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Linear operator equations

Let Ω be an n-dimensional domain or smooth manifold

Ht ⊂ Ht(Ω) be a subspace, and H−t be its dual space

Consider the problem of finding u from

Lu = g

where L : Ht → H−t is a self-adjoint elliptic operator of
order 2t

and g ∈ H−t is a linear functional
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Differential operators

Partial differential operators of order 2t

〈v, Lu〉 =
∑

|α|,|β|≤t

〈∂αv, aαβ∂
βu〉,

Example: The reaction-diffusion equation (t = 1)

〈v, Lu〉 =

∫
Ω
∇v · ∇u+ κ2vu,
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Singular integral operators

Boundary integral operators

[Lu](x) =

∫
Ω
K(x, y)u(y)dΩy

with the kernel K(x, y) singular at x = y

Example: The single layer operator for the Laplace BVP
in 3-d domain (t = −1

2)

K(x, y) =
1

4π|x− y|
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Wavelet bases

Multiresolution: S0 ⊂ S1 ⊂ . . . ⊂ Ht

dimSj = O(2jn) (dyadic refinements)

Sj contains all piecewise pols of degree d− 1

Sj is globally Cr-smooth γ := r + 3
2

Ψ = {ψλ : λ ∈ Λ} is a Riesz basis for Ht

span{ψλ : |λ| ≤ j} = Sj

diam(suppψλ) h 2−|λ|

Ψ has d̃ vanishing moments
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Nonlinear approximation

u = (uλ)λ ∈ `2 s.t. u =
∑

λ uλψλ

uN best approximation of u with #suppuN ≤ N

If u ∈ Bt+ns
τ,τ with 1

τ = 1
2 + s for some s < d−t

n

εN = ‖
∑

λ[uN ]λψλ − u‖Ht h ‖uN − u‖ . N−s

u is given as the solution to Lu = g.

[Dahlke, DeVore]: u ∈ Bt+ns
τ,τ under mild requirements
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Equivalent problem in `2

Wavelet basis Ψ = {ψλ : λ ∈ Λ}

Stiffness L = 〈Lψλ, ψµ〉λ,µ and load g = 〈g, ψλ〉λ

Linear equation in `2(Λ)

Lu = g

L : `2(Λ) → `2(Λ) SPD and g ∈ `2(Λ)

u =
∑

λ uλψλ is the solution of Lu = g
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Richardson iterations in `2

[Cohen, Dahmen, DeVore ’02]

u(0) = 0

u(i+1) = u(i) + α[g − Lu(i)] i = 0, 1, . . .

g and Lu(i) are infinitely supported

Approximate them by finitely supported sequences

Algorithm SOLVE[N,L,g] → u[N ] (N operations)

#suppu[N ] . N and

ε[N ] = ‖u[N ] − u‖ → 0 as N → ∞

ε[N ] speed of convergence?
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Complexity of SOLVE

Matrix L is called q∗-computable, when for each N one
can construct an infinite matrix L∗

N s.t.

for any q < q∗, ‖L∗
N − L‖ . N−q

having in each column O(N) non-zero entries
whose computation takes O(N) operations

[CDD’02]: Suppose that

‖uN − u‖ . N−s [s < d−t
n ]

L is q∗-computable with q∗ > s [q∗ ≥ d−t
n is suff. ]

Some condition on g

then u[N ] = SOLVE[N,L,g] satisfies

‖u[N ] − u‖ . N−s
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Compressibility of diff. ops.

[Stevenson ’04]: Suppose L is a diff. op.

L,L′ : Ht+σ → H−t+σ are bounded with σ ≥ d− t

Ψ are piecewise polynomial wavelets that

are smooth: γ ≥ d− d−t
n

have vanishing moments: d̃ ≥ d− 2t

then we can construct LN by dropping entries from L, s.t.
with some q∗ ≥ d−t

n (> s)

for any q < q∗, ‖LN − L‖ . N−q

LN has . N non-zeros in each column

Need to spend O(N) ops. for each column of LN
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Quadrature for diff. ops.

Lλ,µ =
∑

αβ

∫
Θ aαβ∂

αψλ∂
βψµ Θ = suppψλ ∩ suppψµ

aαβ are piecewise smooth

Ψ are piecewise pols of order e (degree e− 1)

Internal, positive, interpolatory quadratures

Composite quadrature of rank W :
Subdivide Θ into W subdomains
Apply quadrature of order p to each subdomain

Fixed order p, variable rank W ; work = O(W )
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Computability of diff. ops.

[T.G., Stevenson ’04]

Fix quadrature order p > q∗n+ e− 1 − t

Fix θ and % satisfying q∗n
p ≤ θ ≤ % < 1 − e−1−t

p

L∗
N — computed approximation of LN

Work WN,λ,µ h max{1, N θ2−||λ|−|µ||n%} for [L∗
N ]λ,µ

Then
‖LN − L∗

N‖ . N−q∗ (⇒ ∀q < q∗ : ‖L − L∗
N‖ . N−q)

Work for each column of L∗
N is O(N)

Therefore L is q∗-computable with q∗ ≥ d−t
n
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Compressibility of b.i.o.

[Stevenson ’04]: Suppose L is a b.i.o.

Ω is sufficiently smooth

K(x, y) satisfies the Calderon-Zygmund estimate

Ψ are sufficiently smooth and have sufficiently many
vanishing moments

Then we can construct LN by dropping entries from L, s.t.
with some q∗ ≥ d−t

n (> s)

for any q < q∗, ‖LN − L‖ . N−q

LN has . N(log2N)−2n−1 non-zeros in each column

Need to spend O(N) ops. for each column of LN
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Quadrature for b.i.o.

Lλ,µ =
∫
Θ

∫
Θ′ K(x, y)ψλψµ Θ = suppψλ, Θ′ = suppψµ

Far field: dist(Θ,Θ′) & 2−min{|λ|,|µ|}

Uniform mesh, variable order p ; work = O(p2n)

Near field: dist(Θ,Θ′) . 2−min{|λ|,|µ|}

Adaptive (non-uniform) mesh, variable order p ;

work = O(p2n(1 + ||λ| − |µ||))

[Schneider ’95], [von Petersdorff, Schwab ’97],
[Lage, Schwab ’99], [Harbrecht ’01]

Singular integrals: dist(Θ,Θ′) = 0
Duffy’s transformation [Duffy ’82], [Sauter ’96], [vPS’97]
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Computability of b.i.o.

[T.G. ’04]

L∗
N — computed approximation of LN

With sufficiently large, fixed θ and %

Choose the quadrature order

p = θ log2N + %||λ| − |µ|| + const. for [L∗
N ]λ,µ

Then
‖LN − L∗

N‖ . N−q∗ (⇒ ∀q < q∗ : ‖L − L∗
N‖ . N−q)

Work for each column of L∗
N is O(N)

Therefore L is q∗-computable with q∗ ≥ d−t
n
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Conclusion

Given d and t, for wavelets that

are sufficiently smooth

have sufficiently many vanishing moments

on sufficiently smooth manifolds

any internal, positive, interpolatory quadrature formula yields computa-

tional schemes for the infinite stiffness matrix L, such that the CDD2 al-

gorithm converges at the same rate as that of best N -term approximation.
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(extra slide)

Suppose ∀q < q∗ : ‖LN − L‖ . N−q

and # of non-zeros in each column of LN is . N .

With αN = (log2 N)−c, define L̃N := L[NαN ]

Non-zeros per column for L̃N :

NαN = N(log2 N)−c

For arbitrary q < q∗, choose q′ ∈ (q, q∗)

‖L̃N − L‖ = ‖L[NαN ] − L‖ . (NαN )−q′

= N−q′

(log2 N)cq′

. N−q
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