
Solutions to selected problems

1. Consider the series
∞∑
n=1

1

nx
, (∗)

where x is a real variable. Determine all possible intervals in which the series converges
absolutely uniformly. Show that there is a continuous function f defined on (1,∞), to
which the series converges locally uniformly, but not uniformly, in (1,∞).

Solution: We know that this series converges pointwise for x > 1 and diverges for
x ≤ 1. This defines a function f(x) for x ∈ (1,∞). Let I be an interval, whose
left endpoint we denote by a > 1. Since n−x is a decreasing function of x, we have
|n−x| ≤ n−a for x ≥ a. Therefore, taking into account

∞∑
n=1

1

na
<∞,

and invoking the Weierstrass M-test, we infer that the series (∗) converges absolutely
uniformly in I. Incidentally, it also shows that f is continuous in I, and since (0,∞)
can be covered by, say, intervals of the form (a,∞) with a > 1, we conclude that f is
continuous in (1,∞). By recalling the definition of locally uniform convergence, we see
that (∗) converges locally uniformly in (1,∞). Anticipating a contradiction, suppose
that the convergence is uniform in (1,∞). This implies that the sequence of partial
sums of the series (∗) is uniformly Cauchy, in the sense that given any ε > 0, there
exists N such that

k∑
n=m

1

nx
≤ ε for all x > 1 and k > m ≥ N. (1)

However, given any m, no matter how large it is, we can choose k large enough and
x > 1 close enough to 1, so as to make

k∑
n=m

1

nx
≥ 1, (2)

which is a contradiction.

2. Show that for every r > 0 there exists N such that for any n ≥ N the polynomial

pn(z) = 1 + z +
z2

2
+

z3

3!
+ . . . +

zn

n!
,

does not have any zeroes in Dr = {z ∈ C : |z| < r}.



Solution: We know that given any r > 0, the sequence {pn} converges uniformly in Dr

to the complex exponential. The complex exponential is continuous, so f(z) = | exp z|
is a real-valued continuous function in the closed disk D̄r = {z ∈ C : |z| ≤ r}. Then by
the Weierstrass theorem, f takes its minimum in D̄r. Since the complex exponential
vanishes nowhere, the minimum of f over D̄r must be strictly positive. Let us denote
this minimum by ε > 0. Thus we have | exp z| ≥ ε for all z ∈ Dr. Now by uniform
convergence, we can choose N so large that

|pn(z)− exp z| ≤ ε

2
for all z ∈ Dr and n ≥ N,

This means that

|pn(z)| ≥ | exp z| − |pn(z)− exp z| ≥ ε

2
for all z ∈ Dr and n ≥ N,

by the triangle inequality.

3. Show that if a power series
∑

anz
n converges to some function f : C→ C uniformly in

C, then an = 0 for all but finitely many n, and hence f must be a polynomial.

Solution: Uniform convergence implies that the partial sums fn of
∑

anz
n form a

sequence that is uniformly Cauchy in C. In particular, this means that the sequence
{anzn} must go to 0 uniformly in C. That is, for any given ε > 0, there is N such that
|anzn| ≤ ε for all z ∈ C and n ≥ N . But if an 6= 0 and n ≥ 1 then there is no constant
M such that |anzn| ≤M for all z ∈ C. Hence an = 0 for all sufficiently large n.
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