MATH 315 MIDTERM EXAM WINTER 2014
Version 2

1. Solve (—2y?sinx + 3y?®) dx + (4y cos x + 9zy?) dy = 0.
Solution: The equation is of the form

a(z,y) dr + b(x,y)dy = 0,

where
a(z,y) = —2y?sinz + 3y, and b(z,y) = 4y cos = + 9zy>.
We have %
7 _ —4ysinz + 9y°, and — = —dysinz + 9y°,
oy ox
so the equation is eract. This means that there is a function F(z,y) such that
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g;’ B _ a(z,y),  and «(92 ) _ b(z,y).

The latter condition gives

F(x,y) = /b(x, y)dy = /(4y cos = + 9zy?)dy = 2% cos = + 3zy> + f(x),

and substituting this into the former, we get

OF (z,y)

= —2%%sinz + 3y + f(z) = a(z,y) = —2y*sinz + 3y°.
x

From this it is clear that we can choose f(x) = 0, and we get F(x,y) = 2y cos x +3zy3.
We conclude that the solution written in implicit form is

2y% cos = + 3xy® = A,
with A an arbitrary constant.
2. Solve the initial value problem 3y’ — 22y = :1106“’32312 with y(0) = 0.

Solution: A quick solution would be to observe that the function y(z) = 0 satisfies
the equation as well as the initial condition y(0) = 0.

The more systematic way is of course to recognize the equation as a Bernoulli equation
v + oy = By¥, with k = 2, and recall that a good substitution is u = y*=* = y~! or
Yy = % If one does not remember the exact exponent g in the substitution y = u?, then
it is also possible to work with an unknown exponent g until a point when the equation

itself reveals which value of ¢ would lead to a linear equation.

Getting back to solving the equation, if y = %, then y' = —3—;, and so
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Since (22)" = 2z, a suggested integrating factor is u(z) = e, Let us compute
(ew2u(az))' = e$2u'(:n) + e$2(2m)u(z) = (v (z) + zu(x)).
This must be equal to e”z(—xex2), if u were to satisfy v’ + 2zu = —ze™. So we have
(erU(ac))’ — —pe?®”,

A direct integration gives
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e u(r) =— [ xe dx:—§ e da* = — +C,
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and thus
er” 2
u(r) =——+Ce™ ™.
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By introducing the constant ¢ = —C'/4, we can rewrite it as u(x) = -
which gives the following convenient expression
1 4
) = = — . *
y() u(z) rR—— (*)

Now we would like to impose the initial condition y(0) = 0, and we face the problem
that the value

4
y(O) = - 1+ C’
is nonzero for any value of the constant ¢ € R. The only way to achieve y(0) = 0
would be to formally put ¢ = oo, because %LC — 0 as ¢ — oo. Rather than putting

¢ = oo directly into (x), a better approach is to send ¢ — 0o and examine how the value
y(x) behaves. We see that for any fixed x € R, the value y(x) tends to 0 as ¢ — oo
(or even as ¢ — —oo). This suggests that the function y(xz) = 0 may be a solution
of the original problem y/ — 22y = ze® y? with y(0) = 0, and as we have observed in
the beginning, it is easy to verify that it is indeed the case. The existence of such a
solution (called a singular solution) that cannot be obtained from (*) with any number
¢ € R, is an interesting property of nonlinear equations. The term “singular” refers to
the fact that the solution stays by itself, “isolated” from the family (x). As a function,
there is nothing “singular” about a singular solution; it is a perfectly regular function.
Formally, the singular solution corresponds to the value ¢ = 00, and therefore the set
of all solutions to the equation 3’ — 2xy = xe$2y2 forms a circle, in the sense that the
singular solution at ¢ = oo can be reached from two sides: by increasing the value of ¢
towards 400, and by decreasing it towards —oo. The point ¢ = oo can be thought of
as being diagonally opposite to the point ¢ = 0. In contrast, we know that all solutions
of a first order linear equation can be obtained by varying a parameter ¢ over R, hence
the set of solutions in this case forms a line. In general, the solutions of some nonlinear
equations may form lines, that of others may form shapes more complicated than a
circle.

Note: The initial condition y(0) = 0 leads to the singular solution, which was not really
intended. You will receive a full mark if you have reached the point (x), and have shown
an attempt to find c.



