SOLUTIONS TO THE PROBLEMS FROM THE MIDTERM EXAM
Math 249 Winter 2015

1. Let f be a holomorphic function in a convex open set 2 C C satisfying g(Ref)+h(Imf) =0
in 2, where g and h are real-valued differentiable functions of a real variable. (For example,
in one of the versions, we have g(u) = u and h(v) = —v3.) Assume that g’ # 0 everywhere
or b/ # 0 everywhere. Show that f must be constant in €.

Solution: Let us write f(x + iy) = u(x,y) + iv(z,y) with u and v real. Then we have
g(u) + h(v) =0 in Q.

Differentiating this with respect to z and y, we get
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which, in light of the Cauchy-Riemann equations, imply that
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Now we square each of these equations, and sum them, to conclude
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Because of the nonvanishing of at least one of ¢’ or h’, we have
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and moreover,
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by the Cauchy-Riemann equations.

What remains is to explain why the vanishing of the partial derivatives implies that u and
v are constants. The basic reason for this is that €2 is path-connected. To show this from
first principles, we may proceed as follows. Without loss of generality, assume that 0 € €,
and let w € © be an arbitrary point. Then by convexity and openness of €2, there is ¢ > 0
such that D.(wt) C Q for all t € [0,1]. In other words, © contains an e-neighbourhood
of the straight line segment connecting 0 and w. It is now clear that we can join 0 and
w by a “zigzag” path that consists of finitely many horizontal and vertical line segments,
and from here we have u(w) = u(0) and v(w) = v(0). Since w was arbitrary, we conclude
that f is constant in €.



2. Determine the convergence radii of the following power series.

(a)

S22

Solution: We can write the given series as 3. azz* with

{1 if £ = 2" for some integer n,
ajp =

0 otherwise,

from which it is obvious that lim sup #a; = 1, and by the Cauchy-Hadamard formula,
we have the convergence radius R = 1.

> (cosn)z".

Solution: We have |(cosn)z"| < |z|™, and so the series converges for |z| < 1. This
means that the convergence radius satisfies R > 1. Now we want to show that cosn
does not converge to 0 as n — co. Informally speaking, |cosn| ~ 1 when n ~ 7k for
some k € Z. As a way of making it precise, for each k € N there is an integer ny > 3k

such that
n
?’“‘g , or Ing — k| < 1.
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Therefore we have
| cosny| > cos1 >0,
and so cosn /4 0 as n — oo. This means that if |z| > 1 then (cosn)z" does not
converge to 0, implying that R < 1.
> (logn + ¢™)z", where ¢ € C is a constant.
Solution: With a, = logn + ¢, an application of the ratio test leads to
. lang . |log(n + 1) + ¢t . log(n+ 1)+t
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Note that |¢|™ grows faster than logn if |c| > 1, and that |¢|™ does not grow at all if
lc] < 1. Therefore we split the problem into two cases. First, assume that |¢| > 1.
Then we have
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Now assume that |c| < 1. In this case, we have
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Based on these computations, we conclude that
i |G g1 _ le| if |e] > 1, (1)
n—00  |ay| 1 if e <1,
or in other words,
1
R:min{l,ﬂ}. (5)
c
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3. Given that the convergence radius of the power series ) a,z" is R > 0, determine the
convergence radii of the following power series.

(a)

Z anz2n

Solution: By assumption, the series Y a,2" converges whenever |z| < R and di-
verges whenever |z| > R. Therefore the series Y. a,2%" = Y a,(2%)" converges
whenever 22| < R and diverges whenever 22| > R. To repeat, the series > a,z?"
converges whenever |z| < v/R and diverges whenever |z| > v/R. In other words, the
convergence radius of 3 a,2%" is V/R.

S n23"a, 2"

Solution: As a preliminary observation, we claim that the convergence radius of
S n%a,z" is still R. We could have simply cited this result, but let us reproduce
the argument here. First, denoting by R’ the convergence radius of > n2a,2", it

is obvious that R’ < R. Second, for any z with |z| < R, there is p and M with
|z| < p < R such that |a,| < Mp~™ (Abel’s observation). Then we have

Zn2\an2”| < ZMTLZ( )n < 00,

which shows that 3" n2a, 2" converges, and thus R’ > R. Hence the series Y n?a,2"
converges whenever |z| < R and diverges whenever |z| > R. This implies that
the series > n23"a,2" = Y. n2a,(32)" converges whenever |3z] < R and diverges
whenever |3z| > R. In other words, the convergence radius of > n23" R

anz"is 3.
2.n
> an2

Solution: Recall the definition
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R=supA, where A={r>0:sup|a,|r" < oo},
n

for the convergence radius of Y a,,2". On the other hands, for the convergence radius
R’ of 3" a22", we have

R' = sup B, with B ={r>0:sup|a,|*r" < oo},
n

Now, obviously r € A implies > € B, because

2
sup \an]2r2” = sup(]an]r")2 = (sup |an|T”) .
n n n

Moreover, r € B implies \/r € A, because

sup |an|(vr)" = sup v/|an [*r* = [sup |aZ|r™.
n n n

Therefore we have B = {r? : 7 € A}, and hence R’ = sup B = (sup A)? = R%.
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