CRM/McGill Applied Mathematics Seminar On analysis and numerical treatment of Einstein's constraint equations

Gantumur Tsogtgerel

University of California, San Diego

- Part 1: Joint with M. Holst and G. Nagy
- Part 2: Joint with M. Holst

Gravitational wave astronomy

Recently constructed gravitational wave detectors: LIGO, VIRGO, GEO600, TAMA300.

The two L-shaped LIGO observatories (in Washington and Louisiana), with legs at 4km, have phenomenal sensitivity, on the order of 10^{-15} m to 10^{-18} m. effective ranges (1.4Sol): 7-15MPc

Initial value formulation of the Einstein equations

The Lorentzian manifold (M, g) satisfies

$$G(\mathbf{g}) := \mathsf{Ric}(\mathbf{g}) - \tfrac{1}{2} R(\mathbf{g}) \mathbf{g} = \mathbf{0}.$$

Suppose $M=\mathbb{R}\times\Sigma,$ each $\Sigma_t=\{t\}\times\Sigma$ is spacelike. On each $\Sigma_t,$ one has

$$\begin{split} R(g) - |K|_g^2 + (\mathrm{tr}_g K)^2 &= 0, \\ \mathrm{div}_g K - \mathrm{d}(\mathrm{tr}_g K) &= 0. \end{split} \tag{C}$$

Conversely, if (C) holds on some Riemannian manifold (Σ, g) , then there are

- a Lorentzian manifold (M, g)
- and an embedding $\theta: \Sigma \to M$

such that $G(\mathbf{g}) = 0$ and that $\theta_* g$ and $\theta_* K$ are the first and second fundamental forms of $\theta \Sigma \subset M$ [Choquet-Bruhat '52].

The conformal method

Let (Σ, \hat{g}) be a Riemannian manifold, σ be a symmetric tensor with div $_{\hat{g}}\sigma = 0$, tr $_{\hat{g}}\sigma = 0$, and let $\tau \in C^{\infty}(\Sigma)$. With φ a positive scalar, and w a vector field, put

$$g = \phi^4 \hat{g}, \quad K = \phi^{-2}(\sigma + L_{\hat{g}}w) + \frac{1}{3}\tau \phi^4 \hat{g},$$

where $L_{\hat{g}}w = \pounds_w \hat{g} - \frac{2}{3}\hat{g} \operatorname{div}_{\hat{g}}w$. Then (C) is equivalent to

$$\begin{split} -8\Delta_{\hat{g}}\varphi+R(\hat{g})\varphi+\frac{2}{3}\tau\varphi^{5}-\left|\sigma+L_{\hat{g}}w\right|^{2}_{\hat{g}}\varphi^{-7}=0,\\ -\text{div}_{\hat{g}}L_{\hat{g}}w+\frac{3}{2}\varphi^{6}d\tau=0. \end{split}$$

Let us rewrite the above as

$$A\phi + R\phi + \frac{2}{3}\tau\phi^5 - a(w)\phi^{-7} =: A\phi + f(w, \phi) = 0,$$

$$Bw + \phi^6 d\tau = 0.$$

Note that $tr_{q}K = \tau$ and that if $\tau = const$ the system decouples.

Constant mean curvature solutions

[York, O'Murchadha, Isenberg, Marsden, Choquet-Bruhat, Moncrief, Maxwell, et al.]

$$A\phi + f(w, \phi) = 0, \qquad Bw = 0.$$

Sub- and super-solutions, or barriers:

$$A\phi_{-} + f(w, \phi_{-}) \leq 0, \qquad A\phi_{+} + f(w, \phi_{+}) \geq 0.$$

For any s > 0, the constraint equation is equivalent to

$$A\phi + s\phi = s\phi - f(w, \phi) \quad \Leftrightarrow \quad \phi = (A + sI)^{-1}(s\phi - f(w, \phi)).$$

If s > 0 is sufficiently large, the map

$$\mathsf{T}:[\varphi_-,\varphi_+]\to [\varphi_-,\varphi_+]:\varphi\mapsto (\mathsf{A}+s\mathsf{I})^{-1}(s\varphi-\mathsf{f}(w,\varphi))$$

is monotone increasing. Also, $\mathsf{T}(\varphi_-) \geqslant \varphi_-$ and $\mathsf{T}(\varphi_+) \leqslant \varphi_+.$ The iteration

$$\varphi_{n+1} = T(\varphi_n), \qquad \varphi_0 = \varphi_-,$$

converges to a fixed point of T.

Super-solution

We want to find $\varphi > 0$ such that

$$A\phi + f(w, \phi) = A\phi + R\phi + \frac{2}{3}\tau\phi^5 - \mathfrak{a}(w)\phi^{-7} \ge 0.$$

Recall $a(w) = |\sigma + L_{\hat{g}}w|_{\hat{g}}^2$, and assume that w is fixed (w = 0 in CMC case). Assume that $\tau = \text{const} > 0$, R = const, and let $\phi = \text{const} > 0$.

$$\begin{split} \mathsf{R}\varphi + \tfrac{2}{3}\tau\varphi^5 - \mathfrak{a}(w)\varphi^{-7} & \geqslant \quad \tfrac{2}{3}\tau\varphi^5 + \mathsf{R}\varphi - \varphi^{-7}\sup\mathfrak{a}(w) \\ & = \quad \varphi^{-7}\left(\tfrac{2}{3}\tau\varphi^{12} + \mathsf{R}\varphi^8 - \sup\mathfrak{a}(w)\right) \end{split}$$

Choosing $\phi > 0$ sufficiently large one can ensure that the above is nonnegative.

Near constant mean curvature solutions

[Isenberg, Moncrief, Choquet-Bruhat, York, Allen, Clausen, et al.]

$$A\phi + f(w, \phi) = 0$$
, $Bw + \phi^6 d\tau = 0$.

With $S:\varphi\mapsto -B^{-1}(\varphi^6d\tau)$ this can be written as

 $A\phi + f(S(\phi), \phi) = 0.$

Sub- and super-solutions make sense, but in general

$$\mathsf{T}: \boldsymbol{\varphi} \mapsto (\mathsf{A} + \mathsf{sI})^{-1}(\mathsf{s}\boldsymbol{\varphi} - \mathsf{f}(\mathsf{S}(\boldsymbol{\varphi}), \boldsymbol{\varphi}))$$

is not monotone. Nevertheless, when $d\tau$ is small T is almost monotone, and the iteration $\varphi_{n+1} = T(\varphi_n)$ converges.

Now one needs global sub- and super-solutions, e.g., $\varphi_+>0$ such that

$$A\phi_+ + f(w, \phi_+) \ge 0$$
,

for all $w \in S([0, \phi_+])$.

Global super-solution

We want to find $\varphi > 0$ such that

$$A\varphi + f(w, \varphi) = A\varphi + R\varphi + \frac{2}{3}\tau\varphi^{5} - a(w)\varphi^{-7} \ge 0.$$

for all $w \in S([0, \phi])$. Recall that $a(w) = |\sigma + L_{\hat{g}}w|_{\hat{a}}^2$. Elliptic estimates give

 $\mathfrak{a}(w) \leqslant \mathfrak{p} + \mathfrak{q} \| \varphi \|_{C^0}^{12}, \qquad \mathrm{with} \ \mathfrak{q} \sim |d\tau|^2$

 $\text{Assume that } \tau = \text{const} > 0, \, R = \text{const}, \, \text{and let } \varphi = \text{const} > 0, \, \text{so} \, \|\varphi\|_{C^0} = \varphi.$

$$\begin{split} R\varphi + \tfrac{2}{3}\tau\varphi^5 - \mathfrak{a}(w)\varphi^{-7} \geqslant \tfrac{2}{3}\tau\varphi^5 + R\varphi - p\varphi^{-7} - q\varphi^{-7}\varphi^{12} \\ &= (\tfrac{2}{3}\tau - q)\varphi^5 + R\varphi - p\varphi^{-7}. \end{split}$$

If $q<\frac{2}{3}\tau,$ choosing $\varphi>0$ sufficiently large one can ensure that the above is nonnegative.

Fixed point approach

[Holst, Nagy, GT '07, '08]

Let $0 < \varphi_{-} \leqslant \varphi_{+} < \infty$ be global barriers, i.e.,

 $A\varphi_-+f(w,\varphi_-)\leqslant 0, \qquad A\varphi_++f(w,\varphi_+)\geqslant 0,$

for all $w\in S([\varphi_-,\varphi_+]).$ Then for s>0 large, and any $w\in S([\varphi_-,\varphi_+])$

$$T_w: \phi \mapsto (A + sI)^{-1}(s\phi - f(w, \phi))$$

is monotone increasing on $U=[\varphi_-,\varphi_+],$ and for $\varphi\in U$

$$T(\varphi)\equiv T_{S(\varphi)}(\varphi)\leqslant T_{S(\varphi)}(\varphi_+)\leqslant \varphi_+,\qquad T(\varphi)\geqslant \varphi_-,$$

so T : U \rightarrow U. Since T is compact, there is a fixed point in U.

Global super-solution

[Holst, Nagy, GT '07, '08]

We want to find $\varphi > 0$ such that

$$A\phi + f(w, \phi) = A\phi + R\phi + \frac{2}{3}\tau\phi^5 - a(w)\phi^{-7} \ge 0.$$

for all $w \in S([0, \phi])$. Recall that

 $\mathfrak{a}(w) \leq \mathfrak{p} + \mathfrak{q} \| \phi \|_{C^0}^{12}$

Assume that R = const > 0, $\tau = const$, and let $\varphi = const > 0$.

$$\begin{split} R\varphi + \tfrac{2}{3}\tau\varphi^5 - \mathfrak{a}(w)\varphi^{-7} \geqslant \tfrac{2}{3}\tau\varphi^5 + R\varphi - p\varphi^{-7} - q\varphi^{-7}\varphi^{12} \\ \geqslant \varphi^{-7}\left(R\varphi^8 - (q - \tfrac{2}{3}\tau)\varphi^{12} - p\right) \end{split}$$

If p is small enough (depending on how large q is), choosing $\varphi>0$ sufficiently small one can ensure that the above is nonnegative.

Constraint equations in general relativity

Convergence of adaptive finite element methods

Extensions

- The framework is extended to allow for rough data, e.g., metrics in H^s with $s>\frac{5}{2}$
- The global super-solution construction is extended to all metrics in the positive Yamabe class (closed manifolds)

Ongoing work / wish list

- Asymptotically flat manifolds
- Manifolds with boundary, black hole initial data
- Zero and negative Yamabe classes, large data
- Full parameterization of the solution space

Finite element methods

Model problem: $-\Delta u = f$, or

 $a(u, v) := (\nabla u, \nabla v) = (f, v)$ for all $v \in H$

Let $S \subset H$ be a linear subspace. Consider $\tilde{u} \in S$ such that

 $a(\boldsymbol{\tilde{u}},\boldsymbol{\nu})=(f,\boldsymbol{\nu}) \qquad \mathrm{for \ all} \ \boldsymbol{\nu}\in S$

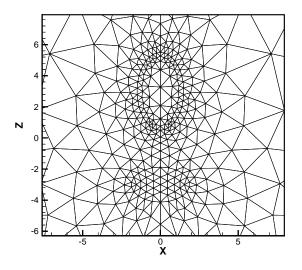
This gives the Galerkin orthogonality

$$\mathfrak{a}(\mathfrak{u} - \tilde{\mathfrak{u}}, \nu) = 0$$
 for all $\nu \in S$

or $u - \tilde{u} \perp_a S$. \tilde{u} is called the Galerkin approximation of u from S.

Typical finite element mesh

S is the space of continuous functions which are linear on each triangle.



Linear vs. nonlinear approximation

Let $S_0\subset S_1\subset\ldots\subset H$ with corresponding meshes $T_0,T_1,\ldots,$ and Galerkin approximations $u_0,u_1,\ldots.$

$$\|\boldsymbol{\mathfrak{u}}-\boldsymbol{\mathfrak{u}}_i\|_{\mathfrak{a}}=\mathsf{dist}(\boldsymbol{\mathfrak{u}},\boldsymbol{S}_i)\leqslant Ch_i^{s-1}\|\boldsymbol{\mathfrak{u}}\|_{\mathsf{H}^s}$$

where h_i is the maximum diameter of the triangles in T_i . If T_{j+1} is the uniform refinement of T_j , then $h_i\sim 2^{-i}$ and the number of vertices of T_i is $N_i\sim 2^{in}$ in n-dimension.

$$\|\boldsymbol{u}-\boldsymbol{u}_i\|_{\mathfrak{a}}=\mathsf{dist}(\boldsymbol{u},\boldsymbol{S}_i)\leqslant C2^{-\mathfrak{i}(\mathfrak{s}-1)}\|\boldsymbol{u}\|_{H^{\mathfrak{s}}}\leqslant CN_i^{-(\mathfrak{s}-1)/\mathfrak{n}}\|\boldsymbol{u}\|_{H^{\mathfrak{s}}}$$

Is T_i optimal among meshes with N_i vertices? Given a mesh, let S(T) be the corresponding FE space. Let

$$\begin{split} \Sigma_N &= \cup \{S(T): T \text{ is a refinement of } T_0 \text{ and } \#T \leqslant N \} \end{split}$$
 Then with $\frac{1}{p} &= \frac{1}{2} + \frac{s-1}{n} \\ & \text{dist}(u, \Sigma_N) \leqslant C N^{-(s-1)/n} \|u\|_{W^{s,p}} \end{split}$

Adaptive finite element methods

In a typical AFEM, the sequence u_i is generated as follows. Start with some initial mesh $T_0.$ Set i=0, and repeat

- Solve for u_i
- Estimate the distribution of $u_i u$ over the triangles of T_i
- Refine the triangles of T_i with largest error, to get T_{i+1}
- i++

We say the method is optimal if

$$\|\mathfrak{u}_i-\mathfrak{u}\|_\mathfrak{a}\leqslant CN^{-(\mathfrak{s}-1)/\mathfrak{n}}\|\mathfrak{u}\|_{W^{\mathfrak{s},\mathfrak{p}}}$$

Linear convergence

From the Galerkin orthogonality

$$\mathfrak{a}(\mathfrak{u}-\mathfrak{u}_{i+1},\nu)=0 \qquad \mathrm{for \ all} \ \nu\in S_{i+1},$$

taking $\nu = u_{i+1} - u_i,$ we have

$$\|u-u_i\|_a^2 = \|u-u_{i+1}\|_a^2 + \|u_{i+1}-u_i\|_a^2.$$

So if

$$\|\mathbf{u}_{i+1} - \mathbf{u}_i\|_a \ge c \|\mathbf{u} - \mathbf{u}_i\|_a$$
,

with constant $c \in (0, 1)$, we have

$$\|u-u_{i+1}\|_{\alpha}^2 = \|u-u_i\|_{\alpha}^2 - \|u_{i+1}-u_i\|_{\alpha}^2 \leqslant (1-c^2)\|u-u_i\|_{\alpha}^2.$$

Quasi-orthogonality for semilinear problems

Let us consider

$$a(u, v) + (f(u), v) = 0, \qquad \forall v \in H$$

We have

$$\|u - u_i\|_a^2 = \|u - u_{i+1}\|_a^2 + \|u_{i+1} - u_i\|_a^2 + 2a(u - u_{i+1}, u_{i+1} - u_i)$$

$$\begin{array}{lll} a(u-u_{i+1},u_{i+1}-u_i) & = & (f(u)-f(u_{i+1}),u_{i+1}-u_i) \\ & \leqslant & C\|f(u)-f(u_{i+1})\|\|u_{i+1}-u_i\| \\ & \leqslant & C\|u-u_{i+1}\|\|u_{i+1}-u_i\| \\ & \leqslant & Ch_{i+1}\|u-u_{i+1}\|_{H^1}\|u_{i+1}-u_i\|_{H^1} \end{array}$$

Ongoing work / Open problems

- Geometry
- Boundary conditions
- Coupled system
- Fast solution of the discretized system
- Higher order elements, flexible mesh
- Problems with genuinely critical exponent

Manuscripts, Collaborators, Acknowledgments

- HNT2 M. HOLST, G. NAGY, AND GT, Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics. *Phys. Rev. Let.*, 100:161101, 2008. Also available as arXiv:0802.1031 [gr-qc]
- HNT1 M. HOLST, G. NAGY, AND GT, Rough solutions of the Einstein constraint equations on closed manifolds without near-CMC conditions. arXiv:0712.0798 [gr-qc]. To appear in *Comm. Math. Phys.*.
- HT1 M. HOLST, AND GT, Convergent adaptive finite element approximation of the Einstein constraints. In preparation.

Acknowledgments:

NSF: DMS 0411723, DMS 0715146 (Numerical geometric PDE) DOE: DE-FG02-05ER25707 (Multiscale methods)