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α models

Consider a closed manifold and the Leray projector P on it. Let s−∆s = u.
NS ∂t u =∆u−P(u ·∇u)
hyperviscous ∂t u =∆2u−P(u ·∇u)
Leray-α ∂t u =∆u−P(s ·∇u)
modified Leray-α ∂t u =∆u−P(u ·∇s)
Simplified Bardina ∂t u =∆u−P(s ·∇s)
NS-Voight ∂t u =∆s−P(s ·∇s)
NS-α ∂t u =∆u−P(s×∇×u)
NS-ω ∂t u =∆u−P(u×∇× s)
Clark-α ∂t u =∆u−P(s ·∇u+u ·∇s− s ·∇s−∇(∇s ·∇sT ))

MHD ∂t
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Generalized model:

∂t u = Au+B(u,u) with B(u,v) = B0(Mu,Nv), 〈B0(u,v),v〉 = 0
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General model

∂t u = Au+B(u,u) with B(u,v) = B0(M1u,M2v), 〈B0(u,v),v〉 = 0

V a linear space of smooth (tensor) fields, e.g. divergence free fields.
A : V → V dissipation operator, e.g. A =∆θ
B0 : V ×V → V bilinear structure, e.g. B0(u,v) = u ·∇v or u×∇×v
Mi : V → V smoothing operators, e.g. Mi = (I −∆)−θi

Under certain conditions
existence of a global weak solution (e.g. θ+θ1 > 1

2 )
global regularity (e.g. 4θ+4θ1 +2θ2 > n+2)
inviscid limits, and α→ 0 limits
finite dimensionality of the flow

Partial regularity for 4θ+4θ1 +2θ2 < n+2 ?
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Katz-Pavlović idea

In Rn consider
∂t u = Au+B(u,u)

where A =∆θ, and B is a bilinear Fourier multiplier.
Let Pj be Littlewood-Paley projectors, and let

P̃j =
j+2∑

k=j−2
Pk, so that PjP̃j = Pj.

Fix ε> 0. If λ is a ball of radius 2εj2−j, let φλ ∈ C∞
0 (2λ, [0,1]) satisfy

φλ ≡ 1 on λ, and define Pλ =φλPj. We have

1

2

d

dt
‖Pλu‖2 = 〈PλAu,Pλu〉+〈PλB(u,u),Pλu〉
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Growth estimates

For all large j, and a sufficiently large “neighbourhood” Λ of λ∫ t

0

∑
µ∈Λ

〈PµAu,Pµu〉.−22θj
∫ t

0

∑
µ∈Λ

‖Pµu‖2 +O(2−Nj)

Thinking of a Leray-α type model, we have

‖PλB(u,u)‖. ∑
k≥j

2(1−2θ1)k+ n
2 j‖φλPku‖2 + ∑

δj≤k≤j+2
2( n

2 −2θ1)k+j‖φλPku‖2

+2δ
′j ∑

k≤j
‖Pku‖2

Corresponding estimates for dyadic models are

〈PλAu,Pλu〉.−22θj‖Pλu‖2, ‖PλB(u,u)‖. 2( n
2 +1−2θ1)j

∑
j−1≤k≤j+1

‖φλPku‖2

The “critical regularity” is Pλu ∼ 2(2θ+2θ1− n
2 −1)j
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Dyadic model

Fix a constant h > 0, and call λ hopeless if

‖Pλu‖ > h2(2θ+2θ1− n
2 −1−ε)j

A point x ∈Rn is hopeless at level j if it is in some hopeless ball of radius
2εj2−j. Let E be the set of points that are hopeless at infinitely many
levels. Then the Hausdorff dimension of E is at most n+2+ε−4θ−4θ1.
(n+2+ε−4θ−4θ1 −2θ2 for the general model)
If λ is not hopeless

d

dt
‖Pλu‖2 .−22θj‖Pλu‖2 +2(2θ−ε)j

∑
j−1≤k≤j+1

‖φλPku‖2,

and one can show that u is regular inside λ (roughly speaking).
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Further directions

Ladyzhenskaya’s µ model

∂t u = divF(D)+B(u,u), D =∇u+∇uT , F(D) ∼ |D|2µ+1.

Weak solution for µ≥ n−2
2(n+2) , global regularity for µ≥ n−2

4
[Ladyzhenskaya].
For some models in 3D, weak solution for µ≤ 1

2 , global regularity for
µ≥ 1

10 [Malek et al].
For a dyadic model in 3D, Hausdorff dim of the space singular set is
at most 1−10µ

1−2µ [Friedlander-Pavlović].

Space-time singular set
For NS, the parabolic Hausdorff dim < 1 [CKN]
For µ model, it is ≤ 3 [Seregin]
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