Computation of operators in wavelet coordinates

Tsogtgerel Gantumur and Rob Stevenson

Department of Mathematics

Utrecht University

The Netherlands

Tsogtgerel Gantumur - "Computation of operators in wavelet coordinates" - IHP Mid-Term Meeting. Pavia. Italy. Dec 2004. - p.1/19

Contents

- Settings: linear operator equation, wavelet basis
- Optimal complexity of CDD2 algorithm
- Differential operators
 - Compressibility
 - Computability
- Boundary integral operators
 - Compressibility
 - Computability
- Conclusion

Linear operator equations

- Let Ω be an *n*-dimensional domain or smooth manifold
- $H^t \subset H^t(\Omega)$ be a subspace, and H^{-t} be its dual space
- Consider the problem of finding u from

Lu = g

- where L : H^t → H^{-t} is a self-adjoint elliptic operator of order 2t
- and $g \in H^{-t}$ is a linear functional

Differential operators

Partial differential operators of order 2t

$$\langle v, Lu \rangle = \sum_{|\alpha|, |\beta| \le t} \langle \partial^{\alpha} v, a_{\alpha\beta} \partial^{\beta} u \rangle,$$

• Example: The reaction-diffusion equation (t = 1)

$$\langle v, Lu \rangle = \int_{\Omega} \nabla v \cdot \nabla u + \kappa^2 v u,$$

Singular integral operators

Boundary integral operators

$$[Lu](x) = \int_{\Omega} K(x, y)u(y)d\Omega_y$$

with the kernel K(x, y) singular at x = y

• Example: The single layer operator for the Laplace BVP in 3-d domain ($t = -\frac{1}{2}$)

$$K(x,y) = \frac{1}{4\pi|x-y|}$$

Wavelet bases

- Multiresolution: $S_0 \subset S_1 \subset \ldots \subset H^t$
- $\dim S_j = \mathcal{O}(2^{jn})$ (dyadic refinements)
- S_j contains all piecewise pols of degree d-1
- \mathcal{S}_j is globally C^r -smooth $\gamma := r + rac{3}{2}$
- $\Psi = \{\psi_{\lambda} : \lambda \in \Lambda\}$ is a Riesz basis for H^t
- span $\{\psi_{\lambda} : |\lambda| \le j\} = \mathcal{S}_j$
- diam(supp ψ_{λ}) $\approx 2^{-|\lambda|}$
- Ψ has $\left| \tilde{d} \right|$ vanishing moments

Nonlinear approximation

•
$$\mathbf{u} = (\mathbf{u}_{\lambda})_{\lambda} \in \ell_2$$
 s.t. $\mathbf{u} = \sum_{\lambda} \mathbf{u}_{\lambda} \psi_{\lambda}$

- **u**_N best approximation of **u** with #supp $\mathbf{u}_N \leq N$
- If $u \in B^{t+ns}_{\tau,\tau}$ with $\frac{1}{\tau} = \frac{1}{2} + s$ for some $s < \frac{d-t}{n}$

$$\varepsilon_N = \|\sum_{\lambda} [\mathbf{u}_N]_{\lambda} \psi_{\lambda} - u\|_{H^t} = \|\mathbf{u}_N - \mathbf{u}\| \lesssim N^{-s}$$

- *u* is given as the solution to Lu = g.
- [Dahlke, DeVore]: $u \in B_{\tau,\tau}^{t+ns}$ under mild requirements

Equivalent problem in ℓ_2

- Wavelet basis $\Psi = \{\psi_{\lambda} : \lambda \in \Lambda\}$
- Stiffness $\mathbf{L} = \langle L\psi_{\lambda}, \psi_{\mu} \rangle_{\lambda,\mu}$ and load $\mathbf{g} = \langle g, \psi_{\lambda} \rangle_{\lambda}$
- **•** Linear equation in $\ell_2(\Lambda)$

Lu = g

- L : $\ell_2(\Lambda) → \ell_2(\Lambda)$ SPD and g ∈ $\ell_2(\Lambda)$
- $u = \sum_{\lambda} \mathbf{u}_{\lambda} \psi_{\lambda}$ is the solution of Lu = g

Richardson iterations in ℓ_2

[Cohen, Dahmen, DeVore '02]

• $\mathbf{u}^{(0)} = \mathbf{0}$

- $\mathbf{u}^{(i+1)} = \mathbf{u}^{(i)} + \alpha [\mathbf{g} \mathbf{L}\mathbf{u}^{(i)}]$ i = 0, 1, ...
- **g** and $\mathbf{Lu}^{(i)}$ are infinitely supported
- Approximate them by finitely supported sequences
- Algorithm $SOLVE[N, L, g] \rightarrow u_{[N]}$ (*N* operations)
- $\# \operatorname{supp} \mathbf{u}_{[N]} \lesssim N$ and

$$\varepsilon_{[N]} = \|\mathbf{u}_{[N]} - \mathbf{u}\| \to 0 \quad \text{as } N \to \infty$$

■ $\varepsilon_{[N]}$ speed of convergence?

Complexity of SOLVE

- Matrix L is called q^* -computable, when for each N one can construct an infinite matrix L_N^* s.t.

 - having in each column $\mathcal{O}(N)$ non-zero entries
 - whose computation takes $\mathcal{O}(N)$ operations
- [CDD'02]: Suppose that
 - $\|\mathbf{u}_N \mathbf{u}\| \lesssim N^{-s}$ $[s < \frac{d-t}{n}]$
 - L is q^* -computable with $q^* > s$ $[q^* \ge \frac{d-t}{n}$ is suff.]
 - Some condition on g then $\mathbf{u}_{[N]} = \mathbf{SOLVE}[N, \mathbf{L}, \mathbf{g}]$ satisfies

 $\|\mathbf{u}_{[N]} - \mathbf{u}\| \lesssim N^{-s}$

Compressibility of diff. ops.

[Stevenson '04]: Suppose L is a diff. op.

• $L, L': H^{t+\sigma} \to H^{-t+\sigma}$ are bounded with $\sigma \ge d-t$

- \checkmark Ψ are piecewise polynomial wavelets that
 - are smooth: $\gamma \ge d \frac{d-t}{n}$
 - have vanishing moments: $\tilde{d} \ge d 2t$

then we can construct L_N by dropping entries from L, s.t. with some $q^* \ge \frac{d-t}{n}$ (> s)

- for any $q < q^*$, $\|\mathbf{L}_N \mathbf{L}\| \lesssim N^{-q}$
- ▶ L_N has $\leq N$ non-zeros in each column

Need to spend $\mathcal{O}(N)$ ops. for each column of \mathbf{L}_N

Quadrature for diff. ops.

- $a_{\alpha\beta}$ are piecewise smooth
- Ψ are piecewise pols of order e (degree e 1)
- Internal, positive, interpolatory quadratures
- Composite quadrature of rank W:
 - Subdivide Θ into W subdomains
 - Apply quadrature of order p to each subdomain
- Fixed order p, variable rank $W \rightarrow work = \mathcal{O}(W)$

Computability of diff. ops.

[T.G., Stevenson '04]

- **•** Fix quadrature order $p > q^*n + e 1 t$
- Fix θ and ϱ satisfying $\frac{q^*n}{p} \le \theta \le \varrho < 1 \frac{e-1-t}{p}$
- L_N^* computed approximation of L_N
- Work $W_{N,\lambda,\mu} \approx \max\{1, N^{\theta}2^{-||\lambda|-|\mu||n\varrho}\}$ for $[\mathbf{L}_N^*]_{\lambda,\mu}$
- Then
 - $\|\mathbf{L}_N \mathbf{L}_N^*\| \lesssim N^{-q^*} \quad (\Rightarrow \forall q < q^* : \|\mathbf{L} \mathbf{L}_N^*\| \lesssim N^{-q})$
 - Work for each column of \mathbf{L}_N^* is $\mathcal{O}(N)$
- Therefore L is q^* -computable with $q^* \ge \frac{d-t}{n}$

Compressibility of b.i.o.

[Stevenson '04]: Suppose *L* is a b.i.o.

- \square is sufficiently smooth
- K(x, y) satisfies the Calderon-Zygmund estimate
- Image with the sufficient of the sufficient

Then we can construct L_N by dropping entries from L, s.t. with some $q^* \ge \frac{d-t}{n}$ (> s)

• for any $q < q^*$, $\|\mathbf{L}_N - \mathbf{L}\| \lesssim N^{-q}$

• L_N has $\leq N(\log_2 N)^{-2n-1}$ non-zeros in each column

Need to spend $\mathcal{O}(N)$ ops. for each column of \mathbf{L}_N

Quadrature for b.i.o.

- $\mathbf{L}_{\lambda,\mu} = \int_{\Theta} \int_{\Theta'} K(x,y) \psi_{\lambda} \psi_{\mu}$ $\Theta = \operatorname{supp} \psi_{\lambda}, \, \Theta' = \operatorname{supp} \psi_{\mu}$
- Far field: dist $(\Theta, \Theta') \gtrsim 2^{-\min\{|\lambda|, |\mu|\}}$ Uniform mesh, variable order $p \quad \rightsquigarrow \quad \text{work} = \mathcal{O}(p^{2n})$
- Near field: dist(Θ, Θ') ≤ 2^{-min{|\lambda|, |µ|}}
 Adaptive (non-uniform) mesh, variable order p →

work =
$$\mathcal{O}(p^{2n}(1+||\lambda|-|\mu||))$$

[Schneider '95], [von Petersdorff, Schwab '97], [Lage, Schwab '99], [Harbrecht '01]

• Singular integrals: $dist(\Theta, \Theta') = 0$ Duffy's transformation [Duffy '82], [Sauter '96], [vPS'97]

Computability of b.i.o.

[T.G. '04]

- L_N^* computed approximation of L_N
- With sufficiently large, fixed θ and ϱ
- Choose the quadrature order

$$p = \theta \log_2 N + \varrho ||\lambda| - |\mu|| + const.$$
 for $[\mathbf{L}_N^*]_{\lambda,\mu}$

Then

- $\|\mathbf{L}_N \mathbf{L}_N^*\| \lesssim N^{-q^*} \quad (\Rightarrow \forall q < q^* : \|\mathbf{L} \mathbf{L}_N^*\| \lesssim N^{-q})$
- Work for each column of \mathbf{L}_N^* is $\mathcal{O}(N)$
- Therefore L is q^* -computable with $q^* \ge \frac{d-t}{n}$

Conclusion

Given d and t, for wavelets that

- are sufficiently smooth
- have sufficiently many vanishing moments
- on sufficiently smooth manifolds

any internal, positive, interpolatory quadrature formula yields computational schemes for the infinite stiffness matrix \mathbf{L} , such that the CDD2 algorithm converges at the same rate as that of best *N*-term approximation.

References

- A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods II Beyond the elliptic case. *Found. Comput. Math.*, 2(3):203–245, 2002.
- R.P. Stevenson. On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal., 35(5):1110–1132, 2004.
- T. Gantumur and R.P. Stevenson. Computation of differential operators in wavelet coordinates. Technical Report 1306, Utrecht University, August 2004. Submitted.
- T. Gantumur. Computation of singular integral operators in wavelet coordinates. Technical Report, Utrecht University, 2004. To appear.

This work was supported by the Netherlands Organization for Scientific Research and by the EC-IHP project "Breaking Complexity".

(extra slide)

Suppose $\forall q < q^* : \|\mathbf{L}_N - \mathbf{L}\| \lesssim N^{-q}$ and # of non-zeros in each column of \mathbf{L}_N is $\lesssim N$.

With $\alpha_N = (\log_2 N)^{-c}$, define $\tilde{\mathbf{L}}_N := \mathbf{L}_{[N\alpha_N]}$ Non-zeros per column for $\tilde{\mathbf{L}}_N$:

$$N\alpha_N = N(\log_2 N)^{-c}$$

For arbitrary $q < q^*$, choose $q' \in (q, q^*)$

$$\begin{aligned} \|\tilde{\mathbf{L}}_N - \mathbf{L}\| &= \|\mathbf{L}_{[N\alpha_N]} - \mathbf{L}\| \lesssim (N\alpha_N)^{-q'} \\ &= N^{-q'} (\log_2 N)^{cq'} \lesssim N^{-q} \end{aligned}$$