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Overview

Linear operator equationAu = g with A : H → H′

Riesz basisΨ = {ψλ} of H, e.g.u =
∑

λ uλψλ

Infinite dimensional matrix-vector systemAu = g, with u = (uλ)λ

andA : `2 → `2

Convergent iterations such asu(i+1) = u(i) + α[g− Au(i)]

WecanapproximateAu(i) by a finitely supported vector

How cheap can wecomputethis approximation?

The answer will depend onA andΨ

Gantumur, Stevenson
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Linear Operator Equations

LetH be a separable Hilbert space,H′ be its dual

A : H → H′ is boundedly invertible

g ∈ H′ is a linear functional

Problem
u ∈ H is such thatAu = g

For v ∈ H andh ∈ H′, 〈h, v〉 = h(v) theduality pairing

Gantumur, Stevenson
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Sobolev Spaces

Let Ω be ann-dimensional domain or smooth manifold

H = Ht ⊂ Ht(Ω) is a closed subspace

H′ = H−t the dual space

Gantumur, Stevenson
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Linear Differential Operators

Partial differential operators of order 2t

〈Au, v〉 =
∑

|α|,|β|≤t

〈aαβ∂
βu, ∂αv〉,

Example: The reaction-diffusion equation (t = 1)

〈Au, v〉 =

∫
Ω
∇u · ∇v + κ2uv,

Gantumur, Stevenson
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Boundary Integral Operators

Boundary integral operators

〈Au, v〉 =

∫
Ω

∫
Ω

v(x)K(x, y)u(y)dΩydΩx

with the kernelK(x, y) singular atx = y

Example: The single layer operator for the Laplace BVP in 3-d
domain (t = −1

2)

K(x, y) =
1

4π|x− y|

Gantumur, Stevenson
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Convergent Iterations in Continuous Space

Gradient Iterations

u(i+1) = u(i) + Bi(g− Au(i)), Bi : H′ → H

u− u(i+1) = u− u(i) − BiA(u− u(i)) = (I − BiA)(u− u(i))

‖u− u(i+1)‖H ≤ ‖I − BiA‖H→H‖u− u(i)‖H

Convergence

ρi := ‖I − BiA‖H→H < 1

Gantumur, Stevenson
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Normal Equations

Observation

Let R : H′ → H beself-adjoint: 〈Rf,h〉 = 〈f ,Rh〉 for f ,h ∈ H′

andH′-elliptic: with someα > 0 〈Rf, f 〉 ≥ α‖f‖2
H for f ∈ H′.

ThenA′RA : H → H′ is self-adjoint andH-elliptic.

Normal Equation

Au = g =⇒ A′RAu= A′Rg

Assumption

A is self-adjointandH-elliptic.

Gantumur, Stevenson
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Riesz bases

Ψ = {ψλ : λ ∈ ∇} is aRiesz basisfor H
– eachv ∈ H has a unique expansion

v =
∑
λ∈∇

dλ(v)ψλ s.t. c‖v‖2
H ≤

∑
λ∈∇

|dλ(v)|2 ≤ C‖v‖2
H

dλ ∈ H′ anddλ(ψµ) = δλµ

{dλ : λ ∈ ∇} is a Riesz basis forH′

Ψ̃ = {ψ̃λ} := {dλ} is thedual basis: 〈ψ̃λ, ψµ〉 = δλµ

For v ∈ H, we havev = {vλ} := {dλ(v)} ∈ `2(∇)

Gantumur, Stevenson
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Wavelet bases

Ψ Riesz basis forH = Ht

Nested index sets∇0 ⊂ ∇1 ⊂ . . . ⊂ ∇j ⊂ . . . ⊂ ∇,

Sj = span{ψλ : λ ∈ ∇j} ⊂ H andS̃j = span{ψ̃λ : λ ∈ ∇j} ⊂ H′

Locality, Polynomial exactness and Vanishing moments

diam(suppψλ) = O(2−j) if λ ∈ ∇j \ ∇j−1

All polynomials of degreed− 1, Pd−1 ⊂ S0

Pd̃−1 ⊂ S̃0 more precisely,〈Pd̃−1, ·〉L2 ⊂ S̃0

{Sj} has a goodapproximation property

If λ ∈ ∇ \ ∇0, we have〈Pd̃−1, ψλ〉L2 = 0 cancellation property

Gantumur, Stevenson
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Equivalent Discrete Problem

[Cohen, Dahmen, DeVore ’02]

Wavelet basisΨ = {ψλ : λ ∈ ∇}
StiffnessA = 〈Aψλ, ψµ〉λ,µ andloadg = 〈g, ψλ〉λ

Linear equation in `2(∇)

Au = g, A : `2(∇) → `2(∇) SPD andg ∈ `2(∇)

u =
∑

λ uλψλ is the solutionof Au = g

‖u− v‖`2(∇) h ‖u− v‖H with v =
∑

λ vλψλ

A good approx. ofu induces a good approx. ofu

Ψ defines atopological isomorphismbetweenH and`2(∇)

Gantumur, Stevenson
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Convergent Iterations in Discrete Space

Richardson’s iterations

u(0) = 0
u(i+1) = u(i) + α[g− Au(i)] i = 0,1, . . .

u− u(i+1) = u− u(i) − αA(u− u(i)) = (I − αA)(u− u(i))

‖u− u(i+1)‖`2 ≤ ‖I − αA‖`2→`2‖u− u(i)‖`2

Convergence

ρ := ‖I − αA‖`2→`2 < 1

g andAu(i) areinfinitely supported

Approximate them byfinitely supported sequences

Gantumur, Stevenson
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Approximate Iterations

Approximate right-hand side

RHS[g, ε] → gε satisfies‖g− gε‖`2 ≤ ε

Approximate application of the matrix

APPLY [A, v, ε] → wε satisfies‖Av − wε‖`2 ≤ ε

Approximate Richardson’s iterations

ũ(0) = 0
ũ(i+1) = ũ(i) + α

(
RHS[g, εi]− APPLY [A, ũ(i), εi]

)
i = 0,1, . . .

Chooseεi such that‖u(i) − ũ(i)‖ h ‖u− u(i)‖

Gantumur, Stevenson
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Convergence

RICHARDSON [ũ(0), εfin] → ũ(i)

for i = 0,1, . . .
εi := Cρi ; r̃ (i) := RHS[g, εi]− APPLY [A, ũ(i), εi]

if ‖r̃ (i)‖`2 + 2εi ≤ εfin then terminate;
ũ(i+1) := ũ(i) + αr (i)

endfor

Lemma

RICHARDSON [ũ(0), ε] → ũ terminates with‖g− Aũ‖`2 ≤ ε

Computational cost ofRICHARDSON [ũ(0), ε] depending onε?

Gantumur, Stevenson
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Uniform Refinement Galerkin Methods

Wavelet basisΨj := {ψλ : λ ∈ ∇j} of Sj

StiffnessA j = 〈Aψλ, ψµ〉λ,µ∈∇j

Loadgj = 〈g, ψλ〉λ∈∇j

Linear equation in `2(∇j)

A juj = gj , A j : `2(∇j) → `2(∇j) SPDandgj ∈ `2(∇j)

uj =
∑

λ[uj]λψλ ∈ Sj approximates the solution ofAu = g

With the orthogonal projectorPj : `2(∇) → `2(∇j), the above
equation is equivalent toPjAu j = Pjg

Gantumur, Stevenson
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Convergence and Complexity

If u ∈ Ht+ns for somes∈ (0, d−t
n ]

εj := ‖u− uj‖Ht ≤ C inf
v∈Sj

‖u− v‖Ht ≤ O(2−jns)

Nj = dimSj = O(2jn)

εj ≤ O(N−s
j )

SolveA juj = gj with Cascadic CG complexityO(Nj)

Similar estimates for FEM

Gantumur, Stevenson
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Best N-term Approximation

Givenu = (uλ)λ ∈ `2, approximateu usingN nonzero coeffs

ℵN :=
⋃

Λ⊂∇:#Λ=N

`2(Λ)

ℵN is a nonlinear manifold

Let uN be such that‖u− uN‖`2 ≤ ‖u− v‖`2 for v ∈ ℵN

uN is a best approximation ofu with #suppuN ≤ N

uN can be constructed by pickingN largest in modulus coeffs fromu

Gantumur, Stevenson
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Nonlinear vs. linear approximation

Nonlinear approximation

If u ∈ Bt+ns
τ (Lτ ) with 1

τ = 1
2 + s for somes∈ (0, d−t

n )

εN = ‖uN − u‖ ≤ O(N−s)

Linear approximation

If u ∈ Ht+ns for somes∈ (0, d−t
n ], uniform refinement

εj = ‖uj − u‖ ≤ O(N−s
j )

Ht+ns is a proper subset ofBt+ns
τ (Lτ )

[Dahlke, DeVore]:u ∈ Bt+ns
τ (Lτ ) much milder thanu ∈ Ht+ns

Gantumur, Stevenson



Convergent iterations Complexity analysis An adaptive Galerkin method Summary

Approximation spaces

Approximation spaceAs := {v ∈ `2 : ‖v− vN‖`2 ≤ O(N−s)}
Quasi-semi-norm|v|As := supN∈N Ns‖v− vN‖`2

u ∈ Bt+ns
τ (Lτ ) with 1

τ = 1
2 + s for somes∈ (0, d−t

n )⇒ u ∈ As

Assumption

u ∈ As for somes∈ (0, d−t
n )

Best approximation

‖u− v‖ ≤ ε satisfies#suppv ≤ ε−1/s|u|1/s
As

Gantumur, Stevenson
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Requirements on the Subroutines

Complexity of RHS

RHS[g, ε] → gε terminates with‖g− gε‖`2 ≤ ε

#suppgε . ε−1/s|u|1/s
As

flops, memory. ε−1/s|u|1/s
As + 1

Complexity of APPLY

For#suppv <∞
APPLY [A, v, ε] → wε terminates with‖Av − wε‖`2 ≤ ε

#suppwε . ε−1/s|v|1/s
As

flops, memory. ε−1/s|v|1/s
As + #suppv + 1

Gantumur, Stevenson
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Complexity of RICHARDSON

RICHARDSON [ũ(0), εfin] → ũ(i)

for i = 0,1, . . .
εi := Cρi ; r̃ (i) := RHS[g, εi]− APPLY [A, ũ(i), εi]

if ‖r̃ (i) + 2εi‖`2 ≤ εfin then terminate;
ũ(i+1) := ũ(i) + αr (i)

endfor

Lemma

RICHARDSON [ũ(0), ε] → ũ terminates with‖g− Aũ‖`2 ≤ ε.

ε0 := ‖u− ũ(0)‖`2

#supp̃u . ε−1/s|u|1/s
As + ε

−1/s
0 (ε0/ε)

C|u|1/s
As + ε−1/s(ε0/ε)

C|ũ(0)|1/s
As

flops, memory. the same expression

Gantumur, Stevenson
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Coarsening

COARSE[v, ε] → w
‖v− w‖ ≤ ε and#suppv is minimal

Lemma

θ < 1/2. Let‖u− v‖ ≤ θε. w = COARSE[v, (1− θ)ε] satisfies

#suppw . ε−1/s|u|1/s
As and‖u− w‖ ≤ ε

Gantumur, Stevenson
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Complexity with coarsening

SOLVE[εfin] → ũ(i)

ũ(0) := 0; ε0 := ‖f‖
for i = 0,1, . . .
εi+1 := εi/2
v := RICHARDSON [ũ(i), θεi+1]

ũ(i+1) := COARSE[v, (1− θ)εi+1]
until εi+1 ≤ εfin

Theorem [Cohen, Dahmen, DeVore ’02]

SOLVE[ε] → ũ terminates with‖g− Aũ‖`2 ≤ ε.

#supp̃u . ε−1/s|u|1/s
As

flops, memory. the same expression

Gantumur, Stevenson
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Computing the Right Hand Side

Complexity of RHS

RHS[g, ε] → gε terminates with‖g− gε‖`2 ≤ ε

#suppgε . ε−1/s|u|1/s
As

flops, memory. ε−1/s|u|1/s
As + 1

A naive approach:

Computẽg = 〈g, ψλ〉λ∈Λ for someΛ ⊂ ∇ s.t.‖g− g̃‖ ≤ δ

Arrange the coeffs iñg in modulus beforehand

RHS[g, ε] := COARSE[g̃, ε− δ]

Gantumur, Stevenson
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The Subroutine APPLY

Computability

Matrix A is calledq∗-computable, when for eachN one can construct an
infinite matrixAN s.t.

for anyq< q∗, ‖AN − A‖ ≤ O(N−q)

having in each columnO(N) non-zero entries

whose computation takesO(N) operations

Theorem [Cohen, Dahmen, DeVore ’01]

Recalls∈ (0, d−t
n ). Let A beq∗-computable withq∗ > s. Then we can

constructAPPLY satisfying the requirements.

A needs to be approximated well by computable sparse matrices

Gantumur, Stevenson
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Compressibility

AssumeA,A′ : Ht+σ → H−t+σ

Level |λ| := j such thatλ ∈ ∇j \ ∇j−1

‖ψλ‖Hr h 2|λ|(r−t) for r ∈ [−d̃, γ), γ := sup{q : ψλ ∈ Hq}
r ≤ min{t + d̃, σ} andr < γ − t, |µ| ≥ |λ|
|〈Aψλ, ψµ〉| ≤ ‖Aψλ‖H−t+r‖ψµ‖Ht−r . ‖ψλ‖Ht+r‖ψµ‖Ht−r

. 2−r(|µ|−|λ|)

Theorem [Stevenson ’04]

{ψλ} are piecewise polynomial wavelets that aresufficiently smooth
and havesufficiently many vanishing moments

A is eitherdifferentialor singular integraloperator

any entry ofA can be computed spendingO(1) operations

thenA is q∗-computable for someq∗ ≥ d−t
n (> s)

Gantumur, Stevenson
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Computability

Unit cost assumption

Any entry ofA can be computed spendingO(1) operations

Only satisfied for very special cases: differential operators with
constant coefficients, single layer potential operator onR
Numerical quadratureis needed

Theorem [Gantumur, Stevenson ’04, ’05]

{ψλ} are piecewise polynomial wavelets that aresufficiently smooth
and havesufficiently many vanishing moments

A is eitherdifferentialor singular integraloperator

thenA is q∗-computable for someq∗ ≥ d−t
n (> s)

Gantumur, Stevenson
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Galerkin solutions

〈〈·, ·〉〉 := 〈A·, ·〉 is an inner product oǹ2, ||| · ||| := 〈〈·, ·〉〉
1
2 is anorm

Let ũ ∈ `2(Λ) be an approx. tou insideSOLVE

AΛ := PΛA|`2(Λ) : `2(Λ) → `2(Λ), andgΛ := PΛg ∈ `2(Λ)

uΛ ∈ `2(Λ) is the solution toAΛuΛ = gΛ

|||u− uΛ||| = infv∈`2(Λ) |||u− v|||

In a sense,uΛ is the best approx. from̀2(Λ)

The next set̃Λ generated bySOLVE can be too big, not optimal

Gantumur, Stevenson
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Saturation

Galerkin orthogonality

u− uΛ ⊥A `2(Λ)

Lemma

µ ∈ (0,1), w ∈ `2, andΛ ⊃ suppw s.t.

‖PΛ(g− Aw)‖ ≥ µ‖g− Aw‖

Then we have

|||u− uΛ||| ≤ [1− κ(A)−1µ2]
1
2 |||u− w|||

Gantumur, Stevenson
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Adaptive Galerkin Method

GROW[w] → [Λ, ν]:
r := RHS[g, ζ]− APPLY [A,w, ζ]
ν := ‖r‖+ 2ζ
determine a set Λ ⊃ suppw, with minimal
cardinality, such that ‖PΛr‖ ≥ µ‖r‖

GALSOLVE [ε] → wk:
k := 0; wk := 0
while with [Λk+1, νk] := GROW[wk], νk > ε do

Solve AΛk+1wk+1 = gΛk+1

k := k + 1
if k = 0 (modK) then wk+1 = COARSE[wk+1, ξ]

enddo

Gantumur, Stevenson
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Complexity

Theorem [Cohen, Dahmen, DeVore ’01]

Let k <∞ suitably chosen.GALSOLVE [ε] → w terminates with
‖g− Aw‖`2 ≤ ε.

#suppw . ε−1/s|u|1/s
As

flops, memory. the same expression

Gantumur, Stevenson
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Optimal expansion

Lemma [Gantumur, Harbrecht, Stevenson ’05]

µ ∈ (0, κ(A)−
1
2 ), w ∈ `2. Thenthe smallest setΛ ⊃ suppw with

‖PΛ(g− Aw)‖ ≥ µ‖g− Aw‖

satisfies
#(Λ \ suppw) . ‖g− Aw‖−1/s|u|1/s

As

Gantumur, Stevenson
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Optimal Complexity without Coarsening

Theorem [Gantumur, Harbrecht, Stevenson ’05]

Let K = ∞. GALSOLVE [ε] → w terminates with‖g− Aw‖`2 ≤ ε.

#suppw . ε−1/s|u|1/s
As

flops, memory. the same expression

Gantumur, Stevenson
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Summary

There exist asymptotically optimalfully discreteadaptive wavelet
algorithms for solving linear operator equations.

There exist adaptive Galerkin methodswithout coarseningof the
intermediate iterands.

Gantumur, Stevenson
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