
Solutions to the problems from Written assignment 2
Math 222 Winter 2015

1. Determine if the following limits exist, and if a limit exists, find its value.

(a) The limit of f(x, y) =
x2y

x4 + y2
as (x, y)→ (0, 0).

Solution: At first glance, it might seem that there is a “fourth order smallness” in the
denominator, and only a “third order smallness” in the numerator, which would suggest
that the function must “blow up” at (x, y) = (0, 0). However, this is not true. In order
for the denominator to behave like x4, the variable y must behave like x2, which means
that the numerator would be like x4. Taking a clue from this observation, let us now check
what happens to f(x, y) when y = ax2 and x→ 0, for some real constant a. Thus putting
y = ax2 into f(x, y), we get

f(x, ax2) =
ax4

x4 + a2x4
=

a

1 + a2
, (1)

which means that the limit of f(x, y) as the point (x, y) approaches (0, 0) following different
paths will be different. For example, note from (1), that

lim
x→0

f(x, 0) = 0, and lim
x→0

f(x, x2) =
1

2
. (2)

Therefore the limit of f(x, y) as (x, y)→ (0, 0) does not exist.
To expand on the last point a bit, suppose that the limit exists and equal to s, i.e.,

lim
(x,y)→(0,0)

f(x, y) = s. (3)

By definition, this means that for any given ε > 0, there exists δ > 0 such that

|f(x, y)− s| < ε whenever x2 + y2 < δ2. (4)

Let δ > 0 be a value δ < 1 that corresponds to ε = 1
8 , that is,

|f(x, y)− s| < 1
8 whenever x2 + y2 < δ2. (5)

Consider the points (x1, y1) = ( δ2 , 0) and (x2, y2) = ( δ2 , (
δ
2)2). These points are in the disk

of radius δ centred at (0, 0), that is, they satisfy x21 + y21 < δ2 and x22 + y22 < δ2, and hence
by (5), we have

|f(x1, y1)− s| < 1
8 , and |f(x2, y2)− s| < 1

8 . (6)

However, from (1) we know that

f(x1, y1) = 0, and f(x2, y2) = 1
2 , (7)

which, in light of (6), yields

|s| < 1
8 , and |s− 1

2 | <
1
8 . (8)

Clearly this is impossible, and therefore the assumption (3) cannot be true.



(a) Depiction of the graph of f(x, y).

x

y

(b) Colour density plot of f(x, y). Different hues
represent different values. On this diagram, red
represents values near zero, blue represents posi-
tive, and green represents negative values.

Figure 1: The function f(x, y) from Problem 1(a).

(b) The limit of f(x, y) =
x2y2

x2 + y2
as (x, y)→ (0, 0).

Solution: A clue that the limit must exist can be gleaned from the fact that we have a
“fourth order smallness” in the numerator, while there is only a “second order smallness” in
the denominator. We observe that

0 ≤ x2y2 ≤ x2y2 + x4 = x2(x2 + y2), (9)

and hence

0 ≤ x2y2

x2 + y2
=
x2(x2 + y2)

x2 + y2
≤ x2, for (x, y) 6= (0, 0). (10)

This shows that f(x, y)→ 0 as (x, y)→ (0, 0).
To be more precise, given any ε > 0, we set δ =

√
ε. Then for x2 + y2 < δ2, we have

0 ≤ f(x, y) ≤ x2 < δ2 = ε, (11)

which confirms that f(x, y)→ 0 as (x, y)→ (0, 0).
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(a) The graph of the function f(x, y) from Prob-
lem 1(b), over a square centred at the origin.

(b) The graph and a colour density plot of the
function f(x, y) from Problem 1(c), over a square
centred at the origin.

Figure 2: Illustrations for Problem 1(b) and Problem 1(c).

(c) The limit of f(x, y) =
x3 − y3

x− y
as (x, y)→ (1, 1).

Solution: For (x, y) 6= (0, 0), we have

f(x, y) =
x3 − y3

x− y
=

(x− y)(x2 + xy + y2)

x− y
= x2 + xy + y2. (12)

We know that the function
g(x, y) = x2 + xy + y2, (13)

is a continuous function of the two variables (x, y), and so

lim
(x,y)→(1,1)

g(x, y) = g(1, 1) = 3. (14)

Since the function f(x, y) coincides with g(x, y) as long as (x, y) 6= (0, 0), we conclude that

lim
(x,y)→(1,1)

f(x, y) = lim
(x,y)→(1,1)

g(x, y) = g(1, 1) = 3. (15)
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2. Find the coordinates of the point (x, y, z) on the plane z = x + y + 4 which is closest to the
origin. The solution should involve partial derivatives, and direct geometric reasonings that
bypass partial derivatives are not allowed.

Solution: The square of the distance from a point (x, y, z) on the plane to the origin (0, 0, 0) is

f(x, y) = x2 + y2 + (x+ y + 4)2. (16)

To find the critical points, we set up the equations

∂

∂x
f(x, y) = 2x+ 2(x+ y + 4) = 4x+ 2y + 8 = 0,

∂

∂y
f(x, y) = 2y + 2(x+ y + 4) = 2x+ 4y + 8 = 0,

(17)

whose only solution is
x = y = −4

3 . (18)

We infer that the only critical point of f(x, y) is (x∗, y∗) = (−4
3 ,−

4
3), and that

f(x∗, y∗) = 16
3 . (19)

The question is: Is this the minimum value of f? To answer this question, we first try to show
that f(x, y) is large when the point (x, y) is far away from the origin. If (x, y) is outside the
open disk DR = {(x, y) : x2 + y2 < R2} of radius R > 0, that is, if x2 + y2 ≥ R2, then we have

f(x, y) = x2 + y2 + (x+ y + 4)2 ≥ x2 + y2 ≥ R2. (20)

In particular, fixing R = 4, we get

f(x, y) ≥ 16 > 16
3 = f(x∗, y∗) for x2 + y2 ≥ R2, (21)

and since (x∗, y∗) is in the disk DR, we conclude that any possible minimizer must be contained
in the disk DR. Now we apply the Weierstrass existence theorem in the closed disk D̄R =
{(x, y) : x2 + y2 ≤ R2}, to infer that there exists a minimizer of f over the closed disk D̄R. By
(21), a minimizer cannot be on the boundary of D̄R, so it must be in the open disk DR. This
means that any minimizer must be a critical point of f in DR, but we know that there is only
one critical point, implying that there is only one minimizer of f over D̄R, and the minimizer
is the point (x∗, y∗). Note that at this point all we know is that (x∗, y∗) is the minimizer of f
over D̄R. However, invoking (21) once again, we conclude that (x∗, y∗) is indeed the minimizer
of f over R2. Finally, since we were asked to find the coordinates of the point (x, y, z), we note
that the minimizer (x∗, y∗) corresponds to the point

(x, y, z) = (−4
3 ,−

4
3 ,

4
3), (22)

on the plane z = x+ y + 4.
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3. Find the maximum and minimum values of f(x, y, z) = 2x−y+4z on the sphere x2+y2+z2 = 1.
Here you can use any type of reasonings, including geometric ones.

Solution: Let us use the notations X = (x, y, z) and V = (2,−1, 4). Then the problem is
equivalent to minimizing and maximizing the function

f(X) = V ·X, (23)

over the sphere |X| = 1. We have

f(X) = V ·X = |V ||X| cos θ = |V | cos θ =
√

22 + 12 + 42 cos θ =
√

21 cos θ, (24)

where θ is the angle between the vectors X and V . It is now clear that the maximum is obtained
at θ = 0 and the minimum is obtained at θ = π. The corresponding values are

fmax =
√

21, and fmin = −
√

21. (25)

This answers the question completely, but if we wanted to find the points at which the maximum
and the minimum values are attained, the maximizer of f(X) over |X| = 1 is the vector

X∗ =
1

|V |
V =

1√
21

(2,−1, 4) =
( 2√

21
,− 1√

21
,

4√
21

)
, (26)

and the minimizer is
X∗ = − 1

|V |
V =

(
− 2√

21
,

1√
21
,− 4√

21

)
. (27)

4. Let f(x, y) = 5x − 7y + 4xy − 7x2 + 4y2 be a function defined in the unit square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. Find the maximum and minimum values of f and where they occur.

Solution: By the Weierstrass existence theorem, there exist a maximizer and a minimizer in
the (closed) square Q̄ = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. If there is a maximizer (or a minimizer)
in Q = {(x, y) : 0 < x < 1, 0 < y < 1}, then it must be a critical point. From the equations

∂

∂x
f(x, y) = 5 + 4y − 14x = 0,

∂

∂y
f(x, y) = −7 + 4x+ 8y = 0,

(28)

it follows that (x∗, y∗) = (1732 ,
39
64) is the only critical point of f in Q. For later reference, let us

compute
f(x∗, y∗) = f(1732 ,

39
64) = −103

128 . (29)

Let us also compute the values of f at the four corners of the square Q̄:

f(0, 0) = 0, f(0, 1) = −3, f(1, 0) = −2, f(1, 1) = −1. (30)

It remains to check the four sides of Q̄. At the bottom edge `1 = {0 < x < 1, y = 0}, the values
of f are recorded in the single variable function

g1(x) = f(x, 0) = 5x− 7x2. (31)
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(a) The function f(x, y, z) = V · X from Prob-
lem 3 for X = (x, y, z) on the unit sphere is de-
picted by a colour density plot on the sphere. Red
represents high values, and blue represents low
values.

(b) The graph and a colour density plot of the
function f(x, y) from Problem 4 over the unit
square Q̄ = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Figure 3: Illustrations for Problem 3 and Problem 4.

It is easy to find the critical point x∗1 = 5
14 , which gives

f(x∗1, 0) = g1(x
∗
1) = 25

28 . (32)

At the top edge `2 = {0 < x < 1, y = 1}, we have

g2(x) = f(x, 1) = 5x− 7 + 4x− 7x2 + 4 = −7x2 + 9x− 3, (33)

whose critical point is x∗2 = 9
14 , with the corresponding value

f(x∗2, 1) = g2(x
∗
2) = − 3

28 . (34)

As for the left edge `3 = {x = 0, 0 < y < 1}, we have

g3(y) = f(0, y) = −7y + 4y2. (35)

The critical point is y∗3 = 7
8 , and the function value is

f(0, y∗3) = g3(y
∗
3) = −49

16 . (36)
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Finally, at the right edge `4 = {x = 1, 0 < y < 1}, the values of f are

g4(y) = f(1, y) = 5− 7y + 4y − 7 + 4y2 = 4y2 − 3y − 2. (37)

The only critical point of g4 is y∗4 = 3
8 , with the value

f(1, y∗4) = g4(y
∗
4) = −41

16 . (38)

Now, by comparing the values (29), (30), (32), (34), (36), and (38), we conclude that the
maximum value of f over Q̄ is 25

28 , which occurs at (x∗1, 0) = ( 5
14 , 0), and the minimum value of

f over Q̄ is −49
16 , which occurs at (0, y∗3) = (0, 78).

5. Find the maximum and minimum values of the function f(x, y) = 5x2 − 22xy + 5y2 + 8 in the
disk x2 + y2 ≤ 25.

Solution: By the Weierstrass existence theorem, there exist a maximizer and a minimizer in
the (closed) disk D̄ = {(x, y) : x2 + y2 ≤ 25}. If there is a maximizer (or a minimizer) in
D = {(x, y) : x2 + y2 < 25}, then it must be a critical point. From the equations

∂

∂x
f(x, y) = 10x− 22y = 0,

∂

∂y
f(x, y) = −22x+ 10y = 0, (39)

it follows that (x∗, y∗) = (0, 0) is the only critical point of f in D. For later reference, let us
compute

f(x∗, y∗) = f(0, 0) = 8. (40)

Now we parameterize the boundary of D̄ as

(x(t), y(t)) = (5 cos t, 5 sin t), t ∈ R. (41)

Note that for any t1 and t2 satisfying t2 = t1 + 2πn with some integer n, we have x(t1) = x(t2)
and y(t1) = y(t2), meaning that the parameter values t1 and t2 correspond to the same point
on the boundary (circle) of D̄. The values of f along the boundary gives rise to the function

g(t) = f(x(t), y(t)) = 5 · 25 cos2 t− 22 · 25 sin t cos t+ 5 · 25 sin2 t+ 8

= 125− 22 · 25 sin t cos t+ 8 = 133− 275 sin 2t,
(42)

where we have used the identity sin 2t = 2 sin t cos t. From the properties of sine, we infer that
the minimum of g is obtained at 2t = π

2 + 2πn for integer n, and the maximum of g is obtained
at 2t = 3π

2 + 2πn for integer n. In terms of t, the minimum is at t = π
4 + πn, which means

that there are two minimizers corresponding to t1 = π
4 and to t2 = π

4 + π = 5π
4 . Similarly, the

maximum is obtained at t = 3π
4 + πn, giving two maximizers corresponding to t3 = 3π

4 and to
t4 = 3π

4 + π = 7π
4 . The values of f at these points are

g(t1) = g(t2) = 133− 275 = −142, and g(t3) = g(t4) = 133 + 275 = 408. (43)

A comparison of the preceding values with (40) makes it clear that the maximum value of f in
D̄ is 408, and the minimum value is −142.
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(a) The graph and a colour density plot of
the function f(x, y) from Problem 5 over the
disk D̄ = {x2 + y2 ≤ 25}. (b) The graph of the function f(x, y) from Problem 6,

over a square centred at the origin.

Figure 4: Illustrations for Problem 3 and Problem 4.

6. Find the maximum and minimum values of

f(x, y) =
x+ y

2 + x2 + y2
.

Solution: The critical points of f must satisfy

∂

∂x
f(x, y) =

2 + x2 + y2 − (x+ y) · 2x
(2 + x2 + y2)2

=
2− x2 + y2 − 2xy

(2 + x2 + y2)2
= 0,

∂

∂y
f(x, y) =

2 + x2 + y2 − (x+ y) · 2y
(2 + x2 + y2)2

=
2 + x2 − y2 − 2xy

(2 + x2 + y2)2
= 0,

(44)

which imply the equations

2− x2 + y2 − 2xy = 0,

2 + x2 − y2 − 2xy = 0.
(45)

By adding and subtracting one of the equations from the other, we arrive at

xy = 1, x2 − y2 = 0, (46)
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whose only solutions are

(x1, y1) = (1, 1), and (x2, y2) = (−1,−1). (47)

For the values of f at the critical points, we have

f(x1, y1) =
1

2
, and f(x2, y2) = −1

2
. (48)

The question is: Are they the maximum and minimum values of f? To answer this question,
we first try to show that f(x, y) is close to 0 when the point (x, y) is far away from the origin.
Given (x, y), let r =

√
x2 + y2 be the distance from (x, y) to the origin (0, 0). Then we have

|x| ≤ r and |y| ≤ r, and so

|f(x, y)| = |x+ y|
2 + x2 + y2

≤ |x|+ |y|
2 + x2 + y2

≤ 2r

2 + r2
. (49)

Moreover, if (x, y) is outside the open disk DR = {(x, y) : x2 + y2 < R2} of radius R > 0, that
is, if r ≥ R, then we have

|f(x, y)| ≤ 2r

2 + r2
≤ 2r

r2
=

2

r
≤ 2

R
. (50)

In particular, fixing R = 8, we get

|f(x, y)| ≤ 1

4
for x2 + y2 ≥ R2. (51)

Since both points (x1, y2) are (x2, y2) are in the disk DR, we conclude that any possible maximiz-
ers and minimizers must be contained in the disk DR. Now we apply the Weierstrass existence
theorem in the closed disk D̄R = {(x, y) : x2 + y2 ≤ R2}, to infer that there exist a maximizer
and a minimizer of f over the closed disk D̄R. By (51), neither a maximizer nor a minimizer
can be on the boundary of D̄R, so they must be in the open disk DR. This means that any
maximizer must be a critical point of f in DR, and comparing the values (48), we infer that
there is only one maximizer of f over D̄R, and the maximizer is the point (x1, y1). Similarly,
there is only one minimizer of f over D̄R, and the minimizer is the point (x2, y2). Note that
at this point all we know is that (x1, y1) is the maximizer of f over D̄R and that (x2, y2) is the
minimizer of f over D̄R. However, invoking (51) once again, we conclude that (x1, y1) is indeed
the maximizer of f over R2 and that (x2, y2) is indeed the minimizer of f over R2. The final
answer is that the maximum value of f in R2 is 1

2 , and the minimum value is −1
2 .

7. Find the most economical dimensions of a closed rectangular box of volume 3 cubic units if the
cost of the material per square unit for (i) the top and bottom is 2, (ii) the front and back is 2
and (iii) the other two sides is 8.

Solution: Let us denote the width of the box by x, the height by z, and the depth by y. Then
the combined area of the top and bottom faces is 2xy, the area of the front and back faces is
2xz, and the area of the other two sides is 2yz. Thus the problem is to find the minimizer of

F (x, y, z) = 4xy + 4xz + 16yz, subject to xyz = 3. (52)
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We look for the solution satisfying x > 0, y > 0, and z > 0, because if one of x, y, and z is 0,
the volume of the box cannot be equal to 3. Then by using the volume constraint xyz = 3, we
can express z in terms of x and y, resulting in the reformulation of the problem as minimizing

f(x, y) = 4xy +
12

y
+

48

x
, (53)

over the quadrant H = {(x, y) : x > 0, y > 0}. First, let us find the critical points of f . The
relevant equations are

∂

∂x
f(x, y) = 4y − 48

x2
= 0,

∂

∂y
f(x, y) = 4x− 12

y2
= 0,

(54)

which lead us to x2y = 12 and xy2 = 3. If we divide one equation by the other, we get x = 4y,
and this in turn yields that

(x∗, y∗) = (
3
√

48, 3

√
3
4), (55)

is the only critical point of f over H. Note that the corresponding z-value is z∗ = y∗ =
3
√

48. (The variables y and z play indistinguishable roles in the original problem, so for quick
calculations, we could have set y = z from the beginning and could have transformed the whole
problem into a single variable minimization problem.)

The question is now if (x∗, y∗) is indeed a minimizer of f over H. Intuitively, from (53) it is
clear that f(x, y) tends to ∞ if x > 0 and y > 0 are small, or if they are large. To make it
precise, given R > 0, let

QR = {(x, y) :
1

R
< x < R2,

1

R
< y < R2}. (56)

We want to show that if the point (x, y) is outside the square QR with R > 0 large, then f(x, y)
is large. Suppose that x ≤ 1

R (Figure 5(b), blue region). Then we have

f(x, y) = 4xy +
12

y
+

48

x
≥ 48

x
≥ 48R. (57)

Similarly, for y ≤ 1
R (Figure 5(b), green region plus part of the blue region), we have

f(x, y) = 4xy +
12

y
+

48

x
≥ 12

y
≥ 12R. (58)

Now suppose that x > 1
R and y ≥ R2 (Figure 5(b), red region). Then we have

f(x, y) = 4xy +
12

y
+

48

x
≥ 4xy ≥ 4 · 1

R
·R2 = 4R. (59)

Finally, for y > 1
R and x ≥ R2 (Figure 5(b), yellow region plus part of the red region), we have

f(x, y) = 4xy +
12

y
+

48

x
≥ 4xy ≥ 4 ·R2 · 1

R
= 4R, (60)
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and a combination of the last four formulas gives

f(x, y) ≥ 4R, for (x, y) 6∈ QR. (61)

Therefore, by choosing R > 0 sufficiently large, we can ensure that f(x, y) > f(x∗, y∗) for all
(x, y) outside QR, meaning that any minimizer of f over H must be contained in QR. Let us fix
such a value for R. Then as usual, the Weierstrass existence theorem guarantees the existence
of a minimizer of f over the closed set Q̄R, where

Q̄R = {(x, y) :
1

R
≤ x ≤ R2,

1

R
≤ y ≤ R2}. (62)

We have chosen R > 0 so large that f(x, y) > f(x∗, y∗) for all (x, y) outside QR, which rules out
the possibility that a minimizer over Q̄R is on the boundary of Q̄R. Hence all minimizers are in
QR, and at least one such minimizer exists. Since QR is open, all minimizers must be critical
points, but we have only one critical point, thus we infer that (x∗, y∗) is the only minimizer of
f over Q̄R. Finally, recalling that f(x, y) > f(x∗, y∗) for all (x, y) outside QR, we conclude that
(x∗, y∗) is the only minimizer of f over H.

(a) The function f(x, y) from Problem 7.

y

x

1
R

1
R

R2

R2

QR

(b) Various regions used in the solution.

Figure 5: Illustrations for Problem 7.
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