMh1VsQ5wmprlwtyGcUkoQa S21uYb1xb8z+d2sUZqS/J00H4rpZOG32ihwFZLj0KBjzY4bYzKW0UYje0DZT g+tw9MANm99PRkE5nhBjg3k+7utHy/xRqFTWW8eB+YBcRN7x16Mg6a9lcd6f DhM+Q1ub340Cy7UzRBhzQpN2qO6nUbhw6pBetx8dNPlSFqq/j4LrN6N39zEP n5s7p9I/CiH37yrZY44uPPalYHQURL1TqhQxq67lIOmZUXh360soB+beo6QX DxdHIV4t4f3gTTqEpFpuEyKNASN5a3YDZvnRssgE2hgIn7h5PB/zNxXeJe5N Y5DUUT+Vhtnv9uWLoUJj8MT/Q9FdzFKfG78RJMegv/5MQxzmdhGxgz67x8Bf c7PRPczeTj7Fc8pjQBjwCXyCWayqU/yK1hhcFpm+XYm5iWNP7MjBMdAhFt/6 htnFNHzVxnAM6k/35S5j3vr4t1O32RhMDziJ78Lnr5vW6jG2GQMZe3l+G8yX tJP1Wx3G4PRge0k65o1Rs+UHXcbg3asfksOYq7qP7qz1HoO0vrw4FVxPO6mc hH2BY8A56LUjBjPtGpGtKHwMBP87TpvFXFRv4SobPwbqdpsdrXF/zvCU9T1J HYMYcoBzJ2aSNY+hyOMx/N4U1THB/X72zLHm3rMxOHnBmKsXs8ligwxvCb7v v6MMV6yXFT3RlIiaMdi1bbMsD55XRwc7rt38OAZ2BxS2OGF9ze+RH2J8HYOv Hx4LyWD9pd0MM3bpHYMOEFw/h/nvVq0956bGgDmw61R2KM6jC/fSfzJxf6wM /8VifWuXzHCZEcZBrClSPhTrP/p49uhh3nGon5L4lITnmWo64VS9wDhkWVhF vYzC/R8/06ghMQ7tIS4u3+7QYU/IhkfySuOgueijdwj7r6vjEk+uxjh02cQE xcdh34k3+IkfGIejWqWB49iv7TXeFptN8X5nRwzfJOL+0jqa71iN49xWvISw /8XM5fZxXMDfP8P7vTUZ93NuYPOS5zhUbLOC9ThveGWOtPUlj8PJ3QIKao9x vnBk8DZljkOnhYAVWxbu1/CsycvccajzSBL4mU0H+4epPQEV4yBZOF5cnIfz bev4qHjXODQ9fea6WkSHOwyt3bT+cbglkLdTsRT3tzPu6ix9HIS9b+u5l9OB K1adUc8ch8MPxvaI1NDBmiOczZ7/D1ANBW4KvKOD0vBPvaOif+DzT4p1dRPO 57d7I5Sl/sCdu/qelz9gPfh18ZDV/oDMi4oCRjsdyAwpkWyzP8Cy9++r/kmH 50Pv9o0m/oGxj9zXtzDpEFgv6Nue/ge0l+Vbspbw+yfTubYi6w9knTn1+uAq zm9LPr3w0j9Q1fV3oATn2MmO8ydlvv6BUcacnvEWnFtv2J2dNk9AIpf+3lS1 UfiUYV5oIjwBtgfH3svhHHty8/m8puQEhG6M3P0FjYKhuskNbuUJeERoTj9m MAoPXz4OKzg5AcEiu77zWI/C4Qzdx9PxE8D4oun8NWwUQpvaf926PwHmjhGK zGicCzPWW7c8mQD1KHKdXOIoHDxw44566QRMaoW6dj8cBd2xYq9b3yegsa6p ZHfNKGgq7Ti6WfgvvFTWif04Pwo3LItDsiX/guXvMwydlVGoCtZ5s0/uL5S+ uD7wgQ37qMtK1Ur7L9j9WrkghnNE9WaSWLbtX/hRkMFqVRyDve85FtSy/gJP 5h4Bdc8xuDqduKcl/y+sResXUf3HoEBA0tGy7C/QzI1FJ0PHQM4J9QW8/wtB sq+vL6XgHOC93tw89hfuD15RE6gdA0mL8XQL+UmY2+b/6Ar3OPBPter5l0/C 0+6qrBNV45AcV3t2rHYSkh7a3MtoHIetykW+J5smwZTlNEr8jPn6vSKp7kl4 kmHnzTY6DoJsdiLtS5OgoNA3wuL7AyL8zAUx7SlI3+J6OdP7D+wE8az6himw KDuw4ZLBBKS+ryKyXZqG6TS11l6JSZjuf3l9ymka+vfekr2nMAmHlrJnelym Qe/U762WaBLmd98dKPGehsPj5bu5rCfBMP7ymwth0+Cr27dpOWUSSFbCgS05 0xAgNsdG3TwFl2dvEuJHpkFW/LXdKsc0aG7TWROzn4GOHNdQxoYZkO3nGbrp MQvrfC75rbecA0O6WL2n9yzYWV31cLKfA5fJvZlXfWfh8prsv3dOc1CyYmR5 NmgWqKufPV1vzoGmQFzngYRZuMvb/CvlwRwcNeZt5CqZBWWVDm2p/jlwauDN TpmbBbGRV3n5NvMQ/UE8KJ45CwrjxSe8Hebh5RcFu8jlWWgzdN+ldXUe5vtP iNxkm4O3ZvySpX7z4PsvLsl20xzEWgWbW6bPQ5TqxlAppTkIXG556N09D/m5 Gy+Wus3BN3/L3deOLkDQ11odNq85OFcWa7V4cgEsSVeETtyYg2Exc3MPiwWg Wb5vm7g9ByNVz84aOi7AhQ2+KpKJcxD//XZbbOgCiHkOk+6Wz4ExUZiI6hYg YX9FusvKHBSqfFDp3sWAyy7nvV4T5uFegXEt314G6KZvPLGOPA/td/J36qsy YIbhxJ7LPQ9MQ6Z1lC4DDPPEL/eJ4Hv3VShGnmEAlTdyn6HOPIRfEeI4G8YA 316rDtmQebB/dPyQfA8D5g9ppZ+PmIfUu7su9/YxwKlQ2CEjeh6CN+S03hpi gEVQz9LGe/OgXi+slvuXAf/JnJZYypmHdftCNc+vMWDxmolrU/M8iOx7ZZkl xgSXPiUNUts8yEr1vb8nyYTRw5vIml/mQfGz7kE/aSZ0CX1JfvFjHjjWVtyl 9jKh4s3xuqQ/88BNvJo6rs0ET+4jG85zL0BzV8Q95TNMmPSU6X7AuwA1Hr+P XrRiwoV+zsddWxZgtIxfMtaWCWbFTapHRRZAdqvQgZoLTFA5rWettGcBQi2b noW4MeF5/Q7pK0oLUGKS/MniGhMkd5Nns9UWYGrGSmmHNxM2r70NFkQLwBMF bQk3mTD/RCefeGIB/N+HjNBDmeC0XtxLw3QBBkui020imDDkRdC5dnoBtqlc f/MhigkdBrWdo2cXgFvgo2NgHBOKpjVXPrktgC279LpzqUyQOSP8jtNrAd4H 28z4pTHh0dvlmP03FoD/tqB/zAMmxCdVbS+/jc//T7ss+hETXDX3HXmQsADT n4aiKXlMIDgn+MckLwDx7/rvec+YEJ0xXRyQtgAZWfsCDuYzIY/0VPjckwW4 HkTit37JhMEmgUmpkgWQVhY22FaG+7F0TUKgYgE+S9dFXStnwqrsFzNazQLk cuZ7NVQwQSgmonbi7QJMmslf0atmgonpcmxhxwJs502Z6qnF64Wcanz0fQEK nHdEjdfh9SqKF+/2LEDDhU6J6TdMiBJysvP8vQDOS6mO/W+ZIHisKcmBvgDj NgKKHxqYkOsn+cH8zwKYPwkVy29kQuPATyWNuQWgXq3LNHuP99ukfnE3cwHa eFQNRJrwfgcS07YtL4Cf+4z+L8yrOcfIBDYG/Aw7dFOnBe/X/VR9hsKA/eat zSOYBbkozoM0BoS8d3xw+wMTVJ1ff2vYyIDgfu9NT1qZ0JAhyFXGh3W/xtUm 9ZEJxp89IUeQAZ2H1w48xtxP6nBPFmHAl+GGYL42Jjgr78kNl2BAmvpCeiDm lfORP312MmCiwPD+EOaIe3QeJxkGrAaVRsInJmxt3n/QSh774L7SzXjMOUsZ 1w0VGeCFWDd/YVbdvZIP2KeZjFNpYu34PFbmg3v/Y8CtA60jFpiNY0r4JLQZ UH5j7nIM5v46niObsI/9b8X+V43ZedbJn12Pgf/OiDjbh3lle3Pxgj4DKvf+ nVrGHGG6Y3TkGAN0EujzPJ/xeUIDhbtOMEDpY6u/CObsil9GzaYM0DqzKVMS s/K4enDVaQYkMU3Ob8dcL5RU+cyKAXfPGfYJYjY6Nvs37SwDMiT6tnFh7vUz lIg+z4BoXU6Febyf08s8M/9LDHDcNiP9DfPSACXS5QoD6+DXlkLM4ZvO1Z51 ZYDMNRVqMOatB2vnjK8xQGXuNo8x5mxPIekD1xnw8oU7bMWsnOtlqXKTAee/ tmd9x/Wq7+6I3RnIAC6bMJNYzEZcexv5gxnw9muOpS7mXs2oRWo4/v0Gq09/ cT+WMg7Y/YllQMW6fnUFzNpMrXiFRAbY+Swa1OH+Bhqq1XulMGCos3v2EGbq v10S7I8YQMofOquD9XHEZLuxQTYDzE7NmRVj/UQ/E74Vm8eAVo9YbRHMW85s GBQuZsC2NPL+vmYmmBdSN54rZ8CNN7QYFcxpVJLu02oGlJYxZYOxXiXK5x+q NDDg0fd7FTxY33s3/zhr+JUBavfeNfZgf7hf7ohL6GbA5g9NaK2eCWX1rW9+ /GLAN+78dmHMWq614g4jDHju2XlXD/vNoO3JgD+TASMHjrucqmHC+bCrZwsF sO5NtqoEF2N/9V2MY27D+3o085oVMWFC1e6NlgTOtVXtLIlCJrgNm4i3yDDB q1zI6kUBEwJ0/xsY1Pi/zqgbUp8yIXWF/exmaybsXMyqb8V51O6SauuFc8hq uUfOGeefTCzPskc2E+xesgbJIUy4/SIk0Q3nknhb3HxaENb3pFvLFbwv8vG+ 0xzIhPTLR5Tt8T1sKNfURX2Z4HhhhePEIBMcbts8/eyC9R/s9shwhAkMLuEb jleZsC1rVPPoOBO4CUQ5dme8/+9O10OzTDi2WBj/32UmqJ3N79EisWAqemhD 2XkmsFtav5CRYMGgfI/4PzwfrG906kvvZEGKY5vti9NMKE81GNohw4J/UyfJ 9uZ4/25VAXFFFmzh4+rvNGXCZ7MNt/l1WTCzlhb43QjfzzN42xY9vJ5kaXzG cSYEJS6XbzRgwUfd3BZHQybs66RPcBuzgKKwbwPXUSY8OFFnxm7HgtUvL8Kv HWICy0V1hniBBdORoS6n9bCfY59Hrl1iwSZNdy2dg0wgf0quW3Jlgds281Hh /dg/R11lZgJZcCPMkp8DmPDuMr1hMpgFgm93NqzD80800spmIpwFuQdPb+LX YsKXZv0EehwLSDf4Geq4b+qHJFZ/PWRB8chl02o17J/HLWHvs/B+BwNKJlSZ IL/mtqnwKQuep3Tv2676fz2+lQ4qxN9PFefIVGaC8Can4iulLLhj2nRjRIkJ fFc3a5+qZEHX5e2XFTFzSeH3/hsWqLAy1/coMIFym7t3UyMLWO/GJtQwE/pK L/5rwt8fVUxNxfN7Poni197Ogls8WqWue/C8ni2gVnWyQFci9OiIPJ7/hqfu Pu5iwbqRQfJZzL8oubme/SyQ4lzZe0kOvwfsjJRsh/DnC1I+MHbj+75mvdIf ZUFkD/VHBOZWwYeHlSZYsFP0lssOzO889TuEp1ngtEvq8TtZJtR9mbGizLOA 350U4oy5Sj51dIrJgs7fFLltmEsidN27l1kgcH3D8y/YBy9Gxv/Vr7Hg+N9e vhjMebp3w56zLcJ+G9FAY8xPHmhsSuJYhD+LZ1eFMT9Y+p3uz7UIfmkijyZ3 MSHZLEr60oZFmL5V7P8ec3yRcrHxpkVImLTPy8Ectf6Xlib/Iph9slSJwRzi GNy0Q2gR+K7kKflhDnwnd3KD6CKE8+pWeGD2lfj2iyWxCNpFK1/dMHv6+V0c 3LkIh+7fy/DG7PJj59wHmUVgFyyRCsHsqPrpZqn8IthKfw+4j9k+3ouaobgI gVsvvarAbD0pejdMdRHaUOnUL8zmBk3b3P5bBP3csV1c+D4ns11yLbTx94v5 /BBmQ5KA0kHdRZD5LL96E/Nh6zev5PUWgbSLUvMWs27VpcNbDRbh1mHjZl5c T02+jR1Ew0Vgfn6qdhGzqluV1Z8Ti2AkG7T1Pea9bXajnaaLYCinflMe92tH SPG/HKtF8Pgzy8eP+y02aBEWd3YRVN9TnJMxC2qzb7pxfhHCJjbekcD6WM8w kTa8sgiCFk3nT2A9UY3/Fam5LsIRhhdiYCYVZGmJX1sEuSHZHU+w/pjnGcbz vos4/1WPCSkyYfbNg1+/AhbhonjAyyHME9sOXXwftAhrWaVW5Vjf/V/v3UyN WoQGW71ObxUmNB9Uz0Vpi7C74EvvFXUmeL/3k/fPXISWRH2N+/8xQVq/oeTV k0X4yK/P14n9F3L0+Jv/8hchJz0y7iL2q2pbwqHrhYtwFYmaNWA/Dx//8bG8 dBEkJ3oGZHWYcODk+R/KrxdBQGB7osgB7JfOPFv3+kUweGXY9xTnw2Oz6ZHC d7geo0MqOjhPSGduzMl/WoRHBkpHEgywvm3j1u3qX4TjWzR6P57Aehj8Fu8w hM/3RtS0+iTOC3thgezRRVjlcTMvxfnm55CzY/sM1qeHAPqE81DT+ZX2NtIS GLgkS6fZ4XpMkRotKEsQvzM7ZcqeCfddDx9JpS0Bp0041cgBz1OPjlP8m5bg pzB18z4nnKc3xlx4JZdAb8+4TrYnfn//k2cel16CdL0TbOeu4/zw97gZvXsJ mg4WSMrhvPe4tRbOpbIEvdEFxWN4HiiGb3lM1lsCeetAWXI0ft/RLHYdMFiC r3+4+OXxezkuKvPFLcMlmJVrKbFPYMJ0jGzNmtkSTA7LyC7j93NBks7XRYcl qG4hzn3MxfreGmqxz2kJWFzXz55/judGauuAp8sScPMy3tLw+9cp/dTknDfe f3oqwB+/d2WeXOGYDF+CIKeIGF48j7MKU9QHny3BdZuwtz9HsZ+WLWS6XizB 6nZbZc6/WL8HRYTaipdA1JPBqzvDhJquRyuV1Utw1kNEuHsRv/fXntXGfcD1 Kx9KT+NiAdHw9UGdP0vgniSs5KPAgnf3AlTVppaAdkKcw1mVBVEDulJyc0sg cSjQ2FmDBVuvvacKLC9B5sV4g4SDLNiT1v5hmrYM92Vb4q+dYYHV+OCJTJll eO21fCEyhAUSylm6SfLLsNdGofBgFAtGbzooRSkuQyon+dC6eBZ48E5s9v5v GeaY2/a/Tse5uW/h+3GDZfATPz5dgnO+MoTDeu3SMvCvf0QepeM5uH23o/XT ZVjdu1dVAfs0Nj7S7Gn+MoysazJlwz6lkf7ozhcuQ1fm5dpB+0UgDDwViqha hrh4LrVmj0WYeCD1sfTDMiwJumxSSsQ+Ety+l3tyGaT/XL3m1IV9vlGQUa24 AjVVAZpM3LcvROotgZoV4A5lz8jIXobJ/BRro7oVMKQ1hzFeLgPnGVmN0IYV 0P2y0GlSvQyoyHB+vnUF2DgFt0u1L0OBXeKF9l8r8GPsvZvo0jJEvpU4Erq2 AgVPjJUPHl+BA8Famxd0/4Gzs2tZzL8VKKW6Z7c3/4PKgtv3OM6twohv4N/X H//BjzxbHf8rq7B1JkY5//M/+HKk+BDDaxV8u5/Xh3f/g3VLSsyBqFU4kDfS qzv2D06Ty18/L1vFnzvDX0pdhW27ZVsYnGswHa0TlnJoFdzNBM7cLVgDCTaj T6FHViG89MXQ64o1MPGy5vM8vgoN59KVR+rXoMLmxhPjU6vwR/F2kdT3NfDf W1rH5bAKYS1pNPe1NVj/RXrxZsgqePCo7AuXIqDdW3gc7RpXwfz2TGCXBwFt elH9PKt5FUqjONUWrhPQ0mGHqdGPq3Bwg8p5bn8CavJ97XH12yos5BmM7Qkn IPshJ39f+irIbXhdrZFOQOnFzQlJ+NxGd3aJ2jYQ0Hrj27Utx9bAQ+hrrtN6 Ilr4I09ab7wG1VoO+7o3EtHP4B8HTpitwSM3dAT4iSivUqHlu/Ua2Oiq1DNF iUhPvL9z6Ooa6PBsv7pVgYj8pjXHV+PWoHT92sw6YyKaimZsVvqG95PXVXGM JqKJaZF6uR9rIOnOPFUUR0TjxoeuSveuAbvumxtzCUQ0xJfcvG1kDfZbncuy vU9EPx6o+1EZeD3jjAfDOURkd+r13CSNgL6U7XS/W0tEZ8OMDSbWEVBJy51/ DvVEZFs5kjm2noAahPh4VRqJyEpog+HQRgKSFw2rrGghIvM+m9xuQQLyFLhh e/4rER1zIFo1yBDQnliPKcMxIjqanFj8ZjcBrTz9pf30DxEZNO+i1coTkMq4 wavlv0R0WNa4vFKRgL4NMZXDZ4lId+oR74v/CEjsucC9g8tEpCOmdvG5JgGF TOkM2/4jInTiw+un2gQUI35Ix2ONiLSK5y4/0SUgEcbbzbfZSGif14F3KQb4 PpWfPiIuElLL7RK+d5SABsV15IW5SUi128k9wZCAZN/m3Z5aT0JKGoliMcYE 9LLdnc1vIwnJrw37BJ0hoNsrz7b+J0BCu/f6fA60JKD56DcDnYIkJHt2vbS/ NQG5Z52NcRAmIem3ql+v2xEQseNevIcoCW0PDd1z1ZGArjl93iq3g4Tcvin7 2TkRkPb0wq6AnSRUt2Ow1dSZgHRqhS59kCIh6wZNR003AtJ0lnMxkCGhVOLs E04fXO+Rbxnj8iQ0ZpQxt3ID168rVmRtD75f5lHd6ZsEdFFcrJVLgYS+aef0 fQskIOF7SWXcSiS00ddS8AnWqUPfyu9iVRI6+4Hz0r1IAmosS5wLVyOhl4Ll 5RF3cD33rNMw30dChpW8pq5xBLSvPNz7lzoJpVNrH9vfJSD6VRu3hP9IaOKU 0+ypRAIKk375bL8GCUUw3sVop+DP17cOR2iSUPdBj16F+wSUVuHyR0IL1yNR XG4H9kVeP/xXjNlrqO3G1gwCopkudmpok9A7Jd8WrocEFOd883UN5i23dwms PSIgtncfF1WAhOy/fHOYfUJAh1W4I3Iwk1wVyN25uD/rIsvcEQmdqOs92ZpH QJFupafbMGduiHpU+5yAksezbcR1SGjKWn2mqAD7NFG61QmzdsEIZL8kIKfP ko9fYr7z7250ShEBvd2XMzqB+edRnV9RJQT034OfmeK6uL9pk7IBZQTESdvU bojZ5899H/cKAhorrfTxwNz8n37zhSoCqqSezYrHvDWCwX+mBt8nrsrkKWaH 7scXjr0mICtSyp0KzGXSJ0pRHQH92TVtUoeZ7L3KplxPQDf+dr74P5u8f2Ys hXPjnc7Nx5WYH/Odfij4Dtd7O1J5hnn2PGWau4mAfGMSHRMx65QWaxNbCKjr Op++N+ZY9rN35j8QkEGj77eTmPtOrv9J/0hAF9Qfb5XGLP+4WqbnE84p7+At C/i+N2cvXm/7TECZC9BRhblVh6/pTQeu9+gG8+uYheLe8pV+xTmoczJvL2bH fpfzud8JKPBhWHs/rnflHpGS+90EdEnv+OdwzFT/D6SYHgL6zOZQLIv5VJv3 iVu/cH0UX958h/uXvW1n5rU+Aup4LKt2BvOCU8fkxQECqo9dGhnB/T9QE6Bl +ZuAeqOsE5wwD57p+aFLJ6DrZ++Qz2H9rNM6lWM7RkA8JhWn3mO9qYh2uPv9 IaAy+8A72zGH/W5ZVzVFQAfIPq1vsV6LGvW6v88QkKOW9TgH5p859VkLczj3 8/S3HMD63uNUpa3AIqC68NuvnmA/mBuqch1fIqANAiNGzdgvt/YWfXdaIaAz X722jahgf80/dcklEJHXiz2xVGUS8r2Z8kiUk4h60uKkZrEfs222XNXiIqJW hV9t3divn3TiNCy4iUjm/NsNVXIkJEEJ70ziJaL+tNdx9rIk1BTtTVkvSERB MSoc53AebMk85bgig+fCH+F3vEJYr7c6VAXliIh6eKddOM6fi/bH2fbtIaLa fJbXEj8J1UgfSnNXIqLJoGDD5s0kZFeo2jaugedE431rIZxnBfVbFLuPElGy 4ZBuBs7HridxqwxDInIJPE8sw/lJDOX+sPkEEQlaiOi8x/lqcoRsb2RKRGHn BSK7mUS03DGf+N6KiOoe8ejUTuF8Hu5YLHXGOU/cbJ/RS0Q3ZaNvvHDBHDjE fucnERW5Hv6X60ZEpHyZfs8fRCS0WkNI8ySi+z8tQuAbPidfNsctPyIKSNE0 z/5IRAmHvbcY4rlV83Qqvqsa1+WZsMJIPhG9/0WsPpRERN5u5y/y4bkwHa/q aXgIn+vIpMN/+BxbWkzcMw8Q0T1JLwfrGSKKFPKzn9MhorJvYReyF4iofjg4 LE2TiOb+e26vukpEwyJHM1fx/HRmm7M124BzjHTHaes2fP6fN2x9eHFunGzJ DMZ9iCplt32wCc+JmPN2C3geP3PgsxnBdV4wSZv/ief16Ad1K08x7NOb0Ts+ UYnoXELA6SScuyPr6zTMFgjI7Qrn6Sqcu7e+u5mwZgnoll68eS/WzUWlisQH 09hnrMendmIdCisfZzGxbnst35uWYV/u3xhEHRgkIPMd642/nSShw8HOsY+w Ly+uJp1YMiWhGKgXvYt96/Vd9ISIOQlNh2y8Eo59nRSuYHTBkoREfl/PCm3G vvprYsiwJ6H6pfEDH98QkGHZfQM+T5wTc5GN8cV4vTm7tS3eJKQ+/uAhBefe 7b0yJVt8SIjx/nlHAM7FiryKbVv8cG6sswsNyycgiYyv05tCSCjaUlCfnoPn 0s+0rE1hOIeLLGZisgnolID9mU0RJHSeb2c4ZBFQ1N3Ztxuj8XmT33wpxjnO CN1wjzeJhGiKJd2zeA7wNH47wptMQjvCz9K+puG5S3pA4E0lIU1p+9rXeG7Y +u525HlAQj19sJaL54pP5ZwITybOhdKjBU+TCSiRUdWx4RHuX8YWmaJ7BNTi oq+1IZuEKqwPffqB59JQPs/s+lx8f35Z4eUEAlob/569Po+EqtjrfLdjVj5/ gWd9AQnFV4++jorH9Xkk18j9Evt4QOntRzz3LvXNX+cuwvXVfyDGj/nB6du/ 15WR0EffnbJvY3B9kgyS11WQUONtuaUdmDs6eI+tqyKhLw92XIiLJqBJnm7i uhqsF7s6fzJmqmFmGddrErq3evfULTxnJSIdLnPVkVDJiOAqB2atJnkxrnrs +6Di20lRuP9kRietAedUfwZLDrOb7qtw2jusHzPylTY8t6P8g7RpTXguakxM e2HOqTkyx9lCQpLxkCCDuX5xYy5nKwlZlrdeGIkgoJ+qPyw520iIg3e/9zPM DPeHvJztJPTolVLXdcy8hRffUb/gubSfN+kE5t2Te25QO3E9dfa8UcSsJ8vc Q/2G9SpSf3EbZtuLr4c4ukiovbz3Pi/mG1nBKRw/SIjC73NpA+akwaOGHD9J CIlc6ufD/FJ0MxtHL84pDdsN0phbLHvKKf1Yf0Jz7PsxD6c8cqIMYn2YJ3xy wEz4fkmcMoTfSXsSbyZhFtys8I08QkIhSju2fcKsfIIVQR7Fc2z1RA0vvu/x 6Fogj5PQ8yHKJWvMjh9C5tknSOjys3UKpZiDqIZP2Sdxjv7HKcGH6/ng4BZr 9mmsLyN//UDMlbd+bmSfJaEujbYSBubJFUdfNgYJcdbXRRJw/06bH9m1yCQh l5v26+MxNxTLfptcxO+qTwWZcrj/KY4Te378I6Eh/s7tt2MJiP1d689PaySU 5iC1Wwvrx1k8P7yRyIY4fXndiVhvB7qu/H5JZkMHTgiO5+J31Qslw9hsDjZ0 NDN5bxTWp2CMvFYaJxsqN3IavI71PH1wKimUmw0Jph0q9sB6v1/sYmC9hQ3V XFPbO4b9QtlwgnmSnw0VXW1kiWF/uTgqPNEXYENhvSf8zz3A/ROf/ae8jQ1t Yp+doOJ31my0eyHXDjZ0v6v8+DfsX6vxk9ZEKTbE9Mhbfx6/q5oOKnMxpdnQ i5W3natP8TthZd5+cDcbOmm5OfkkzoPDjp5bK5XZ0EYJ5q9b+J1U3GjWWKDK hvgRW5UjfieJiKu5PdnHhkIXLv20wu+kue/MDzGabOifRSfPhZr/1/+6/4UD bKi3oJWxit85nA9P77bUY0OxYX6NOu8JyGNFvfvEYbxen+WGWJxn+sVLilpH 2RBK/yl7vA2/u8V8RzaZsKHM+k3i5l0EZONreZfTjA2V3Q48x/yB9fVdE62d YkPx4TuPPMLvjozofynjFmzo9JZOISH8rjBY8Tv25hwbumsvoJIySUAPvweW OLvj/bK4DrZwENFI496+6Gts6OKZl0POeI7vLunjfOHFhtZ5nnQX34DnS6yW zdQNNuR++OL5l3x4zusvcroEsSHFFvXGazuJiFXtYuOayIZ2qN799eAwEWnn iUbE3WNDyfe3fJI4RkS3k9tKClPY0NJi58sSPHfXX9tNm01nQ85hUpokCyLa Lj9a4paNP390VvIAnrOGmTY0j3I2tBoiOW9zD8/L6PUqCZVsyLAg3+hNGhF1 +76yKalmQ2YrpWf2PiIi+9NCpfO1bKibg89KDc/R6xu/21xrYkMya74mo2+J 6EmQYalnN77/3ZDZtjkiWrqoZXt9Geunv+6egxUJGVTLoGv/2BBpXWrw/DkS us+9Vcx1jQ3ZbRtUjHLEOV0023eRjR1d2fw7pceLhPyWc2zMudjRuWXW3sV4 EmKL3mijJsSObodeiNn+Ab/XiulWC/+xoxbvquQWXTa07V+chasPOzpJOvLV /gg7Ojx4rPKeLztqL1Xr7DZhRx7vOflf+7Gj8ijbv6bW+HtxgV9ot9mRk+j8 pJ0rO/Lc6ar/JJIdbV4fktV6D3/vuJHa9zR2dMjua+ubYXZ069H6TVq1mN/P XtMOJqORQ5EtVHYykm7p15FvoSC7I7ZiOyhkdF+OFSTcSUG/DFU8dahk1P73 sA21l4I6TfvEfdaR0fHuX4pdMxRUf07p+p/NZBRUqV53UoADpfv3SLXtICN6 IutSogMHMimXDb57iIxMGy9EbiFQUXsVoeeFPhmNSTmunuOkoiOvv+5tPUJG o5d4H+dtpCLdRv+f7EZk5PY27pPoDira29Gh5GlORp7sCd+e6FPRuqkbg+aX yCiBRyloNpaK3u5sBZFIMspwTlWz4+dEBtF9Bnx3yGj86FPp7yKcqH1h1nR9 DBnl1jW6oJ2cqLdBwGk1noye97h5TClzIpadQ3JvKhn/vfTJsPoEJ9qdQZp5 kEdGLnYp0eNhnKiIwreS9JyMUlrVx+/GcCJ1510cMQVkdDFa7vSeJE6kp2W0 zb+IjPaSzw5oPOZEZ3vS9W2qyIhv5OeLnBpOlMSv/ki0hYzSnlRtfTbBiYT9 j+bzt5LRvIzfpP0sJ3o8YlOxoY2Mhl1FMtazONHL0pC2tc9k1OC0jqzARkMf TnYu9XWTkb2+8+aCrTRkXE0nd/WQkb/N5ZnBbTTUJbHM0/6LjA6aut6lbKeh kRlxqboBMmqJ3pcuIEdDhNirJzPHyMjYn8p1GdFQCPOWdfIf3O+/XCc3HqQh bpukS7F/yWiJr/B4jj4NCcq/8g+YIaMy9uv9KcY0pNJKe267SEZC/N0V6edo qEZJpNx8mYzYNfhXCxxoSPe+Qr3RPzKalu76+/wyDRk5mnchIgWxe/XpO7vT kCM1m12ck4IKbCzOs93C9yGF3dnPRUFXhlNma4NpaPe/S3wXuCnouxZHnH04 DU3NyEk/46WgtHZrm/OxeL2JDYUfN1HQZHKh9pu7NFQ0MqM+vYWCPkeQo9nv 0ZBHT+kRFUEKGs+4+Qul09DXr/c6TwlTUFmSX7R6Jg2ptl+38hGhoMBEDV6B xzTEatC6WitBQU1llVORuTR0ulaUNSBJQdnn+/6JPKOhqkpiILsUBQVcjNRN zqehmwWN8fqyFORt6fJNs4iGenNzhJzkKIj4LrfboYSG0OPwJ9F7KOjwY4cb 3mU09DD9slyhAgWZdikkOVfQECn5WFmHEgWR79ezG1TR0Ln4PcBQoSAv6rpH tBoaaojibdq6j4LmK9X0X77C/Qn82m2lSUFtSgsSeXU0RL9RbhegTUG9bfPr Vt/Q0GHPlD+PEAW98S6+qvqWhvJcbng06lKQdo+31MkGGuK6bPWPfoCCYqLe 85g00pDTeQihHaKggQwrqvo7GmqzEd8gp09Bkioqf4jvaWjPGbbk40coaDc1 OKkAc6zJsJjbMQqSXqujazfR0Izh+6cJxynIrSK1pgizsf5TxfITFBTNT5rj bKahkv2R1d0nKej+5x2XDmDeon3lwIop7gfL/d9ZzJ77jn8UMaegf6Gp0XaY uxQVzHTOUNCjP6HLBzGry23qO2dJQZ5Rl7evw5wqteAQYk1BcafKhkvwfsvi 36dzbSnIR09IAmG2FK68/sGOgoxGYiry8Xlf890nTdpTkGrv0fB/+H6ivDcj eRwoiO7R5rEHcwCXzWalS7geW75a7Mf1GCTrpJtepqCWjvOi6rhe+wnbd3pf oaChyZZMHlzPJ0vsL1KvUpCyScKbZlxv8sKI2itXCnoplnzOHvfjwlRTXZ87 BRWLz13sf01DTWN5+iRPCmo34SzRwv3bNRT1RdKbgqYvhEj5VtNQRK+zxSEf CvJQtM6+X0lDE11GQ5d88f00P25KK6ehgo+bGQUBFGRy9vNhKKahDU0Mv8+3 KEhw3/GugZc05FLfxTEfREGKVaoj9gU0pFieJqAeTkE1KQY8657S0N1Cv0cW kRRksKeCsSebhuaf2cr63cH3/bhxWgnrvTxTUuttHAWxXCyLe9JoSHLtwI03 dynIXT3fqTIF99vqfGVtIgXVWh5a8kmioYuC2So1KXh/j0s6T2NwHiRIyZc+ pKAQSX6zlwFYn7OHnIofU9DO5w0heb40NGt0Ma8wi4KCz9OmQ72xv7mf7ix4 iut5in/7xFUa8g2VEc0ppKDBP4St5lY0NDpsYJVVjPNAJ2yrozkNmR64fP9x Ke6/yq1G65M0JE98zp9ZSUHxp71/Tx2moT4fOZ6UN1ifOsc8XijivHHeS4z8 TEG570NHkwi4fq1GEN5BQQd4yLGti5xISNb1ZuhXCpIpD1z5jfN1nl64eLub gio62+bKhzhR1lmlWd8BCioSEuObe8eJqKaqv53xHIu5yj7wPJgTeRSbiV+Z w+efEClZ9OVEA7xeNpcXKGgdUfSplAcnqmor73FYpCB9pZLunXac6PJh9U5b Igf6zi0fWajJido0NBuNeTkQ1Yj8cfYPFUVUXFvW28SB9j4rCg8aoKJDKi8U NLZwoDzplf2sb1RUJy/xYDuem5UJGlnBb6hYV1SveTEOlPz6ZKdaIhUlc3RK J+3FvEsyiaVKRaZB3DYRihzIZZex4VMZKtpIPJTop8yBVE6Uz2qIUFHkUiXR YR8HKmHpkznIVOT3N+OHGuJAG0tbg5Q/c6BzHZejuo9zII3RYaepcxxIzCir /uMJDqT7w2dTnSkH+tnay3pzkgNpKkX/cDvEgczenTifd4oD3Wzs6feT4UCH K9W0b9jg+3yQ9lWYoiD5DLZp4ascSJa44yAH9gXL8f5J22gOxNZbqldmT0Yx Po85/GM5kPT0qzDTE2S0M+JZdXo8BzKSPLalQwu/C55Wb+9J4kChiz9PXeIj oyJ6z5xpBgeq/VGQxv4Ov2vshROOvORAkj+Dd1NF2VG/VXqn6hcOFPmieWQE /53ZZJRhys1HRb8GDBvuSq6BY8Pwa46tVNSqdUVRbnYVuPftliYJUlH0q/cf kmtXwVi0comxjYpsN0iF0k+vQs/fLxn9+J1RqVfr6Bj1DyYjKOPFKlQkLyZT oDO2DFsar/idMaWioHfaNNkgFtipa+bkJFDRVPkx8q/jM3Dp78eFn0lUFPPm issZ7hlweWhzYGMKFbV9G9td3jIN/py3B3zTqUhMYTqC5+A0pHU3CxlnU1HW r0O8D10m4dv1U7Er5VTka9HhMqo4DgZVbtdP9FBRlLX0wOO7A3DCmb0p5BcV HZWqVLejDoC5RBJfTR8VsejKSWu+/eAQUVm8c4iKtidc31r+oReCzhAmlyeo qCT8Wfllpx/weumOXfYqFXl8+Gz65slnaCwQLewhcCLvE+XxQpHt0GpXuMbD xono1eLnng22QU9LZ9oNDk50OAu0hnxagJUq9N2IhxP9N6EtsOHpG1gzzN8R spETPZPaWuQ2+hoobOBRvZkT3X6rJxXpVwWbL9vx7hTgRBU9pzVl8gpBSHTe xkKIE2kkhJGD/PNAoiO4IHYbJ+JxleMPyHsIMqH8/xpFOZFbku/z4rw4UNB4 emRZnBNdkb/Q9lulUPt/wu0lfg== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{0, Pi}, {0, 3.45}}, {{0, 3.141592653589793}, {0, 3.45}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Automatic}]], "Output", CellChangeTimes->{ 3.505096322749518*^9, {3.5050963546471643`*^9, 3.505096365272138*^9}, 3.5051046144731493`*^9, {3.506081231433691*^9, 3.506081293203511*^9}, { 3.506081522572894*^9, 3.5060815333062267`*^9}, {3.5060818182947397`*^9, 3.5060818321149263`*^9}, {3.506773505217263*^9, 3.5067735730476933`*^9}}] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.471997996189283*^9, 3.471997996209675*^9}}] }, WindowSize->{1072, 725}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"7.0 for Mac OS X x86 (32-bit) (November 11, 2008)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[545, 20, 347, 8, 27, "Input"], Cell[CellGroupData[{ Cell[917, 32, 918, 19, 27, "Input"], Cell[1838, 53, 7045, 121, 246, "Output"] }, Open ]], Cell[8898, 177, 393, 8, 27, "Input"], Cell[CellGroupData[{ Cell[9316, 189, 888, 19, 27, "Input"], Cell[10207, 210, 10507, 178, 246, "Output"] }, Open ]], Cell[20729, 391, 395, 8, 27, "Input"], Cell[CellGroupData[{ Cell[21149, 403, 862, 18, 27, "Input"], Cell[22014, 423, 13729, 230, 246, "Output"] }, Open ]], Cell[35758, 656, 395, 8, 27, "Input"], Cell[CellGroupData[{ Cell[36178, 668, 863, 18, 27, "Input"], Cell[37044, 688, 15675, 263, 246, "Output"] }, Open ]], Cell[52734, 954, 391, 8, 27, "Input"], Cell[CellGroupData[{ Cell[53150, 966, 865, 18, 27, "Input"], Cell[54018, 986, 18038, 301, 246, "Output"] }, Open ]], Cell[72071, 1290, 397, 8, 27, "Input"], Cell[CellGroupData[{ Cell[72493, 1302, 861, 18, 27, "Input"], Cell[73357, 1322, 19641, 328, 246, "Output"] }, Open ]], Cell[93013, 1653, 395, 8, 27, "Input"], Cell[CellGroupData[{ Cell[93433, 1665, 863, 18, 27, "Input"], Cell[94299, 1685, 21629, 360, 246, "Output"] }, Open ]], Cell[115943, 2048, 391, 8, 27, "Input"], Cell[CellGroupData[{ Cell[116359, 2060, 861, 18, 27, "Input"], Cell[117223, 2080, 23262, 387, 246, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[140522, 2472, 810, 18, 27, "Input"], Cell[141335, 2492, 42718, 710, 246, "Output"] }, Open ]], Cell[184068, 3205, 92, 1, 27, "Input"] } ] *) (* End of internal cache information *)