
Problem 1. Compute the integrals
∫
Cr
zn dz for n ∈ Z, where Cr = ∂Dr and r > 0. Recall that Cr has the

counter-clockwise orientation.

Solution: We will use the Residue Theorem to solve this one. We could instead use other (perhaps more

elementary methods) but this is a good warm-up. Below is a brief review of the theorems which we will use.

Theorem 1 (Residue Theorem). Let Ω ⊂ C be an open set, and let z1, · · · , zm ∈ Ω. Suppose that γ is

a null-homotopic closed loop in Ω, and does not pass through any of the points z1, · · · , zm. Let f be a

holomorphic function in Ω− { z1, · · · , zm }. Then we have

∫
γ

f = 2πi

m∑
j=1

Ind(γ, zj)Res(f, zj)

Recall that

Ind(γ, zj) =
1

2πi

∫
γ

dz

z − c
Res(f, zj) =

1

2πi

∫
∂Dε(zj)

f(z)dz

We will use the properties proved in class

(a) If a−1 is the −1st coefficient in the Laurent series of f around c, then Res(f, c) = a−1

(b) If Ord(f, c) ≥ 0 (removable singularity) then Res(f, c) = 0

(c) If Ord(f, c) = −k (a k-pole), then

Res(f, c) = lim
z→c

1

(k − 1)!

dk−1

dzk−1
(z − c)kf(z)

(d) If Ord(f, c) ≥ 0 and Ord(g, c) = 1, then

Res

(
f

g
, c

)
=
f(c)

g′(c)

(e) Res(·, c) is C-linear in O(Dx
r (c)).

We changed a few of these from their statements in the notes. Most importantly, we changed property (c)

and (d). The new property (c) is easy to prove, and it is left to the reader.

Proof of the new property (d). The case Ord(f, c) = 0 is proved in the notes. When Ord(f, c) > 0, then

f(z) = (z − c)f̃(z) for some holomorphic f̃ . Then we have

f(z)

g(z)
=

f̃(z)

g(z)/(z − c)

it follows that g(z)/(z − c) has order 0 at c, and so the above expression has order 0 or greater, and thus

it’s residue is 0. However, we also have f(c) = 0 because f has order greater than 0 at c. It follows that the
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formula remains true.

Now to solve the problem using the residue theorem, we conclude∫
∂Dr

zndz = 2πiRes(zn, 0)

Since zn is holomorphic in Dx
r , and ∂Dr clearly has index 1 around 0. It is clear that Ord(zn, 0) is n, and

so by property (b) above, we conclude that∫
∂Dr

zndz = 0 if n ≥ 0

Next, by applying property (d) with f(z) = 1 and g(z) = z, we have

Res(
1

z
, 0) =

1

1
= 1

and so ∫
∂Dr

z−1 = 2πi.

Now by property (c), we conclude that

Ord(z−n, 0) = lim
z→0

1

(n− 1)!

dn−1

dzn−1
(zn · z−n) = 0 for n > 1,

(we remark that we could have used this to find Res(z−1, 0), but we are practicing using all the properties)

and so we obtain ∫
∂Dr

z−n = 0 for n > 1.

Problem 2. Evaluate the integrals∫ +∞

0

xmdx

1 + xn
and

∫ π

0

dθ

a+ sin2 θ

where m,n are integers satisfying 1 ≤ m ≤ n− 2 and a > 0 is real.

Solution: For the first one we will integrate along the contour shown below

γ1(t) = t, t ∈ [0, R] γ2(t) = t exp (2πi/n), t ∈ [0, R] γ3(t) = R exp (it), t ∈ [0, 2πi/n]

It is clear that the only zero of 1 + zn inside the interior of our contours is at z = exp (πi/n), and thus by

the Residue theorem, we can conclude that∫
γ1+γ3−γ2

zm

1 + zn
dz = 2πiRes

(
zm

1 + zn
, exp(πi/n)

)
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γ1

γ2
γ3

× z = exp (πi/n)

Figure 1: Contour used in the evaluation of the first integral

To find the residue we expand 1 + zn around z = u + exp (πi/n), where we obtain an expansion beginning

with the term n exp (πi/n)u. This proves that Ord(1 + zn, exp (πi/n)) = 1, and so we can use property (c)

of residues above to conclude that

Res

(
zm

1 + zn
, exp(πi/n)

)
= lim
z→exp(πi/n)

zm

nzn−1
=
zm−n+1

n
= −z

m+1

n
= − 1

n
exp

(
iπ
m+ 1

n

)
Now we note that on γ2 we have zm → exp (2πi(m/n))tm, 1 + zn = 1 + tn and dz → exp (2πi/n)dt, and so

we have ∫
−γ2

zm

1 + zn
= − exp

(
2πi

m+ 1

n

)∫
γ1

zm

1 + zn

Combining these, we obtain(
1− exp

(
2πi

m+ 1

n

))∫
γ1

zm

1 + zn
dz +

∫
γ3

zm

1 + zn
dz = −2πi

n
exp

(
iπ
m+ 1

n

)
When we take the limit R → ∞, we can conclude that the integral over γ3 vanishes, since the integrand

decays at least like z−2, and the length of the curves grows only like z, so the integral decays like z−1. We

also note that the integral we wish to evaluate is
∫
γ1
f(z)dz as R→∞. Dividing by −2i exp (iπ(m+ 1)/n),

we obtain
1

2i

(
exp

(
πi
m+ 1

n

)
− exp

(
−πim+ 1

n

))
lim
R→∞

∫ R

0

tm

1 + tn
dt =

π

n

We note that this implies

sin

(
π
m+ 1

n

)∫ ∞
0

tm

1 + tn
dt =

π

n
=⇒

∫ ∞
0

tm

1 + tn
dt =

π

n
csc

(
π
m+ 1

n

)

For the second integral, we note by symmetry of sin that∫ π

0

dθ

a+ sin2 θ
=

1

2

∫ 2π

0

dθ

a+ sin2 θ
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Now let z = exp (iθ), whereby we obtain dz = iz dθ, and

sin θ =
z − 1/z

2i
=⇒ sin2 θ =

2− z2 − z−2

4

We also note that when we integrate θ from 0 to 2π, we are integrating the variable z over the unit disk.

We obtain

1

2

∫ 2π

0

dθ

a+ sin2 θ
= −2i

∫
∂D

dz

4az + 2z − z3 − z−1
= 2i

∫
∂D

z dz

z4 − (4a+ 2)z2 + 1

Now to find the residues, we must find the zeroes of z4 − (4a+ 2)z2 + 1. Completing the square,

z4 − (4a+ 2)z2 + 1 = (z2 − (2a+ 1))2 − 4a2 − 4a

Which implies that the set of zeroes is the four roots

r±,± = ±
√

2a+ 1± 2
√
a(a+ 1)

Since a > 0, we can conclude that r±,+ > 0, and so it lies outside of ∂D. Since 2a + 1 − 2
√
a(a+ 1) > 1

implies 4a2 + 4a+ 1 ≥ 4a2 + 4a+ 1 + 4
√
a(a+ 1) and a 6= 0, we conclude that r±,− ∈ ∂D. Finally we note

that 2a+ 1− 2
√
a(a+ 1) = 0 implies that 1 = 0, a contradiction. This means that z4 − (4a+ 2)z2 + 1 has

order 1 at each of the roots, and so we can apply property (c) of residues to conclude

Res

(
z

z4 − (4a+ 2)z2 + 1
, r±,−

)
=

1

4(r±,−)2 − 4(2a+ 1)
=

1

−8
√
a(a+ 1)

We conclude that the integral is

2i

∫
∂D

z dz

z4 − (4a+ 2)z2 + 1
= 2i× 2πi

∑
±

1

−8
√
a(a+ 1)

=
π√

a(a+ 1)

Problem 3. Calculate the residues of tan(πz) and cot(πz) at their poles.

Solution: Using the fact that tanπz = sinπz/ cosπz, we can conclude that whenever tanπz has a pole, we

have cosπz = 0. As we proved in assignment 2, cos z = 0 implies that z = π/2 + πn for some n ∈ Z. Since

cos′(π/2 + πn) = ±1 we conclude that cos has order 1 at it’s zeroes. We can therefore apply property (c) of

residues and conclude that

Res

(
sinπz

cosπz
, r

)
= − 1

π

sin z

sin z
=
−1

π

Therefore tan has residue −1π at each of it’s poles. Applying the same exact analysis to cot, we obtain

Res
(cos z

sin z
, r
)

=
cos z

π cos z
=

1

π

And so cot has residue 1
π at each of it’s poles.
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Problem 4. Show that the sum of the residues of a rational function (together with the residue at ∞) is

equal to zero. As part of this exercise you need to introduce a natural definition for the residue at ∞.

Solution:

Definition 1. The residue at infinity of a function f ∈ ODr,∞, where Dr,∞ is an annulus with an infinite

outer radius, is defined to be

Res(f,∞) =

∫
∂Dr,∞

f(z)dz

A few remarks:

1. Since we require f to be holomorphic on Dr,∞, we can not have any singularities in Dr,∞.

2. By homotopy of ∂Dr,∞ and ∂Dr̃,∞, this definition does not depend on the r chosen.

3. By our choice of orientation of ∂Dr,R [shown below] we conclude that ∂Dr,∞ = −∂Dr.

Figure 2: Orientation of ∂DrR

Let f be a rational function, then f = p/q, where p and q are polynomials. Clearly f is meromorphic, and

it’s isolated singularities are the roots of the polynomial q. Since q has finitely many roots, f has finitely

many singularities { z1, · · · , zn }.

Let Dr be a disk so large that it contains all of { z1, · · · , zn }. Then by the residue theorem, we can conclude

that
1

2πi

∫
∂Dr

f(z)dz =

n∑
i=1

Res(f, zi) (1)

However, in this sum we are omitting the residue at infinity. Since all of the singularities are in Dr we can

conclude that f is holomorphic on Dr,∞, and so

Res(f,∞) =
1

2πi

∫
∂Dr,∞

f(z)dz = − 1

2πi

∫
∂DR

f(z)dz (2)
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where we used ∂Dr = −∂Dr,∞. Adding (1) and (2), we conclude

Res(f,∞) +

n∑
i=1

Res(f, zi) = 0

Problem 5. Let f be holomorphic and bounded in a punctured neighbourhood of 0. Show that

g(z) =


z2f(z) for z 6= 0

0 for z = 0

is holomorphic in a neighbourhood of 0.

Solution: For concreteness, let f be holomorphic on D×r (0). To prove that g(z) is holomorphic on Dr(0), we

will simply prove that it is differentiable at z = 0. Since we already know that it is differentiable everywhere

on D×r (0), we will have solved the problem.

To prove that g is differentiable at 0, consider the difference quotient:

lim
z→0

g(z)− g(0)

z
= lim
z→0

z2f(z)

z
= lim
z→0

zf(z)

Now since f is bounded, we can conclude that this limit goes to zero, and thus g is differentiable at 0. It

follows that g is holomorphic everywhere. One consequence of the proof is that g has g(0) = 0 and g′(0) = 0,

this allows us to conclude that g(z) = z2h(z) for some holomorphic h. Notice that this result gives an

alternate proof of the removable singularity theorem: since f(z) = g(z)/z2 = h(z) everywhere in D×r (0) we

can use the identity theorem to conclude that f has a removable singularity at 0.

Problem 6. Let c ∈ C be an isolated essential singular point of f . Prove that for any given α ∈ R and an

arbitrary small r > 0, there exists z ∈ Dr(c)− { c } such that <f(z) = α.

Solution: We will use two theorems proved in the course notes:

Theorem (Casorati-Weierstrass Theorem). Let f ∈ O(Dx
r (c)), and let c be an essential singularity of f .

Then f(Dx
r (c)) is dense in C.

Theorem (Preservation of Domains). If Ω ⊂ C is a connected open set and f ∈ O(Ω) is nonconstant, then

f(Ω) is also a connected open set

Now suppose that there exists an α ∈ R such that there does not exist a z ∈ Dx
r (c) such that <f(z) = α.

Then the line l = { z ∈ C | <z = α } is disjoint from f(Dx
r (c)). Since f(Dx

r (c)) is dense, we can conclude

that there exist points of f(Dx
r (c)) on either side of the line l. Let C−α and C+α be the two open halves of

the complex plane

C−α = { z ∈ C | <z < α } and C+α = { z ∈ C | <z > α }
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It is clear that these disjoint open sets cover f(Dx
r (c)), and both C−α ∩ f(Dx

r (c)) and C+α ∩ f(Dx
r (c)) are

non-empty. Therefore f(Dx
r (c)) can not be connected. However, by the Preservation of Domains theorem,

and the fact that Dx
r (c) is connected, we must have f(Dx

r (c)) connected. This is a contradiction, and so we

must conclude the existence of some z ∈ Dx
r (c) such that <f(z) = α.

Problem 7. Let γ : [a, b] → A be a piecewise differentiable curve, where A ⊂ C is an open set, and let

g : A×Ω→ C be a countinuous function of two complex variables, where Ω ⊂ C is also an open set. Assume

that for any fixed w ∈ A, the function z 7→ g(w, z) is holomorphic in Ω. Then prove that

f(z) =

∫
γ

g(w, z)dw

is holomorphic in Ω.

Solution: Let c ∈ Ω. Since g(w, ·) is holomorphic in Ω for each w, we can conclude that

g(w, z) = g(w, c) + h(w, z)(z − c)

For some h(w, z) continous at c (in the second argument, holding the first one fixed). Furthermore, since

h(w, z) =
g(w, z)− g(w, c)

(z − c)

we can conclude that h is also continuous in the first argument (holding the second one fixed). However, if

a function is continuous in both arguments seperately, we can conclude that it is continuous1.

Then we can conclude that

f(z) =

∫
γ

g(w, c) + h(w, z)(z − c) dw = f(c) + (z − c)
∫
γ

h(w, z) (3)

It is clear that the integral

∫
γ

h(w, z)dw is well defined by continuity of h. Furthermore, it is a basic fact

of integration that

∫
γ

h(w, z)dw is a continuous function of z. Therefore the equation (3) implies that f is

differentiable at c. Since c was arbitary, we conclude that f is holomorphic on Ω.

Note: We could have also used Morera’s theorem in the manner we have used to prove the Weierstrass

convergence theorem (and the Schwarz reflection principle).

1proof: h(w + δ, z + ε)− h(w, z) = h(w + δ, z + ε)− h(w, z + ε) + h(w, z + ε)− h(w, z)
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