
Solutions to selected midterm problems

1. Consider a circle centred at (x1, y1) ∈ R2 of radius r1 > 0, and another circle centred
at (x2, y2) ∈ R2 of radius r2 > 0. Let (x, y) ∈ R2 be a point of intersection of the two
circles.

(a) Intuitively, if we slightly vary any of the 6 parameters (x1, y1, r1, x2, y2, r2), the
intersection point (x, y) will move also slightly. Under what condition can we
apply the implicit function theorem to guarantee that (x, y) is a differentiable
function of the 6 parameters, as these parameters vary in a 6-dimensional open
cube centred at the current value of the parameters?

(b) What is the geometric meaning of the condition derived in (a)?

(c) Compute the partial derivatives
∂x

∂x1
and

∂x

∂r1
.

Solution: Let us introduce the notations α = (x1, y1, r1, x2, y2, r2) and β = (x, y), and
let us denote by α∗ and β∗ the current values of the parameters. We know that the
point β∗ = (x∗, y∗) is a point of intersection of the two circles. On the other hand, a
point (x, y) is an intersection point if and only if the following equations are satisfied:

(x− x1)
2 + (y − y1)

2 = r21,

(x− x2)
2 + (y − y2)

2 = r22.

We write this as ϕ(α, β) = 0, where ϕ : R8 → R2 is defined by

ϕ(x1, y1, r1, x2, y2, r2, x, y) =

(
(x− x1)

2 + (y − y1)
2 − r21

(x− x2)
2 + (y − y2)

2 − r22

)
.

Since the components of ϕ are polynomials, ϕ is continuously differentiable (in fact
smooth) in R8. We have ϕ(α∗, β∗) = 0. The only remaining condition to check in order
to apply the implicit function theorem and express β as a function of α near (α∗, β∗)
is the invertibility of the matrix Dβϕ(α

∗, β∗). Thus we compute

Dβϕ(α, β) =

(
2(x− x1) 2(y − y1)
2(x− x2) 2(y − y2)

)
,

and therefore

detDβϕ(α, β) = 4(x− x1)(y − y2)− 4(y − y1)(x− x2).

Hence if
(x∗ − x∗1)(y

∗ − y∗2) ̸= (y∗ − y∗1)(x
∗ − x∗2), (1)

then there exist δ > 0 and a continuously differentiable function h : Q6
δ(α

∗) → R2

such that ϕ(α, h(α)) = 0 for all α ∈ Q6
δ(α

∗). In other words, the original intersection
point (x∗, y∗) moves in a (continuously) differentiable manner as the 6 parameters
(x1, y1, r1, x2, y2, r2) take values in the 6-dimensional cube Q6

δ(α
∗).



As for (b), suppose that (1) does not hold, that is, we have

(x∗ − x∗1)(y
∗ − y∗2) = (y∗ − y∗1)(x

∗ − x∗2).

Since (x∗, y∗) is at the distance r∗1 > 0 from (x∗1, y
∗
1), the quantities x∗−x∗1 and y∗− y∗1

cannot vanish at the same time. Without loss of generality, let x∗ − x∗1 ̸= 0. Then the
aforementioned condition is equivalent to

y∗ − y∗2 =
(y∗ − y∗1)(x

∗ − x∗2)

x∗ − x∗1
.

If y∗ − y∗2 = 0, then x∗ −x∗2 ̸= 0. If y∗ − y∗2 ̸= 0, then (y∗ − y∗1)(x
∗ −x∗2) ̸= 0, and hence

x∗ − x∗2 ̸= 0. In any case, we can divide by x∗ − x∗2, yielding

y∗ − y∗2
x∗ − x∗2

=
y∗ − y∗1
x∗ − x∗1

.

This means that the vectors (x∗ − x∗1, y
∗ − y∗1) and (x∗ − x∗2, y

∗ − y∗2) are on the same
line, or equivalently, the two circles are tangential to each other at (x∗, y∗). Therefore,
condition (1) says that the two circles are not tangent to each other, or that the two
circles intersect at more than a single point.

To compute the derivatives of x with respect to the parameters α, we use the formula

Dαβ = Dh = −(Dβϕ)
−1Dαϕ.

We have

(Dβϕ)
−1 =

1

2∆

(
y − y2 y1 − y
x2 − x x− x1

)
,

where ∆ = (x− x1)(y − y2)− (y − y1)(x− x2) ̸= 0. Furthermore, we have

∂ϕ

∂x1
=

(
−2(x− x1)

0

)
, and

∂ϕ

∂r1
=

(
2r1
0

)
,

which yield

∂α

∂x1
= −(Dβϕ)

−1 ∂ϕ

∂x1
= − 1

2∆

(
y − y2 y1 − y
x2 − x x− x1

)(
−2(x− x1)

0

)
=

x− x1
∆

(
y − y2
x2 − x

)
,

and

∂α

∂r1
= −(Dβϕ)

−1 ∂ϕ

∂r1
= − 1

2∆

(
y − y2 y1 − y
x2 − x x− x1

)(
2r1
0

)
= −r1

∆

(
y − y2
x2 − x

)
.

Since x is simply the first component of α, we can read off

∂x

∂x1
=

(x− x1)(y − y2)

(x− x1)(y − y2)− (y − y1)(x− x2)
,

and
∂x

∂r1
=

(y2 − y)r1
(x− x1)(y − y2)− (y − y1)(x− x2)

.
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2. Consider a circle centred at (X,Y ) ∈ R2 of radius R > 0, and a line passing through
the origin that makes an angle α in anticlockwise direction with the positive x-axis.
Let (x, y) ∈ R2 be a point of intersection of the circle and the line.

(a) Intuitively, if we slightly vary any of the 4 parameters (X,Y,R, α), the intersection
point (x, y) will move also slightly. Under what condition can we apply the implicit
function theorem to guarantee that (x, y) is a differentiable function of the 4
parameters, as these parameters vary in a 4-dimensional open cube centred at the
current value of the parameters?

(b) What is the geometric meaning of the condition derived in (a)?

(c) Compute the partial derivatives
∂x

∂X
and

∂x

∂α
.

Solution: Let us introduce the notations ξ = (X,Y,R, α) and η = (x, y), and let us
denote by ξ∗ and η∗ the current values of the parameters. We know that the point
η∗ = (x∗, y∗) is a point of intersection of the circle and the line. On the other hand, a
point (x, y) is an intersection point if and only if the following equations are satisfied:

(x−X)2 + (y − Y )2 = R2,

x sinα− y cosα = 0.

We write this as ϕ(ξ, η) = 0, where ϕ : R6 → R2 is defined by

ϕ(X,Y,R, α, x, y) =

(
(x−X)2 + (y − Y )2 −R2

x sinα− y cosα

)
.

Since the components of ϕ are smooth functions, ϕ is continuously differentiable (in
fact smooth) in R6. We have ϕ(ξ∗, η∗) = 0. The only remaining condition to check
in order to apply the implicit function theorem and express η as a function of ξ near
(ξ∗, η∗) is the invertibility of the matrix Dηϕ(ξ

∗, η∗). Thus we compute

Dηϕ(ξ, η) =

(
2(x−X) 2(y − Y )
sinα − cosα

)
,

and therefore
detDηϕ(ξ, η) = −2(x−X) cosα− 2(y − Y ) sinα.

Hence if
(x−X) cosα+ (y − Y ) sinα ̸= 0, (2)

then there exist δ > 0 and a continuously differentiable function h : Q4
δ(α

∗) → R2 such
that ϕ(ξ, h(ξ)) = 0 for all ξ ∈ Q4

δ(ξ
∗). In other words, the original intersection point

(x∗, y∗) moves in a (continuously) differentiable manner as the 4 parameters (X,Y,R, α)
take values in the 4-dimensional cube Q4

δ(ξ
∗).

As for (b), consider the negation of (2), and notice that the condition

(x∗ −X∗) cosα∗ + (y∗ − Y ∗) sinα∗ = 0,
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means that the vectors (x∗ −X∗, y∗ − Y ∗) and (cosα, sinα) are perpendicular to each
other, or equivalently, the circle and the line are tangential to each other at (x∗, y∗).
Therefore, condition (2) says that the line cannot be tangent to the circle, or that the
line cuts the circle at more than a single point.

To compute the derivatives of x with respect to the parameters ξ, we use the formula

Dξη = Dh = −(Dηϕ)
−1Dξϕ.

We have

(Dηϕ)
−1 =

1

2∆

(
cosα 2(y − Y )
sinα −2(x−X)

)
,

where ∆ = (x−X) cosα+ (y − Y ) sinα ̸= 0. We also have

∂ϕ

∂X
=

(
−2(x−X)

0

)
, and

∂ϕ

∂α
=

(
0

x cosα+ y sinα

)
,

which yield

∂η

∂X
= −(Dηϕ)

−1 ∂ϕ

∂X
= − 1

2∆

(
cosα 2(y − Y )
sinα −2(x−X)

)(
−2(x−X)

0

)
=

x−X

∆

(
cosα
sinα

)
,

and

∂η

∂α
= −(Dηϕ)

−1 ∂ϕ

∂α
= − 1

2∆

(
cosα 2(y − Y )
sinα −2(x−X)

)(
0

x cosα+ y sinα

)
=

x cosα+ y sinα

∆

(
Y − y
x−X

)
.

Since x is simply the first component of η, we can read off

∂x

∂X
=

(X − x) cosα

(x−X) cosα+ (y − Y ) sinα
,

and
∂x

∂α
=

(Y − y)(x cosα+ y sinα)

(x−X) cosα+ (y − Y ) sinα
.
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