MATH 249 ASSIGNMENT 3

DUE WEDNESDAY APRIL 1

Note: For hints on the first 3 problems, see page 64 of Stein and Shakarchi. 1. Prove that

$$\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}.$$

2. Prove that

$$\int_0^\infty \sin x^2 \, \mathrm{d}x = \int_0^\infty \cos x^2 \, \mathrm{d}x = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

3. Evaluate the integrals

$$\int_0^\infty e^{-ax} \sin bx \, \mathrm{d}x, \qquad \text{and} \qquad \int_0^\infty e^{-ax} \cos bx \, \mathrm{d}x,$$

where a > 0 and b > 0 are constants.

4. Let $\Omega \subset \mathbb{H} \equiv \{ \operatorname{Im} z > 0 \}$ be an open set, and let $\Sigma = \{ z \in \partial \Omega : \operatorname{Im} z = 0 \}$ be a nonempty open subset of the real axis $\{ \operatorname{Im} z = 0 \}$. Suppose that f is holomorphic in Ω , continuous in $\Omega \cup \Sigma$, and takes real values on Σ . Let

$$\tilde{\Omega} = \Omega \cup \Sigma \cup \{ \bar{z} : z \in \Omega \}.$$

Define the function $F \in C(\tilde{\Omega})$ by F = f in $\Omega \cup \Sigma$ and $F(\bar{z}) = \overline{f(z)}$ for $z \in \Omega$. Show that F is holomorphic in $\tilde{\Omega}$. This result is known as the *Schwarz reflection principle*.

- 5. Show that an entire analytic function with bounded real part must be constant.
- 6. Let $f \in \mathscr{O}(\mathbb{C})$ and suppose that $|f(z)| \leq M(1 + \sqrt{|z|})$ for all $z \in \mathbb{C}$, with some constant M > 0. Show that f is constant.
- 7. Let f be an entire function satisfying $|f(z)| \to \infty$ as $|z| \to \infty$. Show that $f : \mathbb{C} \to \mathbb{C}$ is surjective. Derive the fundamental theorem of algebra as a corollary.

Date: Winter 2015.