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1 Linear Wave Equations

1.1 Boundary Condition 1

To begin, we wish to solve
utt = ∇2u t, x ≥ 0 (1)

where
u = u(x, y, t)

with the boundary condition [(
∂

∂x
− ∂

∂t

)
u

]
x=0

= 0 (2)

To solve this, we will use forward differences to approximate all derivatives. So, with U
approximating the solution to (1), it becomes

Un+2
j,k − 2Un+1

j,k + Un
j,k

∆t2
=
Un
j+2,k − 2Un

j+1,k + Un
j,k

∆x2
+
Un
j,k+2 − 2Un

j,k+1 + Un
j,k

∆y2

where j = 0, 1, 2, . . . and corresponds to x, n = 0, 1, 2, . . . and corresponds to t and where
k ∈ Z and corresponds to y. Also, ∆x is the mesh spacing for x and similarly for the rest.
This simplifies to

Un+2
j,k = 2Un+1

j,k + (r2x + r2y − 1)Un
j,k − r2x

(
2Un

j+1,k − Un
j+2,k

)
− r2y

(
2Un

j,k+1 − Un
j,k+2

)
(3)

where

rx =
∆t

∆x
and ry =

∆t

∆y

Now, the boundary condition becomes

Un
1,k − Un

0,k

∆x
−
Un+1
0,k − Un

0,k

∆t
= 0

which becomes
Un+1
0,k = (1− rx)Un

0,k + rxU
n
1,k (4)

Now we take a finite rectangle with 0 ≤ x ≤ L and 0 ≤ y ≤ W . For simplicity, we’ll use
Dirichlet conditions on the remaining sides of this rectangle. We have

u(L, y, t) = f(y, t) u(x, 0, t) = g(x, t) u(x,W, t) = h(x, t) (5)

which leads to
Un
J,k = f(k∆y, n∆t) = fn

k (6)

Un
j,0 = g(j∆x, n∆t) = gnj (7)
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Un
j,K = h(j∆x, n∆t) = hnj (8)

where j = 0, . . . , J and k = 0, . . . , K and clearly we have that

J∆x = L

and
K∆y = W

Finally, we can assume that u0j,k and u1j,k are given as initial conditions. This allows us to to
furnish the solution, so

U0
j,k = pj,k U1

j,k = qj,k (9)

Now we let
Un =

[
Un
0,0, . . . , U

n
J,0, U

n
0,1, . . . , U

n
J,1, . . . , U

n
0,K , . . . , UJ,K

]T
Given our initial and boundary conditions, we need a recurrence of the form

Un+2 = AUn+1 +BUn

where A and B are (J + 1)(K + 1)× (J + 1)(K + 1) matrices. From our recurrence, we can
set

A = 2, B =



C D E · · · · · · 0
0 C D E · · · 0

0
. . . . . . . . . 0

0
. . . . . . . . .

0 · · · · · · C D E
0 · · · · · · · · · C D
0 · · · · · · · · · · · · C


(10)

where C, D and E are all J + 1×K + 1 matrices and 0 is the J + 1×K + 1 zero matrix.
Also,

C =



a b c · · · · · · 0
0 a b c · · · 0

0
. . . . . . . . . 0

0
. . . . . . . . .

0 · · · · · · a b c
0 · · · · · · · · · a b
0 · · · · · · · · · · · · a


, D =

b · · · 0
...

. . .
...

0 · · · b

 , E =

c · · · 0
...

. . .
...

0 · · · c



where
a = r2x + r2y − 1, b = −2r2x, c = r2y
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1.2 Boundary Condition 2

Now we solve (1) with the following absorbing boundary condition[(
∂

∂x
− ∂

∂t

)2

u

]
x=0

= 0 (11)

this boundary condition expands and becomes[(
∂2

∂x2
− 2

∂2

∂x∂t
+
∂2

∂t2

)
u

]
x=0

= 0

Again, we use forward differences for all derivatives which gives on the boundary

Un
2,k − 2Un

1,k + Un
0,k

∆x2
− 2

Un+1
1,k − U

n+1
0,k − Un

1,k + Un
0,k

∆x∆t
+
Un+2
0,k − 2Un+1

0,k + Un
0,k

∆t2
= 0

Now, multiplying by ∆x2∆t2, we get

Un+2
0,k = 2(1− rx)Un+1

0,k + 2rxU
n+1
1,k − r

2
xU

n
2,k + (2rx − r2x − 1)Un

0,k + 2rx(rx − 1)− r2xUn
2,k (12)

Finally, with the same finite rectangle and some Dirichlet conditions to go with it as with
the first boundary condition, we recover (6), (7), (8) and (9) and we can solve numerically.
As before, we let

Un =
[
Un
0,0, . . . , U

n
J,0, U

n
0,1, . . . , U

n
J,1, . . . , U

n
0,K , . . . , UJ,K

]T
We proceed here just as we did above, with the matrices A and B except for the difference
on the x = 0 side.

2 Linear Wave Equations In Polar Coordinates

2.1 One Spacial Dimension

We wish to solve
utt = urr

r ≤ r0, t ≥ 0

subject to [(
∂

∂r
− ∂

∂t

)
u

]
r=r0

= 0
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We proceed with forward differences on temporal derivatives and centred differences for
spacial derivatives. This yields

Un+2
j − 2Un+1

j + Un
j

∆t2
=
Un
j+1 − 2Un

j + Un
j−1

∆r2

which leads to
Un+2
j = 2Un+1

j + r2rU
n
j−1 − (2r2r + 1)Un

j + r2rU
n
j+1

where

rr =
∆t

∆r

We discretize the boundary condition with forward differences in time and backward differ-
ences in space. This yields

Un+1
j = (1 + rr)U

n
j − rrUn

j−1

and so when r = r0 we have j = J which gives

Un+1
J = (1 + rr)U

n
J − rrUn

J−1

We impose a boundary condition at r = 0 and an initial condition as follows

u(0, t) = f(t), u(r, 0) = p(r)

and so
Un
0 = f(n∆t) = fn

for n ≥ 0 and
U0
j = p(j∆r) = pj

for j ≤ J and
U1
j = q(j∆r) = qj

for j < J . Now we define
Un = [Un

1 , . . . , U
n
J−1]

T

and this gives
Un+2 = 2Un+1 + AUn

where A is a J − 1× J − 1 matrix and

A =



a b c · · · · · · 0
0 a b c · · · 0

0
. . . . . . . . . 0

0
. . . . . . . . .

0 · · · · · · a b c
0 · · · · · · · · · a b
0 · · · · · · · · · · · · a


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where
a = r2r b = −(2r2r + 1) c = r2r

and from here, with initial conditions, we can solve numerically. Clearly, from the initial
conditions, we know that

U0 = [p1, . . . , pJ−1]
T

and that
U1 = [q1, . . . , qJ−1]

T

so these two are given. We also know Un
0 for each time level n, so we can now just iterate

for a solution with error O(h2).

3 (1+1)-Dimensional Nonlinear Wave Equations In Po-

lar Coordinates

3.1 Theory

Here we’ll solve the following problem

utt = urr +
1

r
ur −

sin (2u)

2r2

with
u(r0, t) = 0

where r0 is the radius, and

u(r, 0) = ϕ(r) ut(r, 0) = ψ(r)

where ϕ and ψ are smooth. Also, we impose an absorbing boundary condition at r = 0 that
simulates the wave propagating outward as opposed to being reflected. So[(

∂

∂r
− ∂

∂t

)2

u

]
r=0

= 0

Here we’ll handle these separately with high order discretizations. For the urr term, we’ll use
the Taylor expansions for u(r− 2h, t), u(r− h, t), u(r + h, t), u(r + 2h) and solve the system
of equations that arise from them. This yields

urr(r, t) = −u(r + 2h, t)− 16u(r + h, t) + 30u(r, t)− 16u(r − h, t) + u(r − 2h, t)

12h2
+O(h4)

and using the same strategy for the ur/r term, we get

1

r
ur(r, t) = −1

r

u(r + 2h, t)− 8u(r + h, t) + 8u(r − h, t)− u(r − 2h, t)

12h
+O(h4)
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Thus, we have

utt =−
(

1

12h2
− 1

12hr

)
u(r − 2h, t) +

(
4

3h2
− 2

3hr

)
u(r − h, t)− 5

2h2
u(r, t)

+

(
4

3h2
+

2

3hr

)
u(r + h, t)−

(
1

12h2
+

1

12hr

)
u(r + 2h, t)

− sin (2u(r, t))

2r2
+O(h4)

(13)

And for simplicity, we’ll say that

utt = C1u(r − 2h, t) + C2u(r − h, t) + C3u(r, t) + C4u(r + h, t) + C5u(r + 2h, t)

− sin (2u(r, t))

2r2
+O(h4)

utt(jh, n∆t) = C1u
n
j−2 + C2u

n
j−1 + C3u

n
j + C4u

n
j+1 + C5u

n
j+2 −

sin (2unj )

2(jh)2
+O(h4)

where unj is the approximation of u(r, t) at r = j∆r and t = n∆t. Also, j = 0, . . . , J and so
r0 = Jh.
We need a starter method that will allow us to have un1 for each n. Thus, we will use Taylor’s
Theorem to derive a new 6 point approximation that only requires information from one step
behind r (i.e. we need not go further back than u(r − h, t) so that we can stay within the
index range of j). This approximation uses the fact that

urr(r, t) =
1

12

10u(r − h, t)− 15u(r, t)− 4u(r + h, t) + 14u(r + 2h, t)

h2

+
1

12

−6u(r + 3h, t) + u(r + 4h, t)

h2
+O(h4)

and that

1

r
ur(r, t) = − 1

12

3u(r − h, t) + 10u(r, t)− 18u(r + h, t) + 6u(r + 2h, t)− u(r + 3h, t)

hr
+O(h4)

So, collecting like terms, we arrive at

utt(r, t) =

(
5

6h2
− 1

4hr

)
u(r − h, t)−

(
5

4h2
+

5

6hr

)
u(r, t)−

(
1

3h2
− 3

2hr

)
u(r + h, t)

+

(
7

6h2
− 1

2hr

)
u(r + 2h, t)−

(
1

2h2
− 1

12hr

)
u(r + 3h, t) +

1

12h2
u(r + 4h, t)

− sin (2u(r, t))

2r2
+O(h4)

(14)
or simply

utt(r, t) =D1u(r − h, t) +D2u(r, t) +D3u(r + h, t) +D4u(r + 2h, t) +D5u(r + 3h, t)

+D6u(r + 4h, t)− sin (2u(r, t))

2r2
+O(h4)

7



And using the previous notation, we have

utt(jh, n∆t) = D1u
n
j−1 +D2u

n
j +D3u

n
j+1 +D4u

n
j+2 +D5u

n
j+3 +D6u

n
j+4 −

sin (2unj )

2(jh)2
+O(h4)

Now we need a high order discretization near but not at the Dirichlet boundary. We need
an approximation that gives unJ−1 and needs only one spacial step forward. We do this in
the usual fashion by solving some simultaneous equations that arise from Taylor expansions.
So we have

urr(r, t) =
1

12

u(r − 4h, t)− 6u(r − 3h, t) + 14u(r − 2h, t)− 4u(r − h, t)
h2

+
1

12

−15u(r, t) + 10u(r + h, t)

h2
+O(h4)

1

r
ur(r, t) = − 1

12

u(r − 3h, t)− 6u(r − 2h, t) + 18u(r − h, t)
h2

− 1

12

−10u(r, t)− 3u(r + h, t)

h
+O(h4)

and after simplifying and combining like terms, we arrive at

utt(r, t) =
1

12h2
u(r − 4h, t)−

(
1

2h2
+

1

12hr

)
u(r − 3h, t) +

(
7

6h2
+

1

2hr

)
u(r − 2h, t)

−
(

1

3h2
+

3

2hr

)
u(r − h, t)−

(
5

4h2
− 5

6hr

)
u(r, t)

+

(
5

6h2
+

1

4hr

)
u(r + h, t)− sin (2u(r, t))

2r2
+O(h4)

(15)
or for simplicity

utt(r, t) = E1u(r − 4h, t)− E2u(r − 3h, t) + E3u(r − 2h, t)− E4u(r − h, t)

− E5u(r, t) + E6u(r + h, t)− sin (2u(r, t))

2r2
+O(h4)

So now we wish to find a high order approximation for the absorbing boundary condition.
Once again, we’ll use Taylor’s theorem to derive these approximations. First, we must
expand and analyze this condition a the boundary r = 0. This expands to

utt(0, t) = 2utr(0, t)− urr(0, t)

However, if we let ut(r, t) = v(r, t) then we have the following system of differential equa-
tions

ut(0, t) = v(0, t) u(0, 0) = ϕ(0) = ϕ(0) = ϕ0

vt(0, t) = 2vr(0, t)− urr(0, t) v(0, 0) = ψ(0) = ψ(0) = ψ0
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Here, we’ll approximate the spacial derivatives using the same process as above. We want an
approximation that only requires information at r = jh for jh ≥ r. Thus, after solving the
appropriate system of linear equations that arise from 5 taylor expansions, we have

vr(0, t) =− 1

12

25v(0, t)− 48v(h, t) + 36v(2h, t)

h

− 1

12

−16v(3h, t) + 3v(4h, t)

h
+O(h4)

(16)

and

urr(0, t) =
1

12

45u(0, t)− 154u(h, t) + 214u(2h, t)

h2

1

12

−156u(3h, t) + 61u(4h, t)− 10u(5h, t)

h2
+O(h4)

(17)

Now that we’ve found viable approximations, we’ll deal with the time derivative. Because
of the mesh spacing we’ve chosen, we can let r = jh or r = j∆r which gives

utt(jh, t) = C1u(jh− 2h, t) + C2u(jh− h, t) + C3u(r, t) + C4u(jh+ h, t) + C5u(jh+ 2h, t)

− sin (2u(jh, t))

2(jh)2
+O(h4)

and we also note that C1, C2, C4 and C5 will have r = jh in the denominator of the second
term of each. Now, for each j, we have an O.D.E. in time. So, letting uj(t) = u(jh, t), we
have

u′′j (t) = C1uj−2(t) + C2uj−1(t) + C3uj(t) + C4uj+1(t) + C5uj+2(t) + f(uj(t))

or
u′′j (t) = G2(uj−2(t), uj−1(t), uj(t), uj+1(t), uj+2(t))

for j = 2, 3, . . . , J − 3, J − 2 from (13). From (14), we have

u′′1(t) = G1(u0(t), u1(t), u2(t), u3(t), u4(t), u5(t))

for j = 1. Similarly, we have from (15) that

u′′J−1(t) = G3(uJ−5(t), uJ−4(t), uJ−3(t), uJ−2(t), uJ−1(t), uJ(t))

when j = J − 1, and for the boundary, we use (16) and (17) to obtain

u′′J(t) = G4(u0(t), . . . , u5(t), v0(t), . . . , v4(t))

and so we let

U(t) =

u0(t)...
uJ(t)

 Un =

u
n
0
...
unJ


9



where unj = uj(n∆t) for each j and using similar notation, we have

V(t) =

v0(t)...
vJ(t)

 Vn =

v
n
0
...
vnJ


and finally, for simplicity, we’ll let

W(t) =

[
U(t)
V(t)

]
Wn =

[
Un

Vn

]
and for completeness, we have

W(t) =



u0(t)
...

uJ(t)
v0(t)

...
vJ(t)


Wn =



un0
...
unJ
vn0
...
vnJ


and so we have one giant O.D.E. to handle now. We can write it as

W′(t) = G(W(t))

with initial condition

W(0) =



ϕ0
...
ϕJ

ψ0
...
ψJ


where

G(W(t)) =



v0(t)
...

vJ(t)
G4(u0(t), . . . , u5(t), v0(t), . . . , v4(t))

G1(u0(t), u1(t), u2(t), u3(t), u4(t), u5(t))
G2(u0(t), u1(t), u2(t), u3(t), u4(t))

...
G2(uj−2(t), uj−1(t), uj(t), uj+1(t), uj+2(t))

...
G2(uJ−4(t), uJ−3(t), uJ−2(t), uJ−1(t), uJ(t))

G3(uJ−5(t), uJ−4(t), uJ−3(t), uJ−2(t), uJ−1(t), uJ(t))
0


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And so now, W(t) and G(W(t)) are each collections of 2(J + 1) elements. We can solve this
matrix O.D.E. with a simple Runge-Kutta method. The R-K method that we’ll use here is
the fourth order four step method (RK4). So we have

Wn+1 = Wn +
∆t

6
(M1 + 2M2 + 2M3 + M4)

where
M1 = G(Wn)

M2 = G

(
Un +

∆t

2
M1

)
M3 = G

(
Un +

∆t

2
M2

)
M4 = G (Un + ∆tM3)

and we solve for these at each time level.

3.2 Numerical Experiments

Here, we’ll take

ϕ(r) = A(r0 − r)3e−
(r0−r)

4

σ

and
ψ(r) = 0

Where A is a damping constant for the amplitude of the wave. We wish to take A to be
small to avoid blow-up. In the experiment here, we’ll take r0 = 2, σ = 0.4 and A = −4.
Initially, we want the graph of u(x, 0) to have a single peak so to monitor the evolution of
the wave. The initial wave is as depicted in Figure 1.
We expect the left boundary (that is, the boundary at r = 0) to absorb the wave as though
it was propagating out to infinity past the boundary.
In view of Figure 2, we observe first that the wave has collapsed in on itself forming a fold
where the initial peak was while t ranged from 0 to 0.5. This is to be expected since there is
no initial speed. From here, the two peaks are expected to propagate in the same direction
as their position (that is, the left peak moves to the left and the right peak moves to the
right) which can also be observed in Figure 2 by looking at the difference in wave structure
for t ∈ [0.50, 0.70]. Now, as t increases, Figure 2 shows that the wave approaches the left
boundary and is eventually absorbed at t ≈ 1.10, while the right-moving peak continues
toward the Dirichlet boundary at r = r0 = 2.
From here, it is trivial to see that since the right-moving wave will be reflected by the
Dirichlet boundary, it will then too be absorbed by the boundary at r = 0 so that as t→∞,
we get that u(r, t) = 0 for all r ∈ [0, 2].
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It follows now that this method is a viable and accurate approximation to the solution
to

utt = urr +
1

r
ur −

sin (2u)

2r2

up to small deviations in coarse oscillations.
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4 Figures
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Figure 1: Initial Wave
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Figure 2: Wave At Time t
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