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Plan of the talk

Background:
approximation classes
Besov spaces
multilevel approximation

Ongoing work on
approximation classes of adaptive finite element methods



Basic setup

Ω polyhedral Lipschitz domain in Rn

P0 triangulation of Ω

P
the family of all conforming triangulations obtained from P0

by a sequence of newest vertex bisections

SP
the Lagrange C0 finite element space of piecewise polyno-
mials of degree not exceeding m, subordinate to P ∈P

X0 Examples: X0 = Lp(Ω), X0 = H1(Ω)

Let
E(u,P) = min

v∈SP
‖u−v‖X0 , Ej(u) = inf

{P∈P :#P≤2j}
E(u,P),

and define the approximation class A s∞(X0) for s > 0 by

u ∈A s
∞(X0) ⇐⇒ Ej(u). 2−js ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `∞.



Adaptive approximation classes

Recall
E(u,P) = min

v∈SP
‖u−v‖X0 , Ej(u) = inf

{P∈P :#P≤2j}
E(u,P),

and

u ∈A s
∞(X0) ⇐⇒ Ej(u). 2−js ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `∞.

We extend this definition by introducing A s
q (X0) for 0 < q ≤∞ by

u ∈A s
q (X0) ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `q.

We have A s
q (X0) ⊂A s

r (X0) for q ≤ r, and A s
q (X0) ⊂A α

r (X0) for s >α and
for any 0 < q,r ≤∞. In a typical situation, it is a quasi-Banach space.

We would like to compare, say, A s
q (Lp(Ω)) with known function spaces.



Besov spaces

For best N-term approximations in a wavelet basis, we have

A s
q (Lp(Ω)) = Bα

q,q(Ω), for s = α

n
= 1

q
− 1

p
> 0,

where Bα
q,r(Ω) is a Besov space (Bs

p,p ≈ W s,p).

1
q

α

Lp

Bα
q,q

For α
n = 1

q − 1
p we have Bα

q,q(Ω) ⊂ Lp(Ω).

Less sharp characterizations are known
for

nonlinear spline approximations
wavelet tree approximations
adaptive finite element
approximations



Direct and inverse embeddings

[Binev, Dahmen, DeVore, Petrushev ’02], [Gaspoz, Morin ’13]

1
q

α

Lp

m
+
1

1

Bαq,q

Bα
q,q(Ω) ⊂A s

∞(Lp(Ω))

with s = α
n , if

δ= α
n + 1

p − 1
q > 0

and 0 <α< m+max{1, 1
q }.

On the other hand

A s
q (Lp(Ω)) ⊂ Bα

q,q(Ω)

for
s = α

n = 1
q − 1

p > 0,

and α< 1+ 1
q .



Main ingredients of the direct theorem

Direct estimate [BDDP02,GM13]
Let δ= α

n + 1
p − 1

q > 0 and 0 <α< m+max{1, 1
q }. Then for u ∈ Bα

q,q(Ω) and
P ∈P, there exists v ∈ SP such that

‖u−v‖p
Lp(Ω) .

∑
τ∈P

|τ|pδ|u|p
Bα

q,q(τ̂)
,

where τ̂ is the patch of triangles that touch τ.

Proof: Quasi-interpolator, Whitney estimates, Besov-Sobolev embedding.

Mesh construction [BDDP02]
For any u ∈ Bα

q,q(Ω) and N , there exists P ∈P with #P ≤ N such that∑
τ∈P

|τ|pδ|u|p
Bα

q,q(τ̂)
.N−sp‖u‖p

Bα
q,q(Ω)

,

where s = α
n .

Proof: Greedy algorithm to reduce e(τ,P) = |τ|δ|u|Bα
q,q(τ̂).



Main ingredients of the inverse theorem

Inverse estimate [BDDP02]
Let s = α

n = 1
q − 1

p > 0 and α< 1+ 1
q . Then we have

‖v‖Bαq,q(Ω) . (#P)s‖v‖Lp(Ω), P ∈P , v ∈ SP.

Proof: Multiscale decomposition of v.

Corollary [BDDP02]
For s = α

n = 1
q − 1

p > 0 and α< 1+ 1
q we have A s

q (Lp(Ω)) ⊂ Bα
q,q(Ω).

Proof: Real interpolation.

The embedding A s
q (Lp(Ω)) ⊂ Bα

q,q(Ω) cannot hold for α≥ 1+ 1
q because in

this range we have SP (Bα
q,q(Ω).

This problem was dealt with in [GM13] by introducing generalized Besov
spaces Aα

q,q(Ω), and showing that A s
q (Lp(Ω)) ⊂ Aα

q,q(Ω) for all α> 0. We
call Aα

q,q(Ω) multilevel approximation spaces.



Multilevel approximation spaces

For j = 1,2, . . ., let Pj be the uniform refinement of Pj−1.
Let G ⊂Ω be a domain consisting of elements from some Pj.
With Sj = SPj , and 0 < p <∞, we let

E(u,Sj,G)p = inf
v∈Sj

‖u−v‖Lp(G), u ∈ Lp(G).

Define the multilevel approximation spaces Aαp,q(G) = Aαp,q({Sj},G) by

u ∈ Aαp,q({Sj},G) ⇐⇒
(
λjαE(u,Sj,G)p

)
j≥0

∈ `q,

where λ= np2.
Note that u ∈ Aαp,q(G) implies E(u,Sj,G)p . 2−αj/n ∼ hαj , with hj the
typical meshwidth of Pj.



Multilevel approximation spaces II

We have Bαq,q(Ω) ⊂ Aαq,q(Ω) for 0 < q <∞ and 0 <α< m+max{1, 1
q }.

In the other direction, we have Aαq,q(Ω) ⊂ Bαq,q(Ω) for 0 < q <∞ and
0 <α< 1+ 1

q .
So in most interesting situations, we have Bαq,q(Ω)(Aαq,q(Ω).
Gaspoz-Morin’s inverse theorem says that A s

q (Lp(Ω)) ⊂ Aα
q,q(Ω) for

s = α
n = 1

q − 1
p > 0. Recall the inclusion A s

q (Lp(Ω)) ⊂ Bα
q,q(Ω) cannot

hold above the red line.
Their direct theorem says that Bα

q,q(Ω) ⊂A s∞(Lp(Ω)) for α
n > 1

q − 1
p

and 0 <α< m+max{1, 1
q }.

Question I: What is the difference between Aα
q,q and Bα

q,q?
Question II: Do we have Aα

q,q(Ω) ⊂A s∞(Lp(Ω))?



Multilevel approximation spaces III

Conjecture: If u ∈ Aα
p,q({Sj},Ω) for all possible initial triangulations P0 of

Ω, then u ∈ Bα
p,q(Ω).

Lemma
Let φ ∈ Sk be such that φ 6∈ C1(Ω) for some k. Then there exists an initial
triangulation P0 of Ω, such that E(φ,Sj)p &λ

−(1+ 1
p )j for 0 < p <∞, where

{Sj} is the sequence analogous to {Sj} with P0 replaced by P0.

Proof (n = 2):
There is an edge e of Pk, such that |φ(x,y)| ∼ max{0,y} under
suitable transformation, where y is the coordinate normal to e.
We choose P0 so that e cuts through the “middle” of each triangle
in any refinement of P0.



Multilevel approximation spaces IV

Proof (n = 2):
There is an edge e of Pk, such that |φ(x,y)| ∼ max{0,y} under a
suitable transformation, where y is the coordinate normal to e.
We choose P0 so that e cuts through the “middle” of each triangle
in any refinement of P0.

e

We have

‖φ‖p
Lp(Vj) ∼

∫ hj

0
ypdy ∼ hp+1

j ∼λ−j(p+1),

where Vj is the shaded area, and

E(φ,Sj)p & ‖φ‖Lp(Vj) ∼λ−j(1+ 1
p ).

e



Direct embeddings II

Theorem: We have Aα
q,q(Ω) ⊂A s∞(Lp(Ω)) for s = α

n > 1
q − 1

p ≥ 0.

Proof: The two ingredients are the same as before.

Mesh construction
For any u ∈ Aα

q,q(Ω) and N , there exists P ∈P with #P ≤ N such that∑
τ∈P

|τ|pδ|u|p
Aα

q,q(τ̂)
.N−sp‖u‖p

Aα
q,q(Ω)

,

where s = α
n .

Proof: The same argument works basically because the spaces Aα
q,q(G)

enjoy the locality property∑
τ∈P

|u|q
Aα

q,q(τ̂)
. ‖u‖q

Aα
q,q(Ω)

.



Direct estimate

Lemma: Let δ= α
n + 1

p − 1
q > 0. Then for u ∈ Aα

q,q(Ω) and P ∈P we have

‖u−QPu‖p
Lp(Ω) .

∑
τ∈P

|τ|pδ|u|p
Aα

q,q(τ̂)
,

where QP is the quasi-interpolation operator from [GM13].

Proof (q ≤ 1): We have

‖u−QPu‖p
Lp(Ω) =

∑
τ∈P

‖u−QPu‖p
Lp(τ) .

∑
τ∈P

inf
v∈SP

‖u−v‖p
Lp(τ̂).

Every triangle σ ∈ P belongs to a unique Pj. Given τ ∈ P denote by j(τ)
the highest index j that occurs in the local patch surrounding τ. We have

inf
v∈SP

‖u−v‖Lp(τ̂) ≤ inf
v∈Sj(τ)

‖u−v‖Lp(τ̂),

because in τ̂, Pj(τ) is more refined that P.



Proof of direct estimate continued

So far, we have

‖u−QPu‖p
Lp(Ω) .

∑
τ∈P

inf
v∈Sj(τ)

‖u−v‖p
Lp(τ̂).

For each j, let uj ∈ Sj be such that ‖u−uj‖Lp(τ̂) = inf
v∈Sj

‖u−v‖Lp(τ̂). We have

‖u−uj(τ)‖p∗
Lp(τ̂) ≤

∞∑
j=j(τ)

‖uj+1 −uj‖p∗
Lp(τ̂) .

∞∑
j=j(τ)

λ
( 1

q − 1
p )jnp∗‖uj+1 −uj‖p∗

Lq(τ̂),

with p∗ = min{1,p}. Putting 1
q − 1

p = α
n −δ, we get

‖u−uj(τ)‖p∗
Lp(τ̂) .

∞∑
j=j(τ)

λ−jnδp∗
λjαp∗‖u−uj‖p∗

Lq(τ̂)

≤λ−j(τ)nδp∗ ∞∑
j=j(τ)

λjαp∗‖u−uj‖p∗
Lq(τ̂) . |τ|δp∗ |u|p∗

Aα
p,p∗

.



Adaptive finite element methods

Consider the boundary value problem

∆u = f in Ω, u = 0 on ∂Ω.

A typical a posteriori error estimate satisfies[
η(u,P)

]2 ∼ ‖u−uP‖2
H1(Ω) +

∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ),

where uP ∈ SP is the Galerkin solution on P, and Πτ : L2(τ) →Pd is the
L2(τ)-orthogonal projection onto Pd, d ≥ m−2.

It is known that certain practical adaptive FEM converges optimally
w.r.t. approximation classes associated to

E(u,P) =
(
min
v∈SP

‖u−v‖2
H1(Ω) +

∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ)

) 1
2

.



Generalized approximation classes

Let ρ(u,v,P) =
(
‖u−v‖2

H1(Ω) +
∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ)

) 1
2

,

and define
E(u,P) = min

v∈SP
ρ(u,v,P), Ej(u) = inf

{P∈P :#P≤2j}
E(u,P).

We introduce the approximation class A s
q (ρ) given by

u ∈A s
q (ρ) ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `q.

Also, define the oscillation class Os by

f ∈Os
q ⇐⇒ inf

{P∈P :#P≤2j}

∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ) . 2−2js.

Lemma: If u ∈A s∞(H1
0 (Ω)) and f ∈Os then u ∈A s∞(ρ).

Proof: Overlay of meshes.
Example:
Hα(Ω) ⊂O1+α for α≥ 0, so A s∞(H1

0 (Ω))∩∆−1(Hs−1(Ω)) ⊂A s∞(ρ) for s ≥ 1.



Direct embeddings III

Morally, Os ≈A s∞(H−1(Ω)), so we expect Bα
q,q(Ω) ⊂O1+α.

Theorem: We have Bα
q,q(Ω) ⊂O1+α for α

n ≥ 1
q − 1

2 ,
hence A s∞(H1

0 (Ω))∩∆−1(Bs−1
q,q (Ω)) ⊂A s∞(ρ) for s−1

n ≥ 1
q − 1

2 .

1
q

α

L2

H−1

Bα
q,q



Direct embeddings III

Theorem: We have Bα
q,q(Ω) ⊂O1+α for α

n ≥ 1
q − 1

2 ,
hence A s∞(H1

0 (Ω))∩∆−1(Bs−1
q,q (Ω)) ⊂A s∞(ρ) for s−1

n ≥ 1
q − 1

2 .

Proof: The mesh construction part works the same as before. For the
direct estimate, with δ= α

n − 1
q + 1

2 ≥ 0, we have

‖f −Πτf ‖L2(τ) ≤ ‖f −p‖L2(τ) . |τ|δ‖f −p‖Lq(τ) +|τ|δ|f |Bα
q,q(τ),

for any p ∈Pd, and

min
p∈Pd

‖f −p‖Lq(τ) .ωd+1(f ,τ)q . |f |Bα
q,q(τ),

which gives ∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ) .
∑
τ∈P

|τ|2δ+2/n|f |2Bα
q,q(τ).



Concluding remarks

The arguments can be adapted to
red refinements,
splines,
higher order problems,
Stokes equations, etc.
For variable coefficient equations, one loses “an epsilon” in the
convergence rate.

Plans:
inverse theorems for adaptive FEM
boundary elements
finite element exterior calculus


