Optimal adaptive wavelet methods for linear operator equations

T. Gantumur R. Stevenson

Numerical Colloquium 17 June

Gantumur, Stevenson

Overview

- Linear operator equation Au = g with $A : \mathcal{H} \to \mathcal{H}'$
- Riesz basis $\Psi = \{\psi_{\lambda}\}$ of \mathcal{H} , e.g. $u = \sum_{\lambda} \mathbf{u}_{\lambda} \psi_{\lambda}$
- Infinite dimensional matrix-vector system Au = g, with u = (u_λ)_λ and A : ℓ₂ → ℓ₂
- Convergent iterations such as $\mathbf{u}^{(i+1)} = \mathbf{u}^{(i)} + \alpha [\mathbf{g} \mathbf{A}\mathbf{u}^{(i)}]$
- We can approximate **Au**⁽ⁱ⁾ by a finitely supported vector
- How cheap can we compute this approximation?
- The answer will depend on A and Ψ

Outline

Continuous problem, discretization, and convergent iterations

- Linear operator equations
- Discretization
- Convergent iterations in discrete space

2 Complexity analysis

- Uniform methods convergence, complexity
- Nonlinear approximation
- Optimal complexity
- Computability

3 An adaptive Galerkin method

- Optimal complexity with coarsening
- Optimal complexity without coarsening

Linear Operator Equations

- Let \mathcal{H} be a separable Hilbert space, \mathcal{H}' be its dual
- $A : \mathcal{H} \to \mathcal{H}'$ is boundedly invertible
- $g \in \mathcal{H}'$ is a linear functional

Problem

$u \in \mathcal{H}$ is such that Au = g

• For $v \in \mathcal{H}$ and $h \in \mathcal{H}'$, $\langle h, v \rangle = h(v)$ the duality pairing

Sobolev Spaces

- Let Ω be an *n*-dimensional domain or smooth manifold
- $\mathcal{H} = H^t \subset H^t(\Omega)$ is a closed subspace
- $\mathcal{H}' = H^{-t}$ the dual space

Convergent iterations

Complexity analysis

An adaptive Galerkin method

Summary

Linear Differential Operators

• Partial differential operators of order 2*t*

$$\langle Au, v \rangle = \sum_{|\alpha|, |\beta| \le t} \langle a_{\alpha\beta} \partial^{\beta} u, \partial^{\alpha} v \rangle,$$

• Example: The reaction-diffusion equation (t = 1)

$$\langle Au, v \rangle = \int_{\Omega} \nabla u \cdot \nabla v + \kappa^2 u v,$$

Convergent iterations

Complexity analysis

An adaptive Galerkin method

Summary

Boundary Integral Operators

Boundary integral operators

$$\langle Au, v \rangle = \int_{\Omega} \int_{\Omega} v(x) K(x, y) u(y) d\Omega_y d\Omega_x$$

with the kernel K(x, y) singular at x = y

• Example: The single layer operator for the Laplace BVP in 3-d domain $(t = -\frac{1}{2})$

$$K(x,y) = \frac{1}{4\pi|x-y|}$$

An adaptive Galerkin method

Summary

Convergent Iterations in Continuous Space

Gradient Iterations

$$u^{(i+1)} = u^{(i)} + B_i(g - Au^{(i)}), \qquad B_i : \mathcal{H}' \to \mathcal{H}$$

•
$$u - u^{(i+1)} = u - u^{(i)} - B_i A(u - u^{(i)}) = (I - B_i A)(u - u^{(i)})$$

• $||u - u^{(i+1)}||_{\mathcal{H}} \le ||I - B_i A||_{\mathcal{H} \to \mathcal{H}} ||u - u^{(i)}||_{\mathcal{H}}$

Convergence

$$\rho_i := \|I - B_i A\|_{\mathcal{H} \to \mathcal{H}} < 1$$

Normal Equations

Observation

Let $R : \mathcal{H}' \to \mathcal{H}$ be self-adjoint: $\langle Rf, h \rangle = \langle f, Rh \rangle$ for $f, h \in \mathcal{H}'$ and \mathcal{H}' -elliptic: with some $\alpha > 0$ $\langle Rf, f \rangle \ge \alpha ||f||_{\mathcal{H}}^2$ for $f \in \mathcal{H}'$. Then $A'RA : \mathcal{H} \to \mathcal{H}'$ is self-adjoint and \mathcal{H} -elliptic.

Normal Equation

$$Au = g \implies A'RAu = A'Rg$$

Assumption

A is self-adjoint and \mathcal{H} -elliptic.

Summary

Riesz bases

 $\Psi = \{\psi_{\lambda} : \lambda \in \nabla\} \text{ is a Riesz basis for } \mathcal{H} \\ - \text{ each } v \in \mathcal{H} \text{ has a unique expansion}$

$$v = \sum_{\lambda \in
abla} d_\lambda(v) \psi_\lambda \quad ext{s.t.} \quad c \|v\|_\mathcal{H}^2 \leq \sum_{\lambda \in
abla} |d_\lambda(v)|^2 \leq C \|v\|_\mathcal{H}^2$$

•
$$d_{\lambda} \in \mathcal{H}'$$
 and $d_{\lambda}(\psi_{\mu}) = \delta_{\lambda\mu}$

•
$$\{d_{\lambda} : \lambda \in \nabla\}$$
 is a Riesz basis for \mathcal{H}'

• $\tilde{\Psi} = {\tilde{\psi}_{\lambda}} := {d_{\lambda}}$ is the dual basis: $\langle \tilde{\psi}_{\lambda}, \psi_{\mu} \rangle = \delta_{\lambda\mu}$

For $v \in \mathcal{H}$, we have $\mathbf{v} = {\mathbf{v}_{\lambda}} := {d_{\lambda}(v)} \in \ell_2(\nabla)$

onvergent iterations	Complexity analysis

Summary

Wavelet bases

- Ψ Riesz basis for $\mathcal{H} = H^t$
- Nested index sets $\nabla_0 \subset \nabla_1 \subset \ldots \subset \nabla_j \subset \ldots \subset \nabla$,
- $S_j = \operatorname{span}\{\psi_{\lambda} : \lambda \in \nabla_j\} \subset \mathcal{H} \text{ and } \tilde{S}_j = \operatorname{span}\{\tilde{\psi}_{\lambda} : \lambda \in \nabla_j\} \subset \mathcal{H}'$

Locality, Polynomial exactness and Vanishing moments $\begin{aligned}
\text{diam}(\text{supp }\psi_{\lambda}) &= \mathcal{O}(2^{-j}) \text{ if } \lambda \in \nabla_{j} \setminus \nabla_{j-1} \\
\text{All polynomials of degree } d - 1, P_{d-1} \subset \mathcal{S}_{0} \\
P_{\tilde{d}-1} \subset \tilde{\mathcal{S}}_{0} \text{ more precisely, } \langle P_{\tilde{d}-1}, \cdot \rangle_{L_{2}} \subset \tilde{\mathcal{S}}_{0}
\end{aligned}$

- $\{S_j\}$ has a good approximation property
- If $\lambda \in \nabla \setminus \nabla_0$, we have $\langle P_{\tilde{d}-1}, \psi_\lambda \rangle_{L_2} = 0 \rightsquigarrow$ cancellation property

Summary

Equivalent Discrete Problem

[Cohen, Dahmen, DeVore '02]

- Wavelet basis $\Psi = \{\psi_{\lambda} : \lambda \in \nabla\}$
- Stiffness $\mathbf{A} = \langle A\psi_{\lambda}, \psi_{\mu} \rangle_{\lambda,\mu}$ and load $\mathbf{g} = \langle g, \psi_{\lambda} \rangle_{\lambda}$

Linear equation in $\ell_2(\nabla)$

$$\mathbf{A}\mathbf{u} = \mathbf{g}, \qquad \mathbf{A} : \ell_2(\nabla) \to \ell_2(\nabla) \text{ SPD and } \mathbf{g} \in \ell_2(\nabla)$$

- $u = \sum_{\lambda} \mathbf{u}_{\lambda} \psi_{\lambda}$ is the solution of Au = g
- $\|\mathbf{u} \mathbf{v}\|_{\ell_2(\nabla)} \approx \|u v\|_{\mathcal{H}}$ with $v = \sum_{\lambda} \mathbf{v}_{\lambda} \psi_{\lambda}$
- A good approx. of **u** induces a good approx. of *u*
- Ψ defines a topological isomorphism between \mathcal{H} and $\ell_2(\nabla)$

An adaptive Galerkin method

Summary

Convergent Iterations in Discrete Space

Richardson's iterations

$$\mathbf{u}^{(0)} = \mathbf{0}$$

 $\mathbf{u}^{(i+1)} = \mathbf{u}^{(i)} + \alpha [\mathbf{g} - \mathbf{A} \mathbf{u}^{(i)}]$ $i = 0, 1, ...$

•
$$\mathbf{u} - \mathbf{u}^{(i+1)} = \mathbf{u} - \mathbf{u}^{(i)} - \alpha \mathbf{A} (\mathbf{u} - \mathbf{u}^{(i)}) = (\mathbf{I} - \alpha \mathbf{A}) (\mathbf{u} - \mathbf{u}^{(i)})$$

• $\|\mathbf{u} - \mathbf{u}^{(i+1)}\|_{\ell_2} \le \|\mathbf{I} - \alpha \mathbf{A}\|_{\ell_2 \to \ell_2} \|\mathbf{u} - \mathbf{u}^{(i)}\|_{\ell_2}$

Convergence

$$\rho := \|\mathbf{I} - \alpha \mathbf{A}\|_{\ell_2 \to \ell_2} < 1$$

- g and Au⁽ⁱ⁾ are infinitely supported
- Approximate them by finitely supported sequences

Convergent iterations

Complexity analysis

An adaptive Galerkin method

Summary

Approximate Iterations

Approximate right-hand side

RHS[
$$\mathbf{g}, \varepsilon$$
] $\rightarrow \mathbf{g}_{\varepsilon}$ satisfies $\|\mathbf{g} - \mathbf{g}_{\varepsilon}\|_{\ell_2} \leq \varepsilon$

Approximate application of the matrix

APPLY[**A**, **v**,
$$\varepsilon$$
] \rightarrow **w** $_{\varepsilon}$ satisfies $\|$ **Av** $-$ **w** $_{\varepsilon} \|_{\ell_2} \leq \varepsilon$

Approximate Richardson's iterations

$$\tilde{\mathbf{u}}^{(0)} = \mathbf{0}$$

$$\tilde{\mathbf{u}}^{(i+1)} = \tilde{\mathbf{u}}^{(i)} + \alpha \left(\mathbf{RHS}[\mathbf{g}, \varepsilon_i] - \mathbf{APPLY}[\mathbf{A}, \tilde{\mathbf{u}}^{(i)}, \varepsilon_i] \right) \qquad i = 0, 1, \dots$$

• Choose ε_i such that $\|\mathbf{u}^{(i)} - \tilde{\mathbf{u}}^{(i)}\| \approx \|\mathbf{u} - \mathbf{u}^{(i)}\|$

An adaptive Galerkin method

Summary

Convergence

RICHARDSON[$\tilde{\mathbf{u}}^{(0)}, \varepsilon_{\text{fin}}$] $\rightarrow \tilde{\mathbf{u}}^{(i)}$ for i = 0, 1, ... $\varepsilon_i := C\rho^i; \tilde{\mathbf{r}}^{(i)} := \mathbf{RHS}[\mathbf{g}, \varepsilon_i] - \mathbf{APPLY}[\mathbf{A}, \tilde{\mathbf{u}}^{(i)}, \varepsilon_i]$ if $\|\tilde{\mathbf{r}}^{(i)}\|_{\ell_2} + 2\varepsilon_i \leq \varepsilon_{\text{fin}}$ then terminate; $\tilde{\mathbf{u}}^{(i+1)} := \tilde{\mathbf{u}}^{(i)} + \alpha \mathbf{r}^{(i)}$ endfor

Lemma

RICHARDSON[$\tilde{\mathbf{u}}^{(0)}, \varepsilon$] $\rightarrow \tilde{\mathbf{u}}$ terminates with $\|\mathbf{g} - \mathbf{A}\tilde{\mathbf{u}}\|_{\ell_2} \leq \varepsilon$

• Computational cost of **RICHARDSON**[$\tilde{\mathbf{u}}^{(0)}, \varepsilon$] depending on ε ?

- Wavelet basis $\Psi_j := \{\psi_\lambda : \lambda \in \nabla_j\}$ of \mathcal{S}_j
- Stiffness $\mathbf{A}_j = \langle A\psi_\lambda, \psi_\mu \rangle_{\lambda, \mu \in \nabla_j}$
- Load $\mathbf{g}_j = \langle g, \psi_\lambda \rangle_{\lambda \in \nabla_j}$

Linear equation in $\ell_2(\nabla_j)$

$$\mathbf{A}_{j}\mathbf{u}_{j} = \mathbf{g}_{j}, \qquad \mathbf{A}_{j}: \ell_{2}(\nabla_{j}) \to \ell_{2}(\nabla_{j}) \text{ SPD and } \mathbf{g}_{j} \in \ell_{2}(\nabla_{j})$$

- $u_j = \sum_{\lambda} [\mathbf{u}_j]_{\lambda} \psi_{\lambda} \in S_j$ approximates the solution of Au = g
- With the orthogonal projector P_j : ℓ₂(∇) → ℓ₂(∇_j), the above equation is equivalent to P_jAu_j = P_jg

An adaptive Galerkin method

Summary

Convergence and Complexity

If $u \in H^{t+ns}$ for some $s \in (0, \frac{d-t}{n}]$

$$arepsilon_j := \|u-u_j\|_{H^t} \leq C \inf_{v \in \mathcal{S}_j} \|u-v\|_{H^t} \leq \mathcal{O}(2^{-jns})$$

•
$$N_j = \dim \mathcal{S}_j = \mathcal{O}(2^{jn})$$

- $\varepsilon_j \leq \mathcal{O}(N_j^{-s})$
- Solve $\mathbf{A}_{j}\mathbf{u}_{j} = \mathbf{g}_{j}$ with Cascadic CG \rightsquigarrow complexity $\mathcal{O}(N_{j})$
- Similar estimates for FEM

An adaptive Galerkin method

Summary

Best N-term Approximation

Given $\mathbf{u} = (\mathbf{u}_{\lambda})_{\lambda} \in \ell_2$, approximate \mathbf{u} using *N* nonzero coeffs

$$\aleph_N := \bigcup_{\Lambda \subset \nabla : \#\Lambda = N} \ell_2(\Lambda)$$

- \aleph_N is a nonlinear manifold
- Let \mathbf{u}_N be such that $\|\mathbf{u} \mathbf{u}_N\|_{\ell_2} \le \|\mathbf{u} \mathbf{v}\|_{\ell_2}$ for $\mathbf{v} \in \aleph_N$
- \mathbf{u}_N is a best approximation of \mathbf{u} with # supp $\mathbf{u}_N \leq N$
- \mathbf{u}_N can be constructed by picking N largest in modulus coeffs from \mathbf{u}

Convergent iterations	Complexity analysis	An adaptive Galerkin method	Summar
Nonlinear vs.	linear approx	imation	

Nonlinear approximation

If
$$u \in B^{t+ns}_{\tau}(L_{\tau})$$
 with $\frac{1}{\tau} = \frac{1}{2} + s$ for some $s \in (0, \frac{d-t}{n})$

$$arepsilon_N = \|\mathbf{u}_N - \mathbf{u}\| \leq \mathcal{O}(N^{-s})$$

Linear approximation

If $u \in H^{t+ns}$ for some $s \in (0, \frac{d-t}{n}]$, uniform refinement

$$\varepsilon_j = \|\mathbf{u}_j - \mathbf{u}\| \leq \mathcal{O}(N_j^{-s})$$

• H^{t+ns} is a proper subset of $B^{t+ns}_{\tau}(L_{\tau})$

• [Dahlke, DeVore]: $u \in B_{\tau}^{t+ns}(L_{\tau})$ much milder than $u \in H^{t+ns}$

Summary

Approximation spaces

- Approximation space $\mathcal{A}^s := \{ \mathbf{v} \in \ell_2 : \|\mathbf{v} \mathbf{v}_N\|_{\ell_2} \le \mathcal{O}(N^{-s}) \}$
- Quasi-semi-norm $|\mathbf{v}|_{\mathcal{A}^s} := \sup_{N \in \mathbb{N}} N^s \|\mathbf{v} \mathbf{v}_N\|_{\ell_2}$
- $u \in B_{\tau}^{t+ns}(L_{\tau})$ with $\frac{1}{\tau} = \frac{1}{2} + s$ for some $s \in (0, \frac{d-t}{n}) \Rightarrow \mathbf{u} \in \mathcal{A}^{s}$

Assumption

$$\mathbf{u} \in \mathcal{A}^s$$
 for some $s \in (0, \frac{d-t}{n})$

Best approximation

$$\|\mathbf{u} - \mathbf{v}\| \le \varepsilon$$
 satisfies $\#$ supp $\mathbf{v} \le \varepsilon^{-1/s} \|\mathbf{u}\|_{\mathcal{A}^s}^{1/s}$

Summary

Requirements on the Subroutines

Complexity of RHS

$$\mathbf{RHS}[\mathbf{g},\varepsilon] \to \mathbf{g}_{\varepsilon} \text{ terminates with } \|\mathbf{g}-\mathbf{g}_{\varepsilon}\|_{\ell_2} \leq \varepsilon$$

•
$$\# \operatorname{supp} \mathbf{g}_{\varepsilon} \lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s}$$

• flops, memory
$$\lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s} + 1$$

Complexity of APPLY

For $\# \operatorname{supp} \mathbf{v} < \infty$ **APPLY** $[\mathbf{A}, \mathbf{v}, \varepsilon] \to \mathbf{w}_{\varepsilon}$ terminates with $\|\mathbf{A}\mathbf{v} - \mathbf{w}_{\varepsilon}\|_{\ell_{2}} \le \varepsilon$ • $\# \operatorname{supp} \mathbf{w}_{\varepsilon} \lesssim \varepsilon^{-1/s} |\mathbf{v}|_{\mathcal{A}^{s}}^{1/s}$ • flops, memory $\lesssim \varepsilon^{-1/s} |\mathbf{v}|_{\mathcal{A}^{s}}^{1/s} + \# \operatorname{supp} \mathbf{v} + 1$

An adaptive Galerkin method

Summary

Complexity of **RICHARDSON**

$$\begin{split} & \textbf{RICHARDSON}[\tilde{\mathbf{u}}^{(0)}, \varepsilon_{\text{fin}}] \rightarrow \tilde{\mathbf{u}}^{(i)} \\ & \text{for } i = 0, 1, \dots \\ & \varepsilon_i := C\rho^i; \; \tilde{\mathbf{r}}^{(i)} := \textbf{RHS}[\mathbf{g}, \varepsilon_i] - \textbf{APPLY}[\mathbf{A}, \tilde{\mathbf{u}}^{(i)}, \varepsilon_i] \\ & \text{if } \|\tilde{\mathbf{r}}^{(i)} + 2\varepsilon_i\|_{\ell_2} \leq \varepsilon_{\text{fin}} \; \text{then terminate}; \\ & \tilde{\mathbf{u}}^{(i+1)} := \tilde{\mathbf{u}}^{(i)} + \alpha \mathbf{r}^{(i)} \\ & \text{endfor} \end{split}$$

Lemma

RICHARDSON $[\tilde{\mathbf{u}}^{(0)}, \varepsilon] \to \tilde{\mathbf{u}}$ terminates with $\|\mathbf{g} - \mathbf{A}\tilde{\mathbf{u}}\|_{\ell_2} \le \varepsilon$. • $\varepsilon_0 := \|\mathbf{u} - \tilde{\mathbf{u}}^{(0)}\|_{\ell_2}$ • $\# \operatorname{supp} \tilde{\mathbf{u}} \lesssim \varepsilon^{-1/s} \|\mathbf{u}\|_{\mathcal{A}^s}^{1/s} + \varepsilon_0^{-1/s} (\varepsilon_0/\varepsilon)^C \|\mathbf{u}\|_{\mathcal{A}^s}^{1/s} + \varepsilon^{-1/s} (\varepsilon_0/\varepsilon)^C \|\tilde{\mathbf{u}}^{(0)}\|_{\mathcal{A}^s}^{1/s}$ • flops, memory \lesssim the same expression

Coarsening

An adaptive Galerkin method

Summary

 $\begin{aligned} \mathbf{COARSE}[\mathbf{v},\varepsilon] \to \mathbf{w} \\ \|\mathbf{v}-\mathbf{w}\| &\leq \varepsilon \text{ and } \# \text{supp } \mathbf{v} \text{ is minimal} \end{aligned}$

Lemma

$$\theta < 1/2$$
. Let $\|\mathbf{u} - \mathbf{v}\| \le \theta \varepsilon$. $\mathbf{w} = \text{COARSE}[\mathbf{v}, (1 - \theta)\varepsilon]$ satisfies
#supp $\mathbf{w} \lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s}$ and $\|\mathbf{u} - \mathbf{w}\| \le \varepsilon$

Convergent iterations

Complexity analysis

An adaptive Galerkin method

Summary

Complexity with coarsening

$$\begin{split} & \mathbf{SOLVE}[\varepsilon_{\text{fin}}] \rightarrow \tilde{\mathbf{u}}^{(i)} \\ & \tilde{\mathbf{u}}^{(0)} := 0; \ \varepsilon_0 := \|\mathbf{f}\| \\ & \text{for } i = 0, 1, \dots \\ & \varepsilon_{i+1} := \varepsilon_i/2 \\ & \mathbf{v} := \mathbf{RICHARDSON}[\tilde{\mathbf{u}}^{(i)}, \theta \varepsilon_{i+1}] \\ & \tilde{\mathbf{u}}^{(i+1)} := \mathbf{COARSE}[\mathbf{v}, (1-\theta)\varepsilon_{i+1}] \\ & \text{until } \varepsilon_{i+1} \le \varepsilon_{\text{fin}} \end{split}$$

Theorem [Cohen, Dahmen, DeVore '02]

SOLVE[ε] \rightarrow $\tilde{\mathbf{u}}$ terminates with $\|\mathbf{g} - \mathbf{A}\tilde{\mathbf{u}}\|_{\ell_2} \leq \varepsilon$.

• #supp
$$\tilde{\mathbf{u}} \lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s}$$

• flops, memory \lesssim the same expression

An adaptive Galerkin method

Summary

Computing the Right Hand Side

Complexity of RHS

- $\mathbf{RHS}[\mathbf{g},\varepsilon] \to \mathbf{g}_{\varepsilon} \text{ terminates with } \|\mathbf{g}-\mathbf{g}_{\varepsilon}\|_{\ell_2} \leq \varepsilon$
 - #supp $\mathbf{g}_{\varepsilon} \lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s}$
 - flops, memory $\lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s} + 1$

A naive approach:

- Compute $\tilde{\mathbf{g}} = \langle g, \psi_{\lambda} \rangle_{\lambda \in \Lambda}$ for some $\Lambda \subset \nabla$ s.t. $\|\mathbf{g} \tilde{\mathbf{g}}\| \leq \delta$
- Arrange the coeffs in $\tilde{\mathbf{g}}$ in modulus beforehand
- **RHS**[\mathbf{g}, ε] := **COARSE**[$\mathbf{\tilde{g}}, \varepsilon \delta$]

The Subroutine APPLY

Computability

Matrix **A** is called q^* -computable, when for each *N* one can construct an infinite matrix \mathbf{A}_N s.t.

- for any $q < q^*$, $\|\mathbf{A}_N \mathbf{A}\| \leq \mathcal{O}(N^{-q})$
- having in each column $\mathcal{O}(N)$ non-zero entries
- whose computation takes $\mathcal{O}(N)$ operations

Theorem [Cohen, Dahmen, DeVore '01]

Recall $s \in (0, \frac{d-t}{n})$. Let **A** be q^* -computable with $q^* > s$. Then we can construct **APPLY** satisfying the requirements.

• A needs to be approximated well by computable sparse matrices

Convergent iterations

Complexity analysis

An adaptive Galerkin method

Summary

Compressibility

• Assume
$$A, A' : H^{t+\sigma} \to H^{-t+\sigma}$$

• Level $|\lambda| := j$ such that $\lambda \in \nabla_j \setminus \nabla_{j-1}$
• $\|\psi_\lambda\|_{H^r} \approx 2^{|\lambda|(r-t)}$ for $r \in [-\tilde{d}, \gamma), \gamma := \sup\{q : \psi_\lambda \in H^q\}$
• $r \leq \min\{t + \tilde{d}, \sigma\}$ and $r < \gamma - t, |\mu| \geq |\lambda|$
 $|\langle A\psi_\lambda, \psi_\mu \rangle| \leq \|A\psi_\lambda\|_{H^{-t+r}} \|\psi_\mu\|_{H^{t-r}} \lesssim \|\psi_\lambda\|_{H^{t+r}} \|\psi_\mu\|_{H^{t-r}}$
 $\lesssim 2^{-r(|\mu|-|\lambda|)}$

Theorem [Stevenson '04]

- {ψ_λ} are piecewise polynomial wavelets that are sufficiently smooth and have sufficiently many vanishing moments
- A is either differential or singular integral operator
- any entry of **A** can be computed spending $\mathcal{O}(1)$ operations

then **A** is q^* -computable for some $q^* \ge \frac{d-t}{n}$ (> s)

Computability

Unit cost assumption

Any entry of **A** can be computed spending $\mathcal{O}(1)$ operations

- Only satisfied for very special cases: differential operators with constant coefficients, single layer potential operator on ℝ
- Numerical quadrature is needed

Theorem [Gantumur, Stevenson '04, '05]

- {ψ_λ} are piecewise polynomial wavelets that are sufficiently smooth and have sufficiently many vanishing moments
- *A* is either differential or singular integral operator

then **A** is q^* -computable for some $q^* \ge \frac{d-t}{n}$ (> s)

•
$$\langle\!\langle\cdot,\cdot\rangle\!\rangle := \langle\!\mathbf{A}\cdot,\cdot\rangle$$
 is an inner product on ℓ_2 , $||| \cdot ||| := \langle\!\langle\cdot,\cdot\rangle\!\rangle^{\frac{1}{2}}$ is a norm

• Let $\tilde{\mathbf{u}} \in \ell_2(\Lambda)$ be an approx. to \mathbf{u} inside SOLVE

•
$$\mathbf{A}_{\Lambda} := \mathbf{P}_{\Lambda} \mathbf{A}|_{\ell_2(\Lambda)} : \ell_2(\Lambda) \to \ell_2(\Lambda), \text{ and } \mathbf{g}_{\Lambda} := \mathbf{P}_{\Lambda} \mathbf{g} \in \ell_2(\Lambda)$$

• $\mathbf{u}_{\Lambda} \in \ell_2(\Lambda)$ is the solution to $\mathbf{A}_{\Lambda} \mathbf{u}_{\Lambda} = \mathbf{g}_{\Lambda}$

$$\| \mathbf{u} - \mathbf{u}_{\Lambda} \| = \inf_{\mathbf{v} \in \ell_2(\Lambda)} \| \mathbf{u} - \mathbf{v} \|$$

- In a sense, \mathbf{u}_{Λ} is the best approx. from $\ell_2(\Lambda)$
- The next set $\tilde{\Lambda}$ generated by **SOLVE** can be too big, not optimal

Saturation

Complexity analysis

An adaptive Galerkin method

Summary

Galerkin orthogonality

$$\mathbf{u} - \mathbf{u}_{\Lambda} \perp_{\mathbf{A}} \ell_2(\Lambda)$$

Lemma

 $\mu \in (0, 1)$, $\mathbf{w} \in \ell_2$, and $\Lambda \supset \operatorname{supp} \mathbf{w} s.t.$

$$\|\mathbf{P}_{\mathsf{A}}(\mathbf{g} - \mathbf{A}\mathbf{w})\| \geq \mu \|\mathbf{g} - \mathbf{A}\mathbf{w}\|$$

Then we have

$$||\!|\mathbf{u} - \mathbf{u}_{\mathsf{A}}|\!|\!| \leq [1 - \kappa(\mathbf{A})^{-1} \mu^2]^{\frac{1}{2}} ||\!|\mathbf{u} - \mathbf{w}|\!||$$

An adaptive Galerkin method

Summary

Adaptive Galerkin Method

```
\begin{aligned} & \mathbf{GROW}[\mathbf{w}] \to [\Lambda, \nu]: \\ & \mathbf{r} := \mathbf{RHS}[\mathbf{g}, \zeta] - \mathbf{APPLY}[\mathbf{A}, \mathbf{w}, \zeta] \\ & \nu := \|\mathbf{r}\| + 2\zeta \\ & \text{determine a set } \Lambda \supset \text{supp } \mathbf{w}, \text{ with minimal cardinality, such that } \|\mathbf{P}_{\Lambda}\mathbf{r}\| \geq \mu \|\mathbf{r}\| \end{aligned}
```

$$\begin{aligned} & \mathbf{GALSOLVE}[\varepsilon] \to \mathbf{w}_k: \\ & k := 0; \mathbf{w}_k := 0 \\ & \text{while with } [\Lambda_{k+1}, \nu_k] := \mathbf{GROW}[\mathbf{w}_k], \nu_k > \varepsilon \text{ do} \\ & \text{ Solve } \mathbf{A}_{\Lambda_{k+1}} \mathbf{w}_{k+1} = \mathbf{g}_{\Lambda_{k+1}} \\ & k := k+1 \\ & \text{ if } k = 0 \pmod{K} \text{ then } \mathbf{w}_{k+1} = \mathbf{COARSE}[\mathbf{w}_{k+1}, \xi] \\ & \text{ enddo} \end{aligned}$$

Complexity

An adaptive Galerkin method

Theorem [Cohen, Dahmen, DeVore '01]

Let $k < \infty$ suitably chosen. **GALSOLVE** $[\varepsilon] \rightarrow \mathbf{w}$ terminates with $\|\mathbf{g} - \mathbf{A}\mathbf{w}\|_{\ell_2} \le \varepsilon$.

• #supp
$$\mathbf{w} \lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s}$$

 ${\small \circ }\,$ flops, memory \lesssim the same expression

Convergent iterations

Complexity analysis

An adaptive Galerkin method

Summary

Optimal expansion

Lemma [Gantumur, Harbrecht, Stevenson '05]

 $\mu \in (0, \kappa(\mathbf{A})^{-\frac{1}{2}}), \mathbf{w} \in \ell_2$. Then the smallest set $\Lambda \supset \operatorname{supp} \mathbf{w}$ with

$$\|\mathbf{P}_{\mathsf{A}}(\mathbf{g} - \mathbf{A}\mathbf{w})\| \ge \mu \|\mathbf{g} - \mathbf{A}\mathbf{w}\|$$

satisfies

$$\#(\mathbf{\Lambda} \setminus \operatorname{supp} \mathbf{w}) \lesssim \|\mathbf{g} - \mathbf{A}\mathbf{w}\|^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s}$$

Convergent iterations Complexity analysis An adaptive Galerkin method S Optimal Complexity without Coarsening

Theorem [Gantumur, Harbrecht, Stevenson '05]

Let $K = \infty$. GALSOLVE $[\varepsilon] \rightarrow \mathbf{w}$ terminates with $\|\mathbf{g} - \mathbf{A}\mathbf{w}\|_{\ell_2} \leq \varepsilon$.

• #supp
$$\mathbf{w} \lesssim \varepsilon^{-1/s} |\mathbf{u}|_{\mathcal{A}^s}^{1/s}$$

• flops, memory \lesssim the same expression

- There exist asymptotically optimal fully discrete adaptive wavelet algorithms for solving linear operator equations.
- There exist adaptive Galerkin methods without coarsening of the intermediate iterands.

- A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods II Beyond the elliptic case. *Found. Comput. Math.*, 2(3):203–245, 2002.
- R.P. Stevenson. On the compressibility of operators in wavelet coordinates. *SIAM J. Math. Anal.*, 35(5):1110–1132, 2004.
- T. Gantumur and R.P. Stevenson. Computation of differential operators in wavelet coordinates. Technical Report 1306, Utrecht University, August 2004. To appear in *Math. Comp.*.
- T. Gantumur and R.P. Stevenson. Computation of singular integral operators in wavelet coordinates. Technical Report 1321, Utrecht University, January 2005. Submitted.
- T. Gantumur, H. Harbrecht, R.P. Stevenson. An optimal adaptive wavelet method without coarsening. Technical Report 1325, Utrecht University, March 2005. Submitted.

