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Gravity and General Relativity

Einstein’s general theory of relativity states that spacetime can be modeled on
a Lorentzian 4-manifold.
The metric and matter satisfy the Einstein Equations.
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LIGO

LIGO (Laser Interferometer Gravitational-wave Observatory) is one of several
recently constructed gravitational detectors, VIRGO, GEO600, TAMA300.

The design of LIGO is based on measuring distance changes between objects in
perpendicular directions as the ripple in the metric tensor propagates through
the device.

The three L-shaped LIGO observatories (in Washington and Louisiana), with
legs at 2km and 4km, have phenomenal sensitivity, on the order of 10−15m to
10−18m. effective ranges (1.4Sol, 1:8 SNR): 7-15MPc
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The Einstein field equations

The ten equations for the ten independent components of the symmetric
spacetime metric tensor gab are the Einstein Equations:

Gab = κTab, 0 6 a 6 b 6 3, κ = 8πG/c4,

• R d
abc ; Riemann (curvature) tensor

• Rab = R c
acb , R = R a

a ; Ricci tensor and scalar curvature

• Gab = Rab − 1
2
Rgab, Tab; Einstein tensor and stress-energy tensor

Initial-value formulations well-posed [Choquet-Bruhat, Geroch, Friedrich,
Chirstodoulou, Klainerman]; Various formalisms yield constrained
(weakly/strongly/symmetric) hyperbolic evolution systems for a spatial
3-metric ĥab, possibly also extrinsic curvature k̂ab ∼ d

dt
ĥab.
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The constraints and the conformal method

The twelve-component system for (ĥab, k̂ab) is constrained by four coupled
nonlinear equations which must be satisfied on any S(t), with τ̂ = k̂abĥab,

3R̂ + τ̂ 2 − k̂ab k̂ab − 2κρ̂ = 0, ∇̂aτ̂ − ∇̂b k̂ab − κĵa = 0.

The York conformal decomposition splits initial data into 8 freely specifiable
pieces plus 4 pieces determined by the constraints, through: ĥab = φ4hab, and
k̂ab = φ−10[σab + (Lw)ab)] + 1

4
φ−4τhab.

Results in a coupled elliptic system for conformal factor φ and a vector
potential w a:

−8∆φ+ Rφ+
2

3
τ 2φ5 − (σab + (Lw)ab)(σab + (Lw)ab)φ−7 − 2κρφ−3 = 0,

−∇a(Lw)ab +
2

3
φ6∇bτ + κjb = 0.

The differential structure on M is defined through a background 3-metric hab

(Lw)ab = ∇awb +∇bw a − 2

3
(∇cw c)hab,
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Coupled constraints

(M, hab) Riemannian manifold.

−∆φ+ aRφ+ aτφ
5 − awφ

−7 − aρφ
−3 = 0,

−∇a(Lw)ab + bb
τφ

6 + bb
j = 0,

where

aR = R
8
, aτ = τ2

12
, aw = 1

8
[σab + (Lw)ab][σab + (Lw)ab], aρ = κρ

4
,

ba
τ = 2

3
∇aτ, ba

j = κja.

Notations:

Lφ+ f (φ,w) = 0 ⇔ φ = T (φ,w),

Lw + f (φ) = 0 ⇔ w = S(φ).
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CMC and near-CMC existence

∇bτ = 0: Constant Mean Curvature (CMC) case: constraints de-couple.
Results: O’Murchadha-York (1973-74), Isenberg-Marsden (1982-83),

Choquet-Bruhat-Isenberg-Moncrief (1992), Isenberg (1995), Maxwell (2004,2006),

others.

∇bτ . inf |τ |: Near-Constant Mean Curvature (Near-CMC) case: constraints
couple.
Isenberg-Moncrief (1996), Choquet-Bruhat-Isenberg-York (2001),

Allen-Clausen-Isenberg (2007), and others; all based on Isenberg-Moncrief.

Isenberg-Moncrief: w (k) = S(φ(k−1)), φ(k) = T (φ(k),w (k))
For case R = −1 on a closed manifold, under strong smoothness assumptions,
and under the near-CMC condition, Isenberg-Moncrief establish this defines a
contraction mapping in Hölder spaces:

[φ(k+1),w (k+1)] = G([φ(k),w (k)]).

Proof Outline: Maximum principles, sub- and super-solutions, Banach algebra
properties, together with a contraction-mapping argument.



Outline The Einstein field equations Existence results AFEM for the Hamiltonian constraint

The near-CMC condition and fixed-point theorems

To establish a contraction property for coupled PDE systems often produces
strong restrictions on the data; in the case of the Einstein constraints, a
restriction that results is the near-CMC condition:

‖∇τ‖Y < C inf
M
|τ |,

where ‖ · ‖Y is an appropriate norm (e.g. Y = L∞). This condition appears in
two distinct places in Isenberg-Moncrief:

(1) Construction of the contraction G ,

(2) Construction of the set U on which G is a contraction
(using barriers: sub- and super-solutions).
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The mappings S and T

We will attempt to build a different fixed-point argument that avoids the
near-CMC condition in both places. It is useful now to make precise the
particular choices we will make for the mappings S and T for our fixed-point
argument.

To deal with the non-trivial kernel that exists for L on closed manifolds, fix an
arbitrary positive shift s > 0. Introduce the operators S : [φ−, φ+]→W 2,p and
T : [φ−, φ+]×W 2,p →W 2,p as

S(φ)a := −[L−1f (φ)]a, (1)

T (φ,w) := −(L + sI )−1[f (φ,w)− sφ]. (2)

Both maps are well-defined when s > 0 (L + sI is invertible) and when there
are no conformal Killing vectors (L is invertible).
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The Schauder Theorem

Theorem (Schauder)
Let Z be a Banach space, and let U ⊂ Z be a non-empty, convex, closed,
bounded subset. If G : U → U is a compact operator, then there exists a
fixed-point u ∈ U such that u = G(u).

Here is a simple consequence tuned for the constraints.

Theorem
Let X , Y , and Z be Banach spaces, with compact embedding i : X ↪→ Z. Let
U ⊂ Z be non-empty, convex, closed, bounded, and let S : U →R(S) ⊂ Y
and T : U ×R(S)→ U ∩ X be continuous maps. Then, there exist w ∈ R(S)
and φ ∈ U ∩ X such that

φ = T (φ,w) and w = S(φ).

Proof Outline: Compactness of φ 7→ i T (φ, S(φ)) : U ⊂ Z → U ⊂ Z and
Schauder.
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Another fixed point theorem

Identifying U ⊂ X on which T acts invariantly requires stronger assumptions
on T than desirable.

Theorem
Let X and Y be reflexive Banach spaces, and let Z be a Banach space with
compact embedding X ↪→ Z. Let U ⊂ Z be nonempty closed, and let
S : U →R(S) ⊂ Y and T : U ×R(S)→ X be uniformly bounded and
uniformly Lipschitz maps. Assume T also satisfies: For any w ∈ R(S), there
exists φw ∈ U ∩ X such that

φw = T (φw ,w). (3)

Then, there exist w ∈ R(S) and φ ∈ U ∩ X such that

φ = T (φ,w) and w = S(φ). (4)

Proof Outline: Compactness arguments directly rather than through
Schauder.
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Sub- and super-solutions

Although we no longer need the near-CMC condition for the fixed-point
argument since we do not build k-contractions, we still need to worry about
constructing compatible global barriers that are free of the near-CMC condition.

Sub- and super-solutions, or barriers, to the Hamiltonian constraint:

Lφ− + f (φ−,w) 6 0, (5)

Lφ+ + f (φ+,w) > 0. (6)

It will be critical to construct compatible barriers: 0 < φ− 6 φ+ <∞, which
are also global barriers: Barriers for the Hamiltonian constraint which hold for
any solution w to the momentum constraint with source φ ∈ [φ−, φ+].
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Momentum constraint

Under the assumption that any φ ∈ L∞ appearing as the source in the
momentum constraint equation satisfies

φ ∈ [φ−, φ+] ⊂ L∞,

then one can establish the required boundedness and Lipschitz properties for
the mapping S

‖S(φ)‖Y 6 CSB , ‖S(φ1)− S(φ2)‖Y 6 CSL‖φ1 − φ2‖Z ,

Y = W 2,p, Z = L∞.

For p > 3 we have
aw 6 K1 ‖φ‖12

∞ + K2

Note that the near-CMC condition is not required for these results.
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Hamiltonian constraint

Theorem
Let (M, hab) be a closed Riemannian manifold. Let the free data τ 2, σ2 and ρ
be in Lp, with p > 2. Let φ− and φ+ be barriers for a vector w a ∈W 1,2p.
Then, there exists a solution φ ∈ [φ−, φ+]∩W 2,p of the Hamiltonian constraint.

This result, together with the results on the momentum constraint above and
the results on barriers below, lead to the required boundedness and Lipschitz
properties for the mapping T

‖T (φ,w)‖X 6 CTB , ‖T (φ1,w)− T (φ2,w)‖X 6 CTL‖φ1 − φ2‖Z ,
‖T (φ,w1)− T (φ,w2)‖X 6 CTLW ‖w1 − w2‖Y ,

X = W 2,p,Y = W 2,p, Z = L∞.
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Construction of U

The remaining assumptions:

(1) There exists a fixed-point φw = T (φw ,w) for any w ∈ R(S).

(2) The subset U ⊂ Z be nonempty and closed in Z ,

The first of these assumptions holds by the theorem above; note that the
fixed-point framework allows us to establish existence of φw using any
technique, including variational methods, giving existence under weakest
possible coefficient assumptions. The second assumption will hold if we can
construct a pair of compatible global barriers (addressed next), due to

Lemma
For 1 6 p 6∞ and φ−, φ+ ∈ Lp, the set

U = [φ−, φ+] = {φ ∈ Lp : φ− 6 φ 6 φ+} ⊂ Lp

is closed convex and bounded.
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The Yamabe problem

Given a compact Riemannian manifold (M, g) of dimension n > 3, find a
metric conformal to g with constant scalar curvature.

−4 n−1
n−2

∆u + Ru = λu
2n

n−2
−1

• Yamabe ’60: Claim

• Trudinger ’68: Found error in Yamabe’s proof, repaired for some cases

• Aubin ’74: n > 6

• Schoen ’84: n 6 5

• Lee and Parker ’87: unified expository

Three Yamabe classes: Y+, Y−, Y0
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Near-CMC-free global barrier

Establishing boundedness and Lipschitz properties for S and T without
near-CMC conditions rests critically on establishing the existence of compatible
global barriers 0 < φ− 6 φ+ <∞ to define the nonempty topologically closed
subset U = [φ−, φ+].

Lemma
Let (M, hab) be a 3-dimensional, smooth, closed Riemannian manifold with
metric hab in the positive Yamabe class with no conformal Killing vectors. Let
u be a smooth positive solution of the Yamabe problem

−∆u + aRu = u5,

and let k = u∧/u∨. If the function τ is non-constant and the rescaled matter
sources ja, ρ, and traceless transverse tensor σab are sufficiently small, then

φ+ = εu,

is a global super-solution for any sufficiently small ε > 0.
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Proof outline

Proof Outline: Using the notation

E(φ+) = −∆φ+ + aRφ+ + aτφ
5
+ − awφ

−7
+ − aρφ

−3
+ ,

we have to show E(φ+) > 0. The definition of φ+ = εu implies
−∆φ+ + aRφ+ = ε u5. We have then

E(φ+) > −∆φ+ + aRφ+ −
K1(φ∧+)12 + K2

φ7
+

−
a∧ρ
φ3

+

> ε u5 − K1

hφ∧+
φ∨+

i12

φ5
+ −

K2

φ7
+

−
a∧ρ
φ3

+

.

Notice that φ∧+/φ
∨
+ = u∧/u∨ = k, therefore we have

E(φ+) > εu5 − K1 k12 (εu)5 − K2

(εu)7
−

a∧ρ
(εu)3

> εu5
h
1− K1 k12ε4 − K2

ε8u12
−

a∧ρ
ε4u8

i
.
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Non-constant Mean Curvature Weak Solutions

Theorem
Let (M, hab) be a 3-dimensional, smooth, closed Riemannian manifold with
metric hab in the positive Yamabe class with no conformal Killing vectors. Let
τ be in W 1,p, while the fields σ2, ja and ρ be in Lp, with p > 3 and small
enough norms so that there exist global barriers φ− and φ+ for the Hamiltonian
constraint equation. Then, there exists a scalar field φ ∈ [φ−, φ+] ∩W 2,p and a
vector field w a ∈W 2,p solving the constraint equations.
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Open problems

• Full parameterization of the solution space

• Manifolds with boundary

• Unbounded manifolds
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AFEM for Hamiltonian constraint

Let us consider the Hamiltonian constraint on a closed connected flat manifold

(∇u,∇v) + 〈f (u,w), v〉 = 0, ∀v ∈ H1

• Residual error estimator [Verfürth ’94]

• Red refinement [Stevenson ’05]

• Quasi-orthogonality → Optimal convergence [Stevenson ’07] or [Cascon,
Kreuzer, Nochetto, Siebert ’08]
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Galerkin approximation

Let X be a Hilbert space, and let u ∈ V ⊂ X be a solution to

a(u, v) + 〈f (u), v〉 = 0, ∀v ∈ X ,

where a : X × X → R is a symmetric, coercive, bounded bilinear form and the
mapping f : V → X ∗ satisfies

‖f (v)− f (w)‖X∗ 6 K‖v − w‖X− , ∀v ,w ∈ V,

with X− being a Banach space such that X ↪→ X− and ‖ · ‖X− 6 ‖ · ‖X .

Galerkin approximation uh ∈ Xh ∩ V of u from Xh ⊂ X :

a(uh, v) + 〈f (uh), v〉 = 0, ∀v ∈ Xh ⊂ X .
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Quasi-Orthogonality

We have
‖u − uh‖X− 6 αh‖u − uh‖a, (7)

where αh → 0 as h→ 0.

Lemma
Let a and b satisfy the above assumptions. Then

‖u − uh‖2
a 6 Λh‖u − uH‖2

a − ‖uh − uH‖2
a,

where Λh = (1− αhmK)−1, and m is the constant in ‖ · ‖ 6 m‖ · ‖a.
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Discrete existence

If an invertible operator A satisfies the maximum principle, then one can obtain
existence results for nonlinear equations of the form Au = f (u), in the case
that there exist sub- and super-solutions to that equation.
Here P is a mesh, and SP is the piecewise linear finite element space.

Theorem
Consider the discrete Hamiltonian constraint with the sub- and super-solutions
χ− and χ+. Assume that the discretized Laplacian satisfies the maximum
principle.
Then, for all partitions with sufficiently small mesh-size hP , there exists a
solution uP ∈ [χ−, χ+] ∩ SP to the discrete Hamiltonian constraint.
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Discrete maximum principle

Recall that the linear operator A satisfies the maximum principle if Aχ > 0
implies χ > 0.

Lemma
Let the stiffness matrix Aαβ = a(φβP , φ

α
P ), α, β ∈ VP , be nonsingular, and

satisfy the following conditions:P
β∈VP

Aαβ > 0, α ∈ VP ,

Aαβ 6 0, α, β ∈ VP , α 6= β.

Then, [Aαβ ] satisfies the maximum principle.
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Discrete a priori L∞ estimate

Lemma
Let the elements Aαβ = a(φβP , φ

α
P ) satisfy

dist(α, β)2

Aαβ
→ 0− as the partition P is refined so that dist(α, β)→ 0,

(8)
for all α, β ∈ VP with α 6= β, andP

β∈VP
Aαβ > 0, for all α ∈ VP . (9)

Let f be non-decreasing and positive on [χ+,∞), and non-decreasing and
negative on (0, χ−], for some 0 < χ− 6 χ+. Let ‖uP‖W 1,p . 1 for some p > 3.
Then for any ε > 0 there exists a partition P̃ such that when P is any
refinement of P̃ it holds that uP ∈ [χ− − ε, χ+ + ε].
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Ongoing/Future

• Fast solution of the discretized system

• Geometry

• Boundary conditions

• Coupled system

• Higher order elements, flexible mesh

• Wavelets

• Evolution equation
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