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Overview

[Cohen, Dahmen, DeVore ’02], [Stevenson ’04], [Dahlke, Fornasier, Raasch ’04] ,

[Werner]

• Wavelet frame Ψ: Au = f 99K Au = f

• Richardson iteration: u(i+1) := u(i) + ω(f − Au(i))

• Coarsening after K iterations

[Cohen, Dahmen, DeVore ’01], [Gantumur, Harbrecht, Stevenson ’05]

• Galerkin approximation: uΛ ∈ `2(Λ) s.t.

〈AuΛ, vΛ〉 = 〈f, vΛ〉 ∀vΛ ∈ `2(Λ)

• Expand Λ to Λ̃ s.t. |||u− uΛ̃||| ≤ ξ|||u− uΛ||| with ξ < 1

+ Coarsening is not needed for the iterands u(i) [GHS05]

- Using frames is problematic



Elliptic operator equation

• Let H be a separable Hilbert space, H′ its dual

• A : H → H′ linear, self-adjoint, H-elliptic
(〈Av, v〉 ≥ c‖v‖2

H v ∈ H)

Find u ∈ H s.t. Au = f (f ∈ H′)

• Example: Reaction-diffusion equation H = H1
0(Ω)

〈Au, v〉 =

∫
Ω
∇u · ∇v + κ2uv



Equivalent discrete problem

[CDD01, CDD02]

• Wavelet basis Ψ = {ψλ : λ ∈ ∇} of H
• Stiffness A = 〈Aψλ, ψµ〉λ,µ and load f = 〈f , ψλ〉λ

Linear equation in `2(∇)

Au = f, A : `2(∇) → `2(∇) SPD and f ∈ `2(∇)

• u =
∑

λ uλψλ is the solution of Au = f

• ‖u− v‖`2 h ‖u− v‖H with v =
∑

λ vλψλ



Galerkin solutions

• ||| · ||| := 〈A·, ·〉
1
2 is a norm on `2

• Λ ⊂ ∇
• IΛ : `2(∇) → `2(Λ) restr., PΛ := I∗Λ
• AΛ := PΛAI Λ : `2(Λ) → `2(Λ) SPD

• fΛ := PΛf ∈ `2(Λ)

Lemma

A unique solution uΛ ∈ `2(Λ) to AΛuΛ = fΛ exists, and

|||u− uΛ||| = inf
v∈`2(Λ)

|||u− v|||



Galerkin orthogonality

• suppw ⊂ Λ, AΛuΛ = fΛ
• 〈f − AuΛ, vΛ〉 = 0 for vΛ ∈ `2(Λ)

|||u− w|||2 = |||u− uΛ|||2 + |||uΛ − w|||2

•



Error reduction

|||u− uΛ|||2 = |||u− w|||2 − |||uΛ − w|||2

Lemma [CDD01]

Let µ ∈ (0,1), and Λ be s.t.

‖PΛ(f − Aw)‖ ≥ µ‖f − Aw‖

Then we have

|||u− uΛ||| ≤
√

1− κ(A)−1µ2 |||u− w|||



Ideal algorithm

SOLVE[ε] → uk

k := 0; Λ0 := ∅
do

Solve AΛkuk = fΛk

r k := f − Auk

determine a set Λk+1 ⊃ Λk, with minimal
cardinality, such that ‖PΛk+1r k‖ ≥ µ‖r k‖
k := k + 1

while ‖r k‖ > ε



Approximate Iterations

Approximate right-hand side

RHS[ε] → fε with ‖f − fε‖`2 ≤ ε

Approximate application of the matrix

APPLYA[v, ε] → wε with ‖Av − wε‖`2 ≤ ε

Approximate residual

RES[v, ε] := RHS[ε/2]− APPLYA[v, ε/2]



Best N-term approximation

Given u = (uλ)λ ∈ `2, approximate u using N nonzero coeffs

ℵN :=
⋃

Λ⊂∇:#Λ=N

`2(Λ)

• ℵN is a nonlinear manifold

• Let uN be a best approximation of u with #suppuN ≤ N

• uN can be constructed by picking N largest in modulus
coeffs from u



Nonlinear vs. linear approximation in Ht(Ω)

Using wavelets of order d

Nonlinear approximation
If u ∈ Bt+ns

τ (Lτ ) with 1
τ = 1

2 + s for some s∈ (0, d−t
n )

εN = ‖uN − u‖ ≤ O(N−s)

Linear approximation
If u ∈ Ht+ns for some s∈ (0, d−t

n ], uniform refinement

εj = ‖uj − u‖ ≤ O(N−s
j )

• [Dahlke, DeVore]: u ∈ Bt+ns
τ (Lτ )\Ht+ns "often"



Approximation spaces

• Approximation space As := {v ∈ `2 : ‖v− vN‖`2 ≤ O(N−s)}
• Quasi-norm |v|As := supN∈N Ns‖v− vN‖`2

• u ∈ Bt+ns
τ (Lτ ) with 1

τ = 1
2 + s for some s∈ (0, d−t

n ) ⇒ u ∈ As

Assumption

u ∈ As for some s> 0

Best approximation

‖u− v‖ ≤ ε satisfies #suppv ≤ ε−1/s|u|1/s
As



Requirements on the subroutines

Complexity of RHS
RHS[ε] → fε terminates with ‖f − fε‖`2 ≤ ε

• #suppfε . ε−1/s|u|1/s
As

• flops, memory. ε−1/s|u|1/s
As + 1

Complexity of APPLYA

For #suppv <∞
APPLYA[v, ε] → wε terminates with ‖Av − wε‖`2 ≤ ε

• #suppwε . ε−1/s|v|1/s
As

• flops, memory. ε−1/s|v|1/s
As + #suppv + 1



The subroutine APPLYA

• {ψλ} are piecewise polynomial wavelets that are
sufficiently smooth and have sufficiently many vanishing
moments

• A is either differential or singular integral operator

Then we can construct APPLYA satisfying the requirements.
Ref: [CDD01], [Stevenson ’04], [Gantumur, Stevenson ’05,’06], [Dahmen, Harbrecht,

Schneider ’05]



Optimal expansion

Lemma [GHS05]

Let µ ∈ (0, κ(A)−
1
2 ). Then the smallest set Λ ⊃ suppw with

‖PΛ(f − Aw)‖ ≥ µ‖f − Aw‖

satisfies
#(Λ \ suppw) . ‖u− w‖−1/s|u|1/s

As



Sketch of a proof

With ν > 0, let N be the smallest integer s.t. a best N-term appr.
uN of u satisfies ‖u− uN‖ ≤ ν‖u− w‖. Then we have

N . ‖u− w‖−1/s|u|1/s
As

If ν s.t. ν2 ≤ κ(A)−1 − µ2 then Σ := suppw ∪ suppuN satisfies

‖PΣ(f − Aw)‖ ≥ µ‖f − Aw‖

By def. of Λ

#(Λ \ suppw) ≤ #(Σ \ suppw) ≤ N



Adaptive Galerkin method

SOLVE[ε] → wk

k := 0; Λ0 := ∅
do

Compute an appr.solution wk of AΛkuk = fΛk

Compute an appr.residual r k for wk

Determine a set Λk+1 ⊃ Λk, with
modulo constant factor minimal cardinality,
such that ‖PΛk+1r k‖ ≥ µ‖r k‖
k := k + 1

while ‖r k‖ > ε



Optimal complexity

Theorem [GHS05]

SOLVE[ε] → w terminates with ‖f − Aw‖`2 ≤ ε.

• #suppw . ε−1/s|u|1/s
As

• flops, memory . the same expression

Further result

• Can be extended to mildly nonsymmetric and indefinite
problems [Gantumur ’06]



Numerical illustration

• The problem: −∆u + u = f on R/Z (t = 1)

• u∈H1+s only for s < 1
2 ; u∈B1+s

τ,τ for any s > 0
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Convergence histories

• B-spline wavelets of order d=3 with 3 vanishing moments from [Cohen,
Daubechies, Feauveau ’92] ⇒ u ∈ As for any s < d−t

n = 3−1
1 = 2
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