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Notes on Convex Analysis

All of the action happens in Rn (n-dimensional space of real variables).
We consider vectors (=points) x; y; ::: 2 Rn, functions f; g; ::: : Rn 7! R and
subsets A;B; ::: � Rn. The space Rn is equipped with the scalar product
h�; �i: 8x; y 2 R2 hx; yi =

P
xkyk and the norm jxj =

p
hx; xi.

1 Basic concepts of convex analysis.

1.1 A¢ ne sets and hyperplanes.

Def. 1.1.1 The set lxy � f(1� �)x+ �yj� 2 Rg is called "the line through
x and y". The set M is called "a¢ ne" i¤ lxy � M for 8x; y 2 M . The op-
eration on set x+M = fx+ yjy 2Mg is called "translation of M by a". If
L is a subspace then the set x+ L is called "parallel to L".

Subspace is an a¢ ne set containing the origin. Every a¢ ne set is a
translation of some subspace.

Def. 1.1.2 Dimension of the a¢ ne set is the dimension of the parallel
subspace. A¢ ne sets of dimension n � 1 are called "hyperplanes". The set
M? = fyjy ?Mg is called "orthogonal complement of M ."

Prop. 1.1.3 (Hyperplane representation)Hyperplanes are sets of the form
Hb;� = fxj hx; bi = �g.

                         
 
                          



Proof. Supspaces of dimension n � 1 are orthogonal complements of
vectors. Hyperplanes are translations of such subspaces.

Prop. 1.1.4 A¢ ne sets have the form AB;b = fxjBx = bg where B is
a matrix and b is a vector. Consequently, a¢ ne sets are interesections of
hyperplanes.

Proof. If M is an a¢ ne set then M = L + a for some subspace L. Let
fbkg be the basis of L? then L =

�
L?
�?
= fxj hx; bki = 0 for all kg. We set

B = fbkg as a union of columns and b = Ba.
Intersection of a¢ ne sets is an a¢ ne set. Hence, we introduce the a¢ ne

hull as follows.

Def. 1.1.5 (A¢ ne hull). The a¢ ne hull of the set S is aff S �
\fall a¢ ne A s.t. S�AgA.

1.2 Convex sets and cones.

Def. 1.2.1 (Convex set). The set Ixy � f(1� �)x+ �yj� 2 Rg is called
"the line segment between x and y". The set C is called "convex" i¤ Ixy � C
for 8x; y 2 C. Dimension of the convex set is the dimension of its a¢ ne
hull.

Intersection of convex sets is a convex set. Consequently, for any collec-
tions of numbers f�kg and points fbkg the set \k fxj hx; bki � �kg is convex.

Def. 1.2.2 (Convex hull). The convex hull conv(S) of any set S is the
intersection of all convex sets that contain S. If the collection of numbers
f�kg is such that

P
k �k = 1 and �k � 0 then the sum

P
k �kbk is called "the

convex combination of points fbkg".

Prop. 1.2.3 The convex hull of set S consists of all convex combina-
tions of all elements of S.

Def. 1.2.4 (Convex Hull Cone Relative Interior). The set K is called
a "cone" if it is closed with respect to positive scalar mutiplication: �x 2 K
for 8� � 0 and 8x 2 K. The convex cone "generated by the set S" and
denoted "cone(S)" is the convex hull of all the lines joining all points of S
with the origin. Let B denote a unit ball. The "closure" of the set C is
the set cl(C) � \">0 (C + "B). The "relative interior" is the set ri(C) �
fxj9" > 0; (x+ "B) \ aff C � Cg.

                         
 
                          



1.3 Convex functions and epigraphs.

Def. 1.3.1 (Convex and proper function). The "epigraph" of a func-
tion f is the set epi(f) � f(x; �) jx 2 Rn; � � f (x)g, see the picture (1.1
). The function f is "convex" i¤ the set epi(f) is convex. The "e¤ective
domain" is the set dom(f) = fxjf (x) < +1g.
The function is "proper" if the epigraph is nonempty and does not contain

a vertical line.

The consideration of the entire notes on convex analysis is restricted
to proper functions. Hence, all functions that are said to be convex are also
presumed to be proper.

Prop. 1.3.2 (Main property of convex function). A function f is con-
vex i¤ 8x; y 2 Rn; 8� 2 [0; 1] f (�x+ (1� �) y) � �f (x) + (1� �) f (y).

Prop. 1.3.3 A smooth function f is convex i¤ the matrix of second
derivatives is non-negatively determined.

Proof. Fix two points x0 and x1 and denote

x (�) � �x1 + (1� �)x0:

Let D be the matrix of second derivatives

D �




 @2f

@xk@xj
(x0)






k=1;:::;n; j=1;:::;n;

taken at the point x0. Note that

x (�)� x0 = � (x1 � x0) .

We use the Taylor decomposition

f (x1) = f (x0) + hrxf (x0) ; x1 � x0i+ hx1 � x0; D (x1 � x0)i+ o
�
kx1 � x0k2

�
;

f (x (�)) = f (x0) + � hrxf (x0) ; x1 � x0i+ �2 hx1 � x0; D (x1 � x0)i+ o
�
kx1 � x0k2

�
:

If we assume that the function is convex then we have, by the proposition
(1.3.2),

f (x (�)) � (1� �) f (x0)� �f (x1))
f (x0) + � hrxf (x0) ; x1 � x0i+ �2 hx1 � x0; D (x1 � x0)i+ o

�
kx1 � x0k2

�
� (1� �) f (x0)

� �
�
f (x0) + hrxf (x0) ; x1 � x0i+ hx1 � x0; D (x1 � x0)i+ o

�
kx1 � x0k2

��
:

                         
 
                          



Figure 1.1: Convex function f acting from R2 to R. Level sets lev�(f).

                         
 
                          



Hence,
�2 hx1 � x0; D (x1 � x0)i � � hx1 � x0; D (x1 � x0)i

for � 2 (0; 1). Therefore,
0 � hy;Dyi

for any y = x1 � x0.

Prop. 1.3.4 (Preservation of convexity).
1. If ffigi=1;:::;m ; fi : Rn 7! (�1;+1] are convex functions and f�ig are

positive real numbers then
P

i �igi is convex.
2. If f : Rn 7! (�1;+1] is a convex function and A is a matrix then

g (x) � f (Ax) is convex.
3. If ffigi2I ; fi : Rn 7! (�1;+1] are convex functions and I is an

arbitrary index set then g (x) � supi2I fi (x) is convex.

2 Caratheodory�s theorem.

Thm. 2.1 Let X be a non-empty subset of Rn.
1. For every x 2 cone (X) there are linearly independent vectors fx1; :::; xmg ;

xi 2 X, i = 1; :::;m such that

x =
X
i

�ixi;

for some �i 2 R; �i > 0 and �nite m > 0.
2. For every x 2 conv (X) there are vectors fx1; :::; xmg ; xi 2 X, i =

1; :::;m such that
x =

X
i

�ixi;

for some �i 2 R; �i > 0;
P

i �i = 1 and the vectors fx2 � x1; :::; xm � x1g
are lineraly independent.

Remark2.2 The Caratheodory theorem does not state that fx1; :::; xmg
might serve as a �xed basis. Indeed, on the picture (1.2 ) if the set X
is open then for any pair of vectors x1 and x2 from X a point x� 2 cone (X)
may be found outside of the area span by the positively linear combinations
of x1 and x2.
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Figure 1.2: Caratheodory theorem remark.

Proof. 1. The de�nition of cone (X) provides that there are some vectors
fxig ; xi 2 X such that

x =
X
i

�ixi:

If such vectors are linearly dependent then there are numbers �i

0 =
X
i

�ixi:

We take a linear combination of two equalities

x =
X
i

(�i � 
�i)xi

and note that for at least one i the �i is positive. Hence, a 
 exists such that
all (�i � 
�i) are non negative and (�i0 � 
�i0) = 0 for at least one index
i0. Hence, we decreased the number of terms in the sum. We continue this
process until fxig are linearly independent.
Proof. 2. The de�nition of conv (X) provides that there are some vectors



fxig ; xi 2 X such that

x =
X
i

�ixi;

1 =
X
i

�i;

�i � 0:

We consider (x; 1) 2 Rn+1 and restate the above conditions as

(x; 1) =
X
i

�i (xi; 1) ;

�i � 0:

Therefore, (x; 1) 2 cone (f(y; 1) jy 2 Xg). The �rst part of the theorem
applies and the vectors (xi; 1) may be assumed linearly independent. Hence,
no all non-zero f�ig ; �i 2 R exist such thatX

i

�i (xi; 1) = 0:

Equivalently, X
i6=1

�ixi + �1x1 = 0;X
i6=1

�i + �1 = 0:

We express the �1 from the second equation and substitute it into the �rst.
We obtain the following consequenceX

i6=1

�i (xi � x1) = 0:

We conclude that no all non-zero f�ig exist such that the above is true.
Hence, the fxi � x1g are linearly independent.

3 Relative interior.

Prop. 3.1 Let C be a nonempty convex set consisting of more then
one point.
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Figure 1.3: Relative interior.

a. (Non emptiness of relative interior). The ri (C) is not empty and
aff (C) = aff (ri (C)). Ifm = dim (aff(C) then there are vectors x0; :::; xm 2
ri (C) such that x1 � x0; :::; xm � x0 span the subspace parallel to aff (C).
b. (Line segment principle). If x 2 ri (C) and �x 2 cl (C) then all point

of the line connecting x and �x, except possibly the �x, belong to ri (C).

Let a; a 2 C be a vector such that aff (C � a) is a subspace. One
can choose vectors fykg such that yk 2 C � a, yk are linearly independent
and the linear span of fykg is aff (C � a). All convex combinations of fykg
belong to C and also belong to ri (C). Hence, the ri (C) is not empty. We
construct fxkg as claimed in (a) by taking xk = yk + a. Consequently,
aff (C) = aff (ri (C)).
The statement (b) is evident from the picture (1.3 ).



4 Recession cone.

Def. 4.1 A vector y is a direction of recession of the set C i¤ for
8x 2 C, 8� > 0 we have x+ �y 2 C.

Directions of recession of a set C constitute a cone that we denote RC .
We introduce the notation

LC = fyj y 2 RC ; � y 2 RCg :

The LC , if not empty, constitutes a subspace. We call it a "linearity space"
of C.

Prop. 4.2 (Main properties of direction of recession) Let C be a
closed convex set.
1. The vector y is a direction of recession if C contains f�y + xj� > 0g

for at least one x 2 C.
2. C is either compact or has a direction of recession.

To see that the closedness is necessary consider the setC0 = f(x; y) jx 2 (0; 1) ; y � 0g,
see the �gure (1.4 ). The only candidate for the direction of recession is
(0; 1). However, the point (0; 0) 2 C translates outside of C along (0; 1).
Proof. 1. The statement (1) follows from the construction on the picture

(1.5 ). We start from the point x and a direction of recession y. We take
any point �x and show that f�y + �xj� > 0g � C as follows.
For small enough sphere around �x if we take fzng, zn ! 1 then fang

must be in C. Then the limit A = limn an is in C. Hence, f�y + �xg � C for
small enough � > 0.
We conclude that f�y + �xj� > 0g � C for all � by contradiction. If

there is a �nite �� = arg sup� f�y + �x 2 Cj� > 0g then we step back x0 =�
��� "

�
y + �x for small enough " and build an 2"-sphere around x0 as in the

�rst part of this proof.
2. Take a point y0 2 C and assume existence of xn 2 C such that

xn !1. A limit point of
n

xn�y0
kxn�y0k

o
is a direction of recession.

Prop. 4.3 (Recession cone of intersection). Let X and Y be closed
convex sets and X \ Y 6= ?. Then RX\Y = RX \RY .
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Figure 1.4: Closedness and recession
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Figure 1.5: Direction of recession.



To see that the requirement X \ Y 6= ? is necessary consider the sets
cl (C0) and cl (C0) + (2; 0) for C0 = f(x; y) jx 2 (0; 1) ; y � 0g, see the �gure
(1.4 ). These do not intersect but have a common direction of recession.
To see that the closedness is necessary consider C0 and ri (C0). The

intersection is ri (C0). It has a direction of recession (0; 1). The C0 has no
direction of recession.
Proof. The statement (4.3) follows from (4.2 -1) and the de�nitions.

Prop. 4.4 (Recession cone of inverse image). Let C be a nonempty
closed convex subset of Rn, let A be a n by m matrix and letW be a nonempty
convex compact subset of Rm. Let the set

V = fx 2 CjAx 2 Wg

be nonempty. Then
RV = RC \N (A) .

Proof. By de�nition of V we have V = A�1 [W ] \ C. The sets A�1 [W ]
and C are convex and closed. Hence, the proposition (4.3) applies. It
remains to note that RA�1(W ) = N (A).
Note that the compactness of W is important. In absence of compact-

ness we cannot state that the A�1 [W ] is closed and we cannot state that
RA�1(W ) = N (A).

Prop. 4.5 (Decomposition of a convex set). For any subspace S con-
tained in LC for a non-empty convex set C � Rm we have

C = S +
�
C \ S?

�
:

Proof. Let S be a subspace contained in LC . For any x 2 Rm the a¢ ne
set x + S intersects S?. If x 2 C then x + S � C. Hence, the intersection
(x+ S) \

�
C \ S?

�
is not empty. Then x = y + z for some y 2 S and

z 2 (x+ S) \
�
C \ S?

�
.

5 Intersection of nested convex sets.

Intersection of nested closed compact sets is not empty.



Intersection of nested unbounded closed convex sets may be empty. Con-
sider Ck = f(x; y) jy � kg ; \kCk = ?. The sets Ck escape to in�nity along
the common direction of recession (0; 1). However, if all directions of reces-
sion are included in a common linearity space then this cannot happen as
stated in the proposition below.

Prop. 5.1 (Principal intersection result). Let fCkgk=1;:::;1 be a se-
quence of nonempty closed convex sets, Ck � Rm. Let Rk and Lk be the
recession cone and linearity space of Ck and let

R = \kRk;

L = \kLk:

If Ck+1 � Ck and R = L then the intersection \kCk is nonempty and

\kCk = L+ ~C

for some nonempty compact set ~C.

Proof. Starting from some k the Lk has to stop decreasing because it is
a space of �nite dimension. After such k we have Lk = L. Let us restrict
attention to such k.
Starting from some k we must have

Rk \ L? = ?.

Indeed, if this is not so then for every k there is yk 2 Rk \ L?. We consider
zk =

y
kzkk 2 Rk\L?. The sets Rk are closed and nested. Hence, a limit point

of such sequence fzkg has to be in R. This contradicts the condition R = L.
We now apply the result (4.5).

Ck = L+
�
Ck \ L?

�
.

Hence,
\kCk = L+ \k

�
Ck \ L?

�
:

Starting from some k the set
�
Ck \ L?

�
has no direction of recession. Hence,

the sets Ck \L? are nested and compact. We conclude ~C = \k
�
Ck \ L?

�
6=

?.



Prop. 5.2 (Linear intersection result). Let fCkg be a sequence of
closed convex subsets of Rn.
Let the set X be given by the relationships

X = fxj haj; xi � bj; j = 1; :::; rg

where aj 2 Rn and bj 2 R.
Assume that
1. Ck+1 � Ck for all k.
2. X \ Ck 6= ? for all k:
3. RX \R � L; where R = [kRk; L = [kLk, Rk � RCk , Lk � LCk .
Then X \ (\kCk) 6= ?.

To see that theX has to be linear coniderX = f(x; y) jx > 0; xy � 1g and
Ck =

�
(x; y) jx 2

�
0; 1

k

�	
. Such X and Ck fail only the linearity requirement

and the conclusion of the theorem.
Proof. If RX \ R = LX \ L then the statement is a consequence of the

(5.1). We exclude such case from further consideration.
We consider the case when RX\R 6= LX\L. Since always LX � RX ; L �

R and RX \R � L then there has to be a y 2 RX \R that does not belong
to LX .
Let us take a sequence fxkg such that xk 2 X \Ck. Since the sets Ck are

nested it is enough to prove the statement for some subsequence.
For any k we form the sum xk � �y; � 2 R. Since y 2 RX \ R and

�y =2 RX then for some ��k the xk � ��ky = �xk lies on the boundary of X.
Hence, hajk ; �xki = bjk . The X is given by a �nite number of linear conditions.
Hence, there is some j0 such that haj0 ; �xki = bj0 for in�nite number of k. We
restrict our attention to such subsequence.
The set �X = X \ fxj haj0 ; xi = bj0g satis�es the conditions of the propo-

sition within the subspace fxj haj0 ; xi = bj0g and aff
�
�X
�
is one dimension

smaller then aff (X). Therefore, we proceed by induction in the number
of dimensions of aff (X). The proposition is true for dimension 0 (X is a
point). Then we assume that it is true for dim aff (X) = l and prove it for
dim aff (X) = l+1 using the construction above. Indeed, since the proposi-
tion holds for �X then the intersection �X \ (\Ck) is not empty for the chosen
subindexing of k. But �X � X hence X \ (\kCk) 6= ?.



Prop. 5.3 (Quadratic intersection result). Let fCkg be a sequence
of subsets of Rn given by

Ck = fxj hx;Qxi+ ha; xi+ b � wkg ;

where Q is a symmetric positive semide�nite matrix, a is a vector, b is a
scalar and wk is a non-increasing sequence of real numbers converging to 0.
Let X be a subset of Rn of the form

X = fxj hx;Qjxi+ haj; xi+ bj � 0; j = 1; :::; rg

where the Qj are positive semide�nite matrixes.
Let X \ Ck be nonempty for all k.
Then the intersection X \ (\kCk) is nonempty.

Proof. The elements of recession cones and linear spaces of Ck are given
by

R = fyjQy = 0; ha; yi � 0g ;
L = fyjQy = 0; ha; yi = 0g

and are k-independent.
If RX \ R = LX \ L then the statement follows from the (5.1). Hence,

we consider the situation LX \ L � RX \ R and RX \ R 6= ?. If there is a
y 2 RX \ R then aTy � 0 and for any x 2 X; � > 0 we have x + �y 2 X.
Note,

hx+ �y;Q (x+ �y)i+ ha; x+ �yi+ b = hx;Qxi+ ha; xi+ � ha; yi+ b:

If ha; yi < 0 then for a su¢ ciently large � the x+ �y lies in all Ck and in
X and we are done.
Therefore, it remains to consider a situation when for any y 2 RX \R we

have ha; yi = 0) y 2 L but y =2 LX ) �y =2 RX .
The recession cone of X is given by

RX = fyjQjy = 0; haj; yi � 0; j = 1; :::; rg :

Hence, we are considering the case when for any y 2 RX\R we have ha; yi = 0
and haj; yi < 0 for some j.



We now proceed by induction in the number of conditions r. For r = 0
the case that we are considering is excluded. Hence, we assume that the
proposition holds for �r and proceed to prove that it hold for �r + 1. We are
interested only in adding an equation with ha�r+1; yi < 0 because the all the
equations with ha�r+1; yi = 0 may be arranged to be in the beginning of the
induction and, hence, fall into the RX = LX category.
A step of the induction in �r proceeds in the following stages.
1. Assume that the statement holds for �r.
2. Let X be the �r + 1-equations set.
3. Let �X be the set holding �r equations ofX. The exclusion of a condition

from X makes the �X a bigger set. Hence, the conditions of the statement
holds for the set �X and �X \ (\kCk) is not empty.
4. We take a point �x 2 �X \ (\kCk) and a direction �y 2 RX \ R. In

our case aTj �y < 0 for the one additional equation. Hence, we can construct
x = �x+ ��y 2 X \ (\kCk) by taking a su¢ ciently large �.

6 Preservation of closeness under linear
transformation.

The set C = f(x; y) jx > 0; xy � 1g is a closed convex set. The projection on
the x-axis is a linear transformation. The image of C under such transfor-
mation is open.

Prop. 6.1 (Preservation of closeness result). Let C be a nonempty
subset of Rn and let A be an m� n matrix.
1. If RC \N (A) � LC then the set AC is closed.
2. Let X be a nonempty subset of Rn given by linear constraints

X = fxj haj; xi � bj; j = 1; :::; rg :

If RX \RC \N (A) � LC then the set A (C \X) is closed.
3. Let C is given by the quadratic constaints

C = fxj hx;Qjxi+ haj; xi+ bj � 0; j = 1; :::rg

where the Qj are positive semide�nite matrices. Then the set AC is closed.



Proof. (1). Let z 2 cl (AC) ) 8" > 0 B (z; ") \ AC 6= ?, where the
B (z; ") is the ball around z of radius ". The sets C"k = A�1 [B (z; "k) \ AC]
are nested if "k # 0. It is su¢ ce to prove that \"kC"k is not empty for any
sequence f"kg ; "k > 0; "k # 0:
We have

C" = A�1 [B (z; ") \ AC] = fx 2 C j Ax 2 B (z; ")g :

Therefore, by the proposition (4.4),

RC" = RC \N (A) ;
LC" = LC \N (A) :

Consequently, in the context of the proposition (5.1) for fC"kg,

R = RC \N (A) ;
L = LC \N (A) :

Since, generally
LC � RC ;

to accomplish the condition R = L of the (5.1) it is enough to have

RC \N (A) � LC

as required by the theorem.
Proof. (2). Let z 2 cl (A [C \X]). We introduce the sets C"k =

A�1 [B (z; "k) \ A [C \X]] for "k # 0 and aim to prove that the intersection
\"kC"k is not empty.
We have

C" = A�1 fB (z; ") \ A [C \X]g = fx 2 C \X j Ax 2 B (z; ")g :

By the propositions (4.3) and (4.4)

RC" = RC \RX \N (A) ;
LC" = LC \ LX \N (A) :

Consequently, in the context of the proposition (5.1) for fC"kg,

R = RC \RX \N (A) ;
L = LC \ LX \N (A) :



Since, generally
LC \ LX � RC \RX ;

to accomplish the condition R = L of the (5.1) it is enough to have

RX \RC \N (A) � LC :

Proof. (3). Let z 2 cl (AC). We introduce the setsC"k = A�1 [B (z; "k) \ AC]
for "k # 0 and aim to prove that the intersection \"kC"k is not empty.
We have

C" = A�1 fB (z; ") \ ACg
= fx 2 C j Ax 2 B (z; ")g
= C \

�
xj kAx� zk2 � "

	
= C \

�
xj


x;ATAx

�
� 2 hz; Axi+ hz; zi � "

	
:

We now apply the proposition (5.3) to conclude the proof.

7 Weierstrass Theorem.

A continuous function attains its minimum on a compact set. Such statement
is the simplest version of the Weierstrass theorem. In this section we prove
an extended version. We need some preliminary results and de�nitions.

Def. 7.1 (Limit points) Let fxkg be a sequence of real numbers.
1. Let ym = sup fxkjk � mg ; zm = inf fxkjk � mg. We introduce the

notation

lim sup
k!1

xk � lim
m!1

ym;

lim inf
k!1

xk � lim
m!1

zm:

If fxkg is not bounded from above then we write lim supk!1 xk =1.
If fxkg is not bounded from below then we write lim infk!1 xk = �1.
2. The point x0 is a limit point of the sequence fxkg is there is an in�nite

number of points from fxkg in an "-neibourhood of x0 for any " > 0.



Prop. 7.2 The lim supk!1 xk is the greatest limit point of the se-
quence fxkg. The lim infk!1 xk is the smallest limit point of the sequence
fxkg.

Def. 7.3 A function f : Rn 7! [�1;+1] is proper if its epigraph is
nonempty and does not contain a vertical line. The function f is closed if
the epi (f) is a closed set.

Def. 7.4 A function f is lower semicontinuous if for any x and
fxkg ; xk ! x we have

f (x) � lim sup
k!1

f (xk) .

Prop. 7.5 (Closeness and lower semicontinuity). Let f be a function
f : Rn 7! [�1;+1]. The following statements are equivalent:
1. The level sets Vf (
) = fxj f (x) � 
g are closed for every 
 2 R.
2. The function f is lower semicontinuous.
3. The epi (f) is a closed set.

Proof. (1) implies (2). Since the level sets are closed we have that for
any sequence fxkg and vector x such that xn ! x and f (xk) � 
 we must
also have f (x) � 
. Assume that (2) is not true. Then there exists a y and
fykg such that yk ! y and lim supk f (xk) < � < f (y) for some scalar �.
This constitutes a contradition with the noted consequence of closeness of
the level sets.
The rest may be proved with similar means.

Prop. 7.6 (Weierstrass theorem). Let f : Rn 7! (�1;+1] be a
closed proper function. If any of the below three conditions holds then the set
argminx2Rn f (x) is nonempty and compact.
1. dom (f) is bounded.
2. There exists an 
 2 R such that the level set Vf (
) = fxj f (x) � 
g

is nonempty and bounded.
3. If kxkk ! 1 then f (xk)!1.

Proof. 1. Let fxkg be a sequence such that f (xk) ! inf f . Since
dom (f) is bounded the sequence xk has a limit point x�. By proposition
(7.5) the f is lower semicontinuous. Hence, f (x�) = inf f . Therefore,



argmin f is nonempty. The argmin f is an intersection of level sets. Hence,
the compactness of argmin f follows from the boundedness of dom (f) and
closeness of the level sets.
The (2) proves similarly to (1).
The (3) implies (2).

8 Local minima of convex function.

Prop. 8.1 (Local minima of convex function). Let X be a convex
subset of Rn and let f : Rn 7! (�1;+1] be a proper convex function. Then
a local minimum is also a global minimum.

Proof. If x0 is a local minimum and x1 is a di¤erent point and a global
minimum then f takes values smaller then f (x0) at all points on the line
(x0; x1] because of the convexity.

9 Projection on convex set.

Prop. 9.1 (Projection theorem). Let C be a nonempty closed convex
set.
1. For any x 2 Rn there exists a unique vector

PC (x) = argmin
z2C

kz � xk

called the projection of x on C.
2. The PC (x) could be de�ned as the only vector with the property

(y � PC (x))
T (x� PC (x)) � 0; 8y 2 C.

If the C is a¢ ne and S is a subspace parallel to C then the above may be
replaced with

(x� PC (x)) 2 S?.
3. The function PC (x) is continuous and nonexpansive:

kPC (x)� PC (y)k � kx� yk .
4. The distance function

d (x;C) = min
z2C

kx� zk

is convex.



Proof. (1) follows from the theorem (7.6).
(2) We use notation x0 � PC (x). Clearly, x0 has to lie on the boundary

of C. Also, the x0 has to satisfy the condition

@

@"
jjx0 + "z � xjj � 0

where the z is taken among all directions such that x0 + "z remain in C for
small " > 0. The di¤erentiation reveals that

hz; x0 � xi � 0.

For any y 2 C the di¤erence y � x0 is a valid z. Hence, the (2) follows.
(3) Since PC (x) 2 C we can write from (2)

hPC (y)� PC (x) ; x� PC (x)i � 0;
hPC (x)� PC (y) ; y � PC (y)i � 0:

We add the above and obtain

2 hPC (y)� PC (x) ; x� y + PC (y)� PC (x)i � 0:

Hence,

hPC (x)� PC (y)i2 � hPC (x)� PC (y) ; x� yi
� jjPC (x)� PC (y)jj kx� yk :

(4) follows from (3) and de�nition of convexity.

10 Existence of solution of convex opti-
mization problem.

Prop. 10.1 (Directions of recession). Let f : Rn 7! (�1;+1] be a
closed proper convex function.
1. All nonempty level sets Vf (
) have the same recession cone given by

Rf � RVf =
�
yj (y; 0) 2 Repi(f)

	
:

2. If one nonempty level set is compact then all the level sets are compact.



Proof. Given a direction y and a point x the function g (�) � f (x+ �y)
is either nonincreasing or increasing starting from some large enough �. If
it is nonincreasing then y is in RVf (
) for any 
. The rest follows from the
proposition (4.2).

Prop. 10.2 (Basic existence result). Let X be a closed convex subset
of Rn and let f : Rn 7! (�1;+1] be a closed proper convex function such
that X \ dom (f) 6= ?. The set argminx2X f (x) is nonempty and compact if
and only if the X and f have no common directions of recession.

If X and f has no common direction of recession then the minimum
cannot escape to in�nity. Such intuition may be formalized into a proof
by considering intersections of the nested compact convex sets Ck � X \
Vf (
k) with the sequence f
kg converging to the infx2X f (x). The following
proposition is a consequence of the same observation and the propositions
(5.1),(5.2) and (5.3).

Prop. 10.3 (Unbounded existence result). Let X be a closed convex
subset of Rn and let f : Rn 7! (�1;+1] be a closed proper convex function
such that X \ dom (f) 6= ?. The set arg infx2X f (x) is nonempty if any of
the following conditions hold.
1. RX \Rf = LX \ Lf .
2. RX \Rf � Lf and X is given by the linear constraints

X = fxj haj; xi � bj; j = 1; :::; rg

for some aj; bj.
3. infx2X f (x) > �1 and f;X are of the form

f (x) = hx;Qxi+ hc; xi ;
X = fxj hx;Qjxi+ haj; xi+ bj � 0; j = 1; :::; rg

where the Q;Qj are positive semide�nite matrixes.

Remark10.4 The convex function f is constant on the subspace Lf .



11 Partial minimization of convex func-
tions.

Prop. 11.1 (Convexity of partial minimum). Let F : Rn+m 7! [�1;+1]
be a convex function. Then the function f given by

f (x) = inf
z2Rm

F (x; z)

is convex.

The proof of the above proposition is a direct veri�cation based on de�-
nitions.
The study of closeness of the partial minimum is based on the following

observation.
Suppose the level set Vf (
) = fxj f (x) � 
g is nonempty for some 
.

Let f
kg be a sequence such that 
k # 
. Then

fxj f (x) � 
g = \1k=1 fxj 9 (x; z) : F (x; z) � 
kg .

The set f(x; z) j F (x; z) � 
kg is closed if F (x; z) is closed. The set fxj 9 (x; z) : F (x; z) � 
kg
is a projection of f(x; z) j F (x; z) � 
kg. Its closeness may be studied by
means of the proposition (6.1). The intersection preserves the closeness.
Hence, we arrive to the following proposition.

Prop. 11.2 (Partial minimization result). Let F : Rn+m 7! [�1;+1]
be a closed proper convex function. Then the function f (x) = infz2Rm F (x; z)
is closed, convex and proper if any of the following conditions hold.
0. There exist �x 2 Rn and �
 2 R such that UF (�x; �
) � fzj F (�x; z) � �
g

is nonempty and compact.
1. There exist �x 2 Rn and �
 2 R such that UF (�x; �
) is nonempty and

LUF (�x;�
) = RUF (�x;�
).

2. F (x; z) =

8<: �F (x; z) ; (x; z) 2 C;

+1; otherwise.

9=;, where the C is given by the lin-

earity constraints

C = f(x; z) j ha; (x; z)i � bj; j = 1; :::; rg ,

and there exists �x such that

RF (�x;�) = LF (�x;�):



3. F (x; z) =

8<: �F (x; z) ; (x; z) 2 C;

+1; otherwise.

9=;, where the C is given by the

quadratic constraints

C = f(x; z) j h(x; z) ; Qj (x; z)i+ haj; (x; z)i+ bj � 0; j = 1; :::; rg ,

where the Qj are positive semide�nite and there exists �x such that

�1 < f (�x) < +1.

12 Hyperplanes and separation.

Def. 12.1 Hyperplane in Rn is a set of the form

Ha;b = fxj ha; xi = bg :

The a is called the "normal vector". The sets

fxj ha; xi � bg ; fxj ha; xi � bg

are called "closed halfspaces" associated with Ha;b.
The two sets C1 and C2 are separated by Ha;b if either

ha; x1i � b � ha; x2i ; 8x1 2 C1;8x2 2 C2

or
ha; x1i � b � ha; x2i ; 8x1 2 C1;8x2 2 C2:

The two sets C1 and C2 are strictly separated by Ha;b if the above inequal-
ities are strict.

A hyperplane Ha;b may be represented as

Ha;b = �x+ fxj ha; xi = 0g ;
b = ha; �xi

for any �xed �x 2 Ha;b.



Prop. 12.2 (Supporting hyperplane theorem). Let C be a nonempty
convex subset of Rn and �x 2 Rn. If �x does not belong to interior of C then
there is a hyperplane that passes through �x and contains C in one of its closed
halfspaces:

9Ha;b : �x 2 Ha;b;

ha; �xi � ha; xi ; 8x 2 C:

Proof. If �x 62 cl (C) then we obtain the normal vector by projecting on
C :

a = PC (�x)� �x:
The b may be obtained from the requirement that the Ha;b � H (x) pass
trough �x.
If �x 2 cl (C) by does not belong to interior of C then there is a sequence

fxkg such that xk ! �x and xk 62 cl (C). We utilise the construction from
the case �x 62 cl (C) to obtain a sequence H (xk) � Hak;bk . The fakg may
be normalized to unity. The fakg then has a limit point. Such limit point
delivers the sought out hyperplane because of the proposition 9.1-2.

Prop. 12.3 (Separating hyperplane theorem). If the C1; C2 are two
nonempty disjoint convex sets then there is a hyperplane that separates them.

Proof. Apply the proposition (12.2) to the set C = C1 � C2 and �x = 0.

Two nonempty convex disjoint setsC1; C2 are not necessarily strictly sepa-
rated. For example, C1 = f(x; y) jx � 0g, C2 = f(x; y) jx > 0; y > 0; xy � 1g
do not have a strictly separating hyperplane.

Prop. 12.4 (Strict hyperplane separation 1). Let C1 and C2 are two
nonempty convex disjoint sets. If C1 � C2 is closed then there is a strictly
separating hyperplane.

Proof. Let PC1�C2 (0) = x1 + x2, x1 2 C1, x2 2 C2. Set

a =
x2 � x1
2

; �x =
x2 + x1
2

; b = aT �x.

By the closedness, a 6= 0. The Ha;b strictly separates C1; C2.



Let C1 and C2 be two disjoint closed convex subsets of Rn. To investigate
the conditions for C1�C2 to be closed we introduce the subset C = C1�C2
of R2n, note that the transformation A (x1; x2) 7! x1 � x2 is linear and seek
to apply the proposition (6.1). We note that C is closed and convex,

RC = RC1 �RC2

and

N (A) = f(x1; x2) j x1 � x2 = 0g
= f(x1; x2) j x1 = x2g :

The condition RC \N (A) � LC of the proposition (6.1) becomes

RC1 \RC2 � LC1 \ LC2 :

We arrive to the following additional su¢ cient conditions for strict sepa-
ration.

Prop. 12.5 (Strict hyperplane separation 2). Let C1 and C2 are two
nonempty convex disjoint sets. There is a strictly separating hyperplane if
any of the following conditions holds.
1. C1 is closed and C2 is compact.
2. C1; C2 are closed and RC1 \RC2 = LC1 \ LC2 :
3. C1 is closed, C2 is given by the linearity constraints C2 = fxj haj; xi � bj; j = 1; :::; rg

and RC1 \RC2 � LC1.
4. C1 and C2 are given by quadratic constraints

Ci = fxj hx;Qijxi+ haij; xi+ bij � 0; j = 1; :::rg

where the Qij are positive semide�nite matrices.

Prop. 12.6 (Intersection of halfspaces). The closure of convex hull of
a set C is the intersection of all closed halfspaces that contain C.

Proof. If there is a point in C that is not contained in the intersection
of halfplanes then we arrive to contradition by using the theorem (12.2).



Def. 12.7 The subsets C1; C2 of Rn are properly separated by a hyper-
plane Ha;b if the following conditions are true

sup
x12C1

ha; x1i � inf
x22C2

ha; x2i ;

inf
x12C1

ha; x1i < sup
x22C2

ha; x2i :

Let l be a line l = fxj x = x0 + �a; � 2 Rg for some x0. The de�nition of
the proper separation requires that Pl (C1 \ C2) is a single point or nothing
and Pl (C1 [ C2) consists of more then one point.
The setsC1 = f(x; y) jx 2 [0; 2] ; y = 0g andC2 = f(x; y) jx 2 [1; 3] ; y = 0g

may not be properly separated.
The setsC1 = f(x; y) jx 2 [0; 2] ; y = 0g andC2 = f(x; y) jx 2 [0; 1] ; y 2 [0; 1]g

are properly separated by the x-axis H(1;0);0.

Prop. 12.8 (Proper separation 1) Let C is a subset ofRn and x 2 Rn.
There is a properly separating hyperplane for C andfxg if

x 62 ri (C) :

Proof. If x 62 aff (C) then fxg and aff (C) are strictly separated by
the proposition 12.5-2.
If x 2 aff (C) then we translate aff (C) into a subspace S and apply

the 12.5-2 within aff (C) to obtain some separating plane �H then extend
it to a hyperplane by H = �H + S?.

Prop. 12.9 (Proper separation 2) The two subsets C1; C2 of Rn are
properly separated if

ri (C1) \ ri (C2) = ?:

Proof. Apply the proposition (12.8) to C = C1 � C2 and x = 0.

13 Nonvertical separation.

Given a space Rn+1 we can separate the last variable (x; y) 2 Rn+1; y 2 R
and call a hyperplane vertical if its normal vector is of the form (x; 0). A set
f(x0; �) j� 2 Rg for a �xed x0 2 Rn is called a vertical line.



Prop. 13.1 (Nonvertical separation). Let C be a nonempty convex
subset of Rn+1that contains no vertical lines. Then:
1. The C is contained in a halfspace of a nonvertical hyperplane.
2. If x 62 cl (C) then there is a nonvertical hyperplane that separates C

and x.

Proof. 1. By contradition and proposition (12.6), if all halfspaces that
surround C come from vertical hyperplanes then C must have a vertical line.
2. Consider PC (x) � x = a. If a is not of the form (�; 0) then we are

done. If its is of the form (�; 0) then we use a perturbation on the �gure (1.6
). First, take any hyperplane from the part (1) of the statement. There are
no points of C in the part of the space below the broken plane (A,O,D). We
perform a slight "�perturbation the hyperplane (A,B) into that area while
maintaining separation from the point x.

14 Minimal common and maximal cross-
ing points.

Let M be a subset of Rn+1. The M may have common points with the
(n+ 1)-th coordinate axis. We introduce the quantity

w� (M) = inf
(0;w)2M

w:

A normal vector to a nonvertical hyperplane may be normalized to a form
(�; 1). A nonvertical hyperplane that crosses the (n+ 1)-th coordinate axis
at the point (0; �) and has a normal vector (�; 1) has the representation

H (�; �) = f(u;w) j w + h�; ui = �g .

Indeed,

H (�; �) = f(u;w) j h(u;w)� (0; �) ; (�; 1)i = 0g
= f(u;w) j h(u;w � �) ; (�; 1)i = 0g
= f(u;w) j h�; ui+ w � � = 0g :

The set M is contained in the upper half plane of H (�; �) i¤

� � w + h�; ui ; 8 (u;w) 2M:
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Figure 1.6: Nonvertical separation.



Hence, the quantity

q (�;M) = inf
(u;w)2M

fw + h�; uig

is the maximum (n+ 1)-th axis crossing level for all hyperplances that con-
tain the set M in the upper half space and have the normal vector (�; 1).
The q (�;M) is a concave function.
We introduce the quantity

q� (M) = sup
�2Rn

q (�;M) .

Prop. 14.1 (Weak duality theorem). Let M be a subset of Rn+1.
Then

q� (M) � w� (M) :

Proof. q (�;M) = inf(u;w)2M fw + h�; uig � inf(0;w)2M fwg = w� (M).
We investigate the conditions for the equality

q� (M) = w� (M) .

Observe that by de�nition of these quantitites all that is needed is existence
of a supporting hyperplane at a point (0; w�) . The pictures (1.7 )-(1.9 )
show basic examples when this may or may not happen.

Prop. 14.2 (Crossing theorem 1). Let M be a subset of Rn+1. As-
sume the following:
1. M and (n+ 1)-th axis have nonempty intersection and w� 6=1.
2. The set

�M = f(u;w) j9 �w : �w � w; (u; �w) 2Mg
is convex.
Then q� (M) = w� (M) if and only if for any sequence f(uk; wk)g � M

such that uk ! 0 we have

w� � lim inf
k!1

wk.

Proof. By de�nition of w�, w� 2 cl (M) � cl
�
�M
�
.

�M contains no vertical lines. Indeed, if it does then by the proposition
(4.2) one may in�nitely go along the vector (u0;�1) inside �M starting from
any (u0; w) 2M . This contradicts the condition 1.
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Figure 1.7: Crossing points �gure 1
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Figure 1.8: Crossing points �gure 2. The upper boundary is included in the
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Figure 1.9: Crossing points �gure 3



We have (0; w� � ") 62 cl
�
�M
�
for any small positive ". Indeed, on the

contrary, if (0; w� � ") 2 cl
�
�M
�
then by de�nition of the closure one can

construct the sequence f(uk; wk)g �M that violates w� � lim infk!1wk.
Therefore, by the proposition (13.1), there is a nonvertical separation

of �M from (0; w� � ") for any small positive ". The (n+ 1)-th axis crossing
point for such separating hyperplane must be between (0; w�) and (0; w� � ").
Hence, q� = w�.

Prop. 14.3 (Crossing theorem 2). Let M be a subset of Rn+1. As-
sume the following:
1. M and (n+ 1)-th axis have nonempty intersection and w� 6=1.
2. The set

�M = f(u;w) j9 �w : �w � w; (u; �w) 2Mg
is convex.
3. 0 2 ri (D), where the set D is de�ned by

D =
�
uj 9w 2 R : (u;w) 2 �M

	
:

Then q� (M) = w� (M) and the solution set Q� = f�j q (�) = q�g has the
form

Q� = (aff (D))?Rn + ~Q

where the set ~Q is nonempty convex and compact and (aff (D))?Rn is the or-
thogonal complement of aff (D) relative to the plane of the �rst n coordinates
f(u; 0) ju 2 Rng.

Proof. By the proposition (12.8) there is a separating hyperplane H for
the point (0; w�) and set �M . Such hyperplane cannot be vertical. Indeed,
if it is vertical then the point (0; w�) projects on the plane f(u; 0) ju 2 Rng
along the H onto the origin 0. Indeed, the segment�

(0; w�) ; Pf(u;0)ju2Rng ((0; w
�))
�
� [(0; w�) ; (0; 0)]

would belong to H. But then the condition 0 2 ri (D) is violated because it
would belong to the boundary ofD. Therefore theH is nonvertical, q� (M) =
w� (M) and Q� is nonempty.
We next claim that LQ� = (aff (D))?Rn. Indeed, by construction of D;

if it has an orthogonal complement in f(u; 0) ju 2 Rng then we can rotate
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Figure 1.10: Crossing theorem 2 �gure



coordinate system to make (aff (D))?Rn a coordinate subspace and then re-
move the coordinates that span the (aff (D))?Rn from the consideration (see
the picture (1.10 )).
In addition, RQ� \aff (D) = ?. To see this, consider any hyperplane H,

corresponding normal � that delivers q� (M) and the perturbation �+��; � 2
aff (D) ; � 2 R. If � 2 RQ� then � + �� can be made arbitrarily close to
horizontal and H would be close to vertical by taking large enough ��.
Hence, such � can be in RQ� only if ri (D) = f0g. If ri (D) = f0g then the
statement is trivially true. We exclude such case from consideration.
We conclude that LQ� = RQ� = (aff (D))

?
Rn.

We next apply the proposition (4.5) within the Rn

Q� = LQ� +
�
Q� \ (LQ�)?Rn

�
with LQ� = (aff (D))

?
Rn. The Q� and aff (D) have no common direction of

recession as we already established. Hence,

Q� = (aff (D))?Rn + ~Q

for some convex and nonempty ~Q. The ~Q is compact by 4.2-2.

15 Minimax theory.

Let � be a function � : X � Z 7! R where the X and Z are subsets of Rn

and Rm respectively. We always have

inf
x2X

� (x; z0) � inf
x2X

sup
z2Z

� (x; z) :

Therefore,
sup
z2Z

inf
x2X

� (x; z) � inf
x2X

sup
z2Z

� (x; z) :

In this section we investigate the conditions for

sup
z2Z

inf
x2X

� (x; z) = inf
x2X

sup
z2Z

� (x; z) (1.1)

and attainment of the sup and inf.



Def. 15.1 The pair (x�; z�) 2 X � Z is called a saddle point of � i¤

� (x�; z) � � (x�; z�) � � (x; z�)

for 8x 2 X; 8z 2 Z.

Prop. 15.2 (Saddle point�s de�ning property). The pair (x�; z�) is a
saddle point i¤ the relationship (1.1 ) holds and

x� 2 arg inf
x2X

�
sup
z2Z

� (x; z)

�
;

z� 2 arg sup
z2Z

�
inf
x2X

� (x; z)

�
:

We introduce the function p : Rm 7! [�1;+1] given by

p (u) = inf
x2X

sup
z2Z

f� (x; z)� hu; zig : (1.2)

Prop. 15.3 (Minimax lemma 1).Assume that � (�; z) is convex for
each z 2 Z. Then the function p is convex.

Proof. The statement is a consequence of the propositions (13.4) and
(11.1).
We will be using results of the section 14. Following that section we

de�ne

M = epi (p) ;

w� (M) = p (0) = inf
x2X

sup
z2Z

� (x; z) ;

q (�;M) = inf
(u;w)2M

fw + h�; uig ;

q� (M) = sup
�
q (�;M) :

Prop. 15.4 (Minimax lemma 2). Let � : X � Z 7! (�1;+1) and
�� (x; �) is closed and convex for every x 2 X. Then

1. q (�) =

8<: infx2X � (x; �) ; � 2 Z;�1; � 62 Z:

9=;
2. q� (M) = w� (M) i¤ the relationship (1.1 ) holds.



Proof. By de�nitions we have

q (�) = inf
(u;w)2epi(p)

fw + h�; uig (1.3)

= inf
u2dom(p)=Rn

fp (u) + h�; uig

= inf
u2Rn

�
inf
x2X

sup
z2Z

f� (x; z)� hu; zig+ h�; ui
�

= inf
u2Rn

inf
x2X

sup
z2Z

f� (x; z) + hu; �� zig :

Since � 2 Z we nonincrease the last quantity by choosing z = � among the
supz2Z values. We obtain

q (�) � inf
x2X

� (x; �) :

Next, we prove that q (�) � infx2X � (x; �) when � 2 Z.
Take any small " > 0 and �x z0 2 Z. Since the function �� (x; �) is

convex then there is a separating hyperplane

H (�x; cx) = f(z; w) jw + h�x; zi = cxg

between the point (z0;�� (x; z0)� ") and epi (�� (x; �)). Hence, the point
(z0;�� (x; z0)� ") lies below H (�x; cx):

�� (x; z0)� "+ h�x; z0i < cx

and the epi (�� (x; �)) lies above H (�x; cx):

8z 2 Z; � � (x; z) + h�x; zi > cx:

We combinte both inequalities into the statement

�� (x; z0)� "+ h�x; z0i < �� (x; z) + h�x; zi

where we claim existence of such �x for any z 2 Z. We transform the
inequality as follows

� (x; z) + h�x; z0 � zi < � (x; z0) + ".

We intend to combine this result with the expression (1.3 ) above. Hence,
we set z0 = � and perform the operation inf�x2Rn infx2X supz2Z . We obtain

q (�) < inf
x2X

� (x; �) + ".



Hence,
q (�) � inf

x2X
� (x; �) ; � 2 Z.

Next, we prove that q (�) = �1 when � 62 Z. Indeed, if �� 62 Z then for
any x 2 X and any �w 2 R the point (��; �w) lies away from the epigraph of
the convex function �� (x; �) of z 2 Z. Hence, there is always a nonvertical
hyperplane

H (�x; cx) = f(z; w) j w + h�x; zi = cxg
that separates any (��; �w) ; � 62 Z from epi (�� (x; �)) and the epi (�� (x; �))
lies in the upper half plane.

�w + h�x; ��i � cx;

�� (x; z) + h�x; zi � cx; 8z 2 Z:

Hence,
� �w � � (x; z) + h�x; ��� zi

where we claim existence of such �x and the statement holds for �xed �� 62 Z
and �w and any z 2 Z. Again, we apply the operation inf�x2Rn infx2X supz2Z .
Then the RHS becomes q (�) and the LHS may be let to �1. We conclude
that

q (�) = �1; � 62 Z.
With the representation

q (�) =

8<: infx2X � (x; �) ; � 2 Z;�1; � 62 Z:

9=;
proven we remark that

q� (M) = sup
�2Rn

q (�) = sup
�2Z

inf
x2X

� (x; �)

and

w� (M) = p (0) =

�
inf
x2X

sup
z2Z

f� (x; z)� hu; zig
�
u=0

= inf
x2X

sup
z2Z

� (x; z) :

Therefore the statement (2) of the proposition follows.



Prop. 15.5 (Minimax theorem). Let X and Z be nonempty convex
subsets of Rn and Rm respectively and let � be a function � : X � Z 7�! R
such that
1. For every x 2 X the function �� (x; �) : Z 7�! R is convex and closed,
2. For every z 2 Z the function � (�; z) : X 7�! R is convex,
3. infx2X supz2Z � (x; z) <1:
Then
1.The minimax equality

sup
z2Z

inf
x2X

� (x; z) = inf
x2X

sup
z2Z

� (x; z)

holds i¤ the function p given by the formula (1.2) is lower semicontinuous
at 0.
2. If 0 2 ri (dom (p)) then the minimax equality holds and the suppremum

over Z in supz2Z infx2X � (x; z) is �nite and is attained. Furthemore,

arg sup
z2Z

�
inf
x2X

� (x; z)

�
is compact , 0 2 ri (dom (p)) .

Proof. The statement follows from propositions (15.3)-(15.4) and (14.2
)-(14.3) applied to the epigraph of p.

16 Saddle point theory.

Let X and Z be nonempty convex subsets of Rn and Rm respectively and
let � be a function � : X � Z 7�! R. We introduce the following notations.

p (u) = inf
x2Rn

F (x; u) ;

F (x; u) =

8<: supz2Z [� (x; z)� hu; zi] ; x 2 X;1; x 62 X;

9=; ;

tz (x) =

8<: � (x; z) ; x 2 X;

1; x 62 X

9=; ;

rx (z) =

8<: �� (x; z) ; z 2 Z;1; x 62 X

9=; ;



t (x) = sup
z2Z

tz (x) ; x 2 Rn;

r (z) = sup
x2X

rx (z) ; z 2 Rm:

The following statements are consequences of the propositions (15.5) and
(11.2).

Prop. 16.1 (Saddle point result 1) Assume that
1. 8z 2 Z the function tz is convex and closed,
2. 8x 2 X the function rx is convex and closed,
3. infx2X supz2Z � (x; z) <1.
Then the minimax equality

sup
z2Z

inf
x2X

� (x; z) = inf
x2X

sup
z2Z

� (x; z)

holds and X� = arg infx2X [supz2Z � (x; z)] is nonempty under any of the
following conditions.
0. The level sets of the function t are compact.
1. The recession cone and the constancy space of the function t are equal.
2. The function F (x; u) has the form

F (x; u) =

8<: �F (x; u) ; (x; u) 2 C;

1; (x; u) 62 C

9=;
with �F being a closed proper convex function and set C being given by the
linear constraints

C = f(x; u) jAx+Bu � bg
and RC � L �F .
3. �1 < infx2X supz2Z � (x; z) ;

� (x; z) = hx;Qxi+ hc; xi+ hz;Mxi � hz; Rzi � hd; zi ;

where Q;R are symmetric matrices, Q is positive semide�nite, R is positive
de�nite,

Z = Rm;

X = fxj hx;Qjxi+ haj; xi+ bj � 0; j = 1; :::; rg ;

where the Qj are positive semide�nite matrixes.
In addition, if (0) holds then X� is compact.



Prop. 16.2 (Saddle point result 2). Assume that
1. 8z 2 Z the function tz is convex and closed,
2. 8x 2 X the function rx is convex and closed,
3. Either infx2X supz2Z � (x; z) <1 or �1 < supz2Z infx2X � (x; z).
Then
(a) If the the level sets of functions r and t are compact then the set of

saddle points of � is nonempty and compact.
(b) If Rr = Lr and Rt = Lt then the set of saddle points of � is nonempty.

Prop. 16.3 (Saddle point theorem). Assume that
1. 8z 2 Z the function tz is convex and closed,
2. 8x 2 X the function rx is convex and closed,
Then the set of saddle points of � is nonempty and compact if any of the

following conditions are satis�ed
1. X and Y are compact.
2. Z is compact and fxj x 2 X; � (x; �z) � 
g is nonempty and compact

for some �z 2 Z and 
.
3. X is compact and fzj z 2 Z; � (�x; z) � 
g is nonempty and compact

for some �x 2 X and 
.
4. fxj x 2 X; � (x; �z) � 
g and fzj z 2 Z; � (�x; z) � 
g are nonempty

and compact for some �z 2 Z, �x 2 X and 
.

17 Polar cones.

Prop. 17.1 (Polar cone de�nition). For a nonempty set C we de�ne
the polar cone C�:

C� = fyj hy; xi � 0;8x 2 Cg :

The following statement is a direct consequence of the de�nitions.

Prop. 17.2 (Polar cone properties). For any nonempty set C, we
have
1. C� is a closed convex set.
2. C� = (cl (C))� = (conv (C))� = (cone (C))�.
3. If C �M for some set M then M� � C�.



Prop. 17.3 (Polar cone theorem). For any nonempty cone C we have

C�� = cl (conv (C)) .

If C is closed and convex then C�� = C.

Proof. First, we show that for any nonempty C we have C � C��.
Indeed, by the de�nitions, for a �xed x 2 C

x 2 C ) 8y 2 C�; hx; yi � 0

Therefore, x 2 C�� = fzj hz; yi � 0;8y 2 C�g.
Next, we prove that for a closed nonempty C, we have C�� � C.
Let x 2 C��. Since C is closed, there exists the projection PC (x). Let us

translate the coordinate system so that PC (x) = 0. Then by the proposition
(9.1)-2 we have

hz; xi � 0; 8z 2 C:
Hence,

C � fxg� ) fxg�� � C�.

We already established that

fxg � fxg�� :

Therefore,
x 2 C�

but also
x 2 C��:

Hence, for a nonempty set M � C� (empty M is a trivial case) we have

x 2M \M�:

By the de�nition of polar cone, we always haveM\M� = f0g for a nonempty
M . Hence, x = 0 = PC (x) 2 C.
Finally, we prove that C�� = cl (conv (C)). By the proposition (17.2), we

have
C� = (cl (conv (C)))� :

Therefore,
C�� = (cl (conv (C)))�� :

We already proved that (cl (conv (C)))�� = cl (conv (C)).



18 Polyhedral cones.

Def. 18.1 A cone C is polyhedral if it has the form

C = fxj haj; xi � 0; j = 1; :::; rg :

A cone C is �nitely generated if it has the form

C = cone (fa1; :::; arg) =
(
xj x =

rX
j=1

�jaj; � � 0; j = 1; :::; r
)

where a1; :::; ar 2 Rn.

Prop. 18.2 (Polar polyhedral cone). Let a1; :::; ar 2 Rn. Then

C = cone (fa1; :::; arg)

is closed and
C� = fyj haj; yi � 0; j = 1; :::; rg :

Proof. First we prove that C� = fyj haj; yi � 0; j = 1; :::; rg. Indeed,
by the de�nition of polar cone

C� = fyj hx; yi � 0; 8x 2 Cg

=

(
yj

rX
j=1

�j haj; yi � 0; 8�j � 0
)

= fyj haj; yi � 0g :

Next, we prove that C is close by induction in r.
For r = 1 it is closed.
We assume that Cr = cone (fa1; :::; arg) is closed and prove that Cr+1 =

cone (fa1; :::; ar; ar+1g) is closed. Without loss of generality we assume kajk =
1;8j.
Take any sequence fxkg ; xk 2 Cr+1; xk ! x0. We aim to prove that

x0 2 Cr+1. We have

xk = yk + �kar+1; yk 2 Cr; �k � 0:



The �k must be a bounded sequence. Hence, we take a subsequence con-
verging to some limit point and restrict consideration to such subsequence:

�k � �0 ! 0; �0 � 0:

We have
xk = yk + �0ar+1 + (�k � �0) ar+1 ! x0:

Therefore, yk must be convergent:

yk ! y0

and y0 2 Cr by the induction hypothesis. Hence,

x0 = y0 + �0ar+1; y0 2 Cr; �0 � 0
) x0 2 Cr+1.

Prop. 18.3 (Farkas lemma). Let

P = fyj hy; eii = 0; i = 1; :::;m; hy; aji � 0; j = 1; :::; rg ;

C =

(
xj x 2 Rn; x =

mX
i=1

�iei +
rX
j=1

�jaj; �j � 0; �i 2 R
)

where e1; :::; em; a1; :::; ar 2 Rn.
Then

P � = C:

Proof. Note that

C =

(
xj x 2 Rn; x =

mX
i=1

�+i ei +

mX
i=1

��i (�ei) +
rX
j=1

�jaj; �j � 0; �+i � 0; ��i � 0
)

= cone (fe1;�e1; :::; em;�em; a1; :::; arg) ;

P = fyj hbk; yi � 0; k = 1; :::; Kg ;
fbkg = fe1;�e1; :::; em;�em; a1; :::; arg :



Therefore, by the proposition (18.2),

C� = P

and C is closed. Hence,
C = C�� = P �:

Prop. 18.4 (Minkowski-Weyl theorem). A cone is polyhedral if and
only if it is �nitely generated.

Proof. Suppose C � Rn is a �nitely generated cone

C = cone (fa1; :::; arg) :

We prove that there exist vectors fbjg such that

C = fyj hy; bji � 0; for some set of indexes jg :

Let H be a linear span of fa1; :::; arg, and k � dimH. We introduce
fepgp=1;:::;k to be the orthogonal basis of H. Hence we have de�ned the linear
transformations � and A as follows

� = k�jpk ;

aj =
kX
p=1

�jpep;

# = k�pjk ;

ep =
kX
j=1

�pjaj.

The transformation # is known as "orthogonalization". Some of its columns
have all zero elements because fajg might be linearly dependent.



We have

Cr =

(
xj x =

rX
j=1

�jaj; �j � 0
)

=

(
xj x =

rX
j=1

�j

kX
p=1

�jpep; �j � 0
)

=

(
xj x =

kX
p=1

ep

rX
j=1

�j�jp; �j � 0
)

=

(
yj hy; epi =

rX
j=1

�j�jp; �j � 0
)
:

Let

�p =
rX
j=1

�j�jp;0BBB@
�1

:::

�k

1CCCA = �T

0BBB@
�1

:::

�r

1CCCA :

We introduce the vectors fzpg:0BBB@
z1

:::

zr

1CCCA = #T

0BBB@
e1

:::

ek

1CCCA
then

yT zp = yT

26664#T
0BBB@
e1

:::

ek

1CCCA
37775
p

=

26664#T
0BBB@
yT e1

:::

yT ek

1CCCA
37775
p

=

26664#T
0BBB@
�1

:::

�k

1CCCA
37775
p

=

26664#T�T
0BBB@
�1

:::

�r

1CCCA
37775
p

= �p:



Therefore,
Cr = fyj hy; zpi � 0; for p such that zp 6= 0g :

Def. 18.5 A set P is a polyhedral set if it is nonempty and has the
form

P = fxj haj; xi � bj; j = 1; :::; rg :

Prop. 18.6 (Minkowski-Weyl representation). A set P is polyhedral
i¤

P = conv (fv1; :::; vmg) + cone (fa1; :::; arg)
for some fvigi=1;:::;m ; fajgj=1;:::;r.

Proof. Note that the inequality

haj; xi � bj

may be represented as
h(aj;�bj) ; (x; 1)i � 0:

Based on this observation we aim to apply the proposition (18.4). Set of the
form f(y; 1)g is not cone. We consider

~P = f(y; w) j h(aj;�bj) ; (y; w)i � 0; w � 0g :

Observe that P =
n
xj (x; 1) 2 ~P

o
. By the proposition (18.4), we have

~P = cone (f~z1; :::; ~zrg) :

We introduce the notation

~zj = (uj; wj) 2 Rn+1; uj 2 Rn; wj 2 R;
J0 = fjj wj = 0g ; J+ = fjj wj > 0g :

We have

P =
n
xj (x; 1) 2 ~P

o
=

8<:xj x = X
j2J+[J0

�juj;
X
j2J+

�j = 1; �j � 0

9=;
= conv

�
fujgj2J+

�
+ cone

�
fujgj2J0

�
:



Def. 18.7 A function f : Rn 7! (�1;+1] is polyhedral if epi (f) is
polyhedral.

The following proposition is a direct consequence of the de�nition.

Prop. 18.8 (Polyhedral function). Let f : Rn 7! (�1;+1] be a
convex function. Then f is polyhedral if and only if dom (f) is polyhedral
and

f (x) = max
j=1;:::;m

fhaj; xi+ bjg .

19 Extreme points.

Def. 19.1 For a nonempty convex set C the point x is an extreme
point if there is no two points u;w 2 C such that x 2 (u;w). We denote
ep (C) the set of all extreme points.

Prop. 19.2 (Krein-Milman theorem). Let C be a nonempty convex
set. Then
1. For a hyperplane H that contains C in one of its closed halfspaces

ep (C \H) � ep (C) :

2. If C is closed then

LC = ?, ep (C) 6= ?:

3. If C is compact then

C = conv (ep (C)) :

Proof. (1). Assume the contrary: 9x : x 2 ep (C \H) ; x 62 ep (C).
Then there must be u;w 2 C : x 2 (u;w). There are three cases:
a. u;w 62 H. Since x 2 (u;w) and x 2 H this means that H does not

contain C in one of its halfspaces.
b. u;w 2 H. Then x 62 ep (C \H).
c. u 2 H;w 62 H. Impossible because x 2 (u;w) and x 2 H.
Proof. (2). If LC 6= ? then any candidate x to be in ep (C) may be

translated in both directions along any y 2 LC while remaining in C. Hence,
LC 6= ?) ep (C) = ?. We have ep (C) 6= ?) LC = ? for the same reason.



If LC = ? then for any point x 2 C there is a direction y such that the line
fzjz = x+ �y; � � 0g hits the relative boundary of C at some point x0. By
proposition (12.8) there is a properly separating hyperplaneH at that point.
By closedness of C the set H \ C is not empty and LH\C = ?. We reduced
the dimensionality of our proof. Because of the part (1) of the proposition
we can complete this proof by induction in the number of dimensions.
Proof. (3). We prove the statement by induction in the number of

dimensions of Rn. For n = 1 the statement is trivial. Assume that it is
true in Rn�1. Let C 2 Rnand x 2 C, x 62 ep (C). There is a line that
passes through x such that x 2 [x1; x2] and x1; x2 2 @ ri (C). There are
properly seprating hyperplanes H1 and H2 at points x1 and x2. By applying
the statement in Rn�1, xi 2 conv (ep (C \Hi)) ; i = 1; 2: Then by (1),
xi 2 conv (ep (C)) ; i=1,2. Hence, x 2 conv (ep (C)).

Prop. 19.3 (Extreme points of polyhedral set 1). Let P be a polyhedral
set. According to the proposition (18.6)

P = conv (fv1; :::; vmg) + cone (fa1; :::; arg) :

We have
ep (P ) � fv1; :::; vmg :

Proof. According to the proposition (18.6) any point x 2 P has the
representation x = y + z, y 2 conv (fv1; :::; vmg), z 2 cone (fa1; :::; arg).
An extreme point x� 2 ep (P ) may not have a non zero z-part because it
would contradict the de�nition of the extreme point. The x� also cannot
be a convex combination of fv1; :::; vmg. Therefore, the only possibility is
x� 2 fv1; :::; vmg.

Prop. 19.4 (Extreme points of polyhedral set 2). Let P be a polyhedral
subset of Rn. Then
1. Let P has the form

P = fxj haj; xi � bj; j = 1; :::; rg

and denote
Av � fajj haj; vi = bj; j 2 f1; :::; rgg

then
v 2 ep (P ), dimAv = n and v 2 P:



2. Let P has the form

P = fxj x � 0; haj; xi = bj; j = 1; :::; rg
= fxj x � 0; Ax = bg ;

aj � (ajk)k=1;:::;n 2 R
n; j = 1; :::; r;

A = jjajkjj ; b = (bj)

and denote
Bv = kajkkk2fkj vk 6=0;k=1;:::;ngj=1;:::;r;

then v 2 ep (P ) i¤ Bv has the maximal rank (all columns are linearly inde-
pendent) and v 2 P .
3. Let P has the form

P = fxj c � x � d; haj; xi = bj; j = 1; :::; rg
= fxj c � x � d; Ax = bg ; c; d 2 Rn;

aj � (ajk)k=1;:::;n 2 R
n; j = 1; :::; r;

A = jjajkjj ; b = (bj)

and denote
Cv = kajkkk2fkj vk2(ck;dk);k=1;:::;ngj=1;:::;r;

then v 2 ep (P ) i¤ Cv has the maximal rank (all columns are linearly inde-
pendent) and v 2 P .

Proof. (1). We state that v 2 ep (P ) i¤ for any direction vector y 2
Rn; kyk = 1 such that

v + ty 2 P
for some t 6= 0 and any small " > 0 one of the conditions

v � "y 2 P

is violated. If dimAv = n then no y can be orthogonal to all aj 2 Av and
then one of the conditions aTj (v � "y) � bj is violated. Hence,

dimAv = n) v 2 ep (P ) :

Conversely, if there is a y that is orthogonal to all Av then for such y

haj; v + tyi � bj



if v 2 P . Hence, v 62 ep (P ).
Proof. (2). We apply the part (1) of the proposition. In context of the

part (1) the P is represented by

P = fxj haj; xi � b; � haj; xi � �bj; j = 1; :::; r; � ekx � 0; k = 1; :::; ng

where the fekg is the coordinate basis. Therefore, the Av for such situation
has the form

Av = fajj haj; vi = bj; j 2 f1; :::; rgg [ fekjvk = 0g :

Note that v 2 P is given, hence, the condition haj; vi = bj above is not re-
strictive. The set fekjvk = 0g contains linearly independent vectors. Let k =
# fekjvk = 0g. We cannot state that according to (1), for v 2 ep (P ) we need
to have at least n�k independent vectors among fajj haj; vi = bj; j 2 f1; :::; rgg.
Indeed, some of the aj might be in the linear span of the fekjvk = 0g. Hence,
we need to exclude the projection on fekjvk = 0g. For v 2 ep (P ) we need to
have

dim
�
aj � Pfekj(vk)=0gaj

	
= n� k

where the Pfekg is the projection. The original matrix jjajkjj has n columns
in total. To establish the last equality it is enough to form a matrix from the
columns fajg, remove the k columns that correspond to (vk) = 0 and check
that the remaining matrix has the maximal rank n� k.
Proof. The proof of (3) is the same as the proof of (2).

Prop. 19.5 Let C be a closed convex set with at least one extreme
point. A convex function f : C ! R that attains a maximum over C attains
the maximum at some extreme point of C.

Proof. Let S be a segment S = fxjx = a+ � (b� a) ; � 2 (0; 1)g. Note
that S is open. A convex function that attains its maximum at S is constant
on S. Such statement follows directly from the de�nition of convexity.
The proof is based on the above statement and the theorem (12.8). Let

x� be a point where the maximum is attained. By the above statement either
f is constant on C or x� 62 ri (C). In the former case we are done. In the
latter case there is a properly separating hyperplane H. Since x� 2 C we
have x� 2 H \ C. If H \ C = fx�g then we are done: the x� is an extreme
point. Otherwise we observe that we reduce the dimension of the proof by
switching the consideration from C to H \ C.



20 Directional derivative and subdi¤eren-
tial.

Prop. 20.1 (Nondecreasing ratio). Let I be an interval of R and f (x)
is a convex function on I. The function

h (x; y) =
f (y)� f (x)

y � x

is nondecreasing in each argument.

Proof. Observe that h (x; y) = h (y; x). Hence, we assume x � y without
loss of generality. We aim to show that h (z; x)� h (y; x) � 0 for x � y � z.
There exists a � such that y = �x+(1� �) z. We use such � and the de�nition
of convexity to calculate

h (z; x)� h (y; x) =
f (z)� f (x)

z � x
� f (y)� f (x)

y � x

=
f (z)� f (x)

z � x
� f (�x+ (1� �) z)� f (x)

�x+ (1� �) z � x

� f (z)� f (x)

z � x
� �f (x) + (1� �) f (z)� f (x)

�x+ (1� �) z � x

=
f (z)� f (x)

z � x
� (� � 1) f (x) + (1� �) f (z)

(� � 1)x+ (1� �) z

= 0:

Def. 20.2 (Left and right derivatives). Let f be a convex function on
the interval I � R. The left and right derivatives f�; f+ of f are de�ned by

f+ (x) = inf
">0

f (x+ ")� f (x)

"
;

f� (x) = sup
">0

f (x)� f (x� ")

"
:

Prop. 20.3 (Properties of left and right derivative). Let I be an in-
terval I � R and let f be a convex function on I.
1. f� (x) � f+ (x) ; x 2 I.



2. If x 2 ri (I) then f+ (x) and f� (x) are �nite.
3. If x; y 2 ri (I) and x � y then f+ (x) � f� (y).
4. The functions f+; f� are nondecreasing.

Proof. The statements are consequences of the proposition (20.1).

Def. 20.4 (Directional derivative). For a function f : Rn ! R the
directional derivative is de�ned by

f 0 (x; y) = inf
">0

f (x+ "y)� f (y)

"
.

Let f be a convex function f : Rn ! R. We use the notation (x; z) 2
Rn+1, x 2 Rn, z 2 R. Fix x0; d 2 Rn. A hyperplane H that passes
through the point (x0; f (x0)) and has the normal vector (�d; 1) is given by
the relationship

H = f(x; z) j h(x0; f (x0))� (x; z) ; (�d; 1)i = 0g :

Equivalently,
H = f(x; z) j hd; x� x0i+ f (x0) = zg :

The epi (f) lies above H i¤

for 8y 2 Rn; hd; y � x0i+ f (x0) � f (y)

or
8y 2 Rn; f (x0)� hd; x0i � f (y)� hd; yi : (1.4)

Def. 20.5 (Subgradient and subdi¤erential). The vector d 2 Rn is a
subgradient to the function f at (x0; f (x0)) i¤ the relationship (1.4) holds.
The set of all subgradients at x0 is called subdi¤erential at x0 and denoted
@f (x0).

Prop. 20.6 (Existence of subdi¤erential). Let f : Rn ! R be a con-
vex function. For any x0 2 Rn the @f (x0) is nonempty, convex and compact
set.



Proof. We match the conditions of the present proposition with the
setup of the proposition (14.3) as follows

M = f(u;w) j f (x0 + u) � wg ;
D = Rn;

0 2 D:

Hence, according to the proposition (14.3)

w� = q�

where
w� = inf

(0;w)2M
w = f (x0)

and q� is the maximal crossing point of the hyperplanes H (�; f (x0)) =
f(u;w) j w + h�; ui = f (x0)g such that the M lies above the hyperplane
H (�; f (x0)). Hence, there is a � such that

8 (u;w) 2M; w � f (x0)� h�; ui

or
8u 2 Rn; f (x0 + u) � f (x0)� h�; ui :

Set y = x0 + u then

8y 2 Rn; f (y) � f (x0)� h�; y � x0i :

Hence, �� is a subgradient. The rest of the conclusions follow from the
conclusions of the proposition (14.3) and D = Rn.
The following statements are veri�ed with similar techniques.

Prop. 20.7 (Properties of subgradient).
1. Let f : Rn ! R be a convex function. For any x 2 Rn and any

y 2 Rn we have
f 0 (x; y) = max

d2@f(x)
hy; di :

2. For convex functions f1; f2 : Rn ! R

@ (f1 + f2) (x) = @f1 (x) + @f2.



3. For a m� n matrix A

@f (Ax) = AT@f (Ax) :

4. Let g be a smooth function R! R and F (x) = g (f (x)) then

F 0 (x; y) = rg (f (x)) f 0 (x; y) :

If g is convex and nondecreasing then

@F (x) = rg (f (x)) @f (x) :

Prop. 20.8 Let f : Rn ! (�1;+1] be a proper convex function
then

8x 2 ri (dom (f)) : @f (x) = S? +G

where the S is a subspace parallel to aff (dom (f)) and G is a nonempty
compact set. Furthemore, @f (x) is nonmepty and compact i¤ x is in interior
of dom (f).

Proof. The proof of the proposition (20.5) applies almost without
changes.

21 Feasible direction cone, tangent cone
and normal cone.

Def. 21.1 Let X be a subset of Rn and x be a point in X.
(Feasible direction cone). The feasuble direction cone FX (x) of X at x is

de�ned as follows.

FX (x) = fyj 9"0 > 0 s.t. 8" 2 (0; "0) ; x+ "y 2 Xg :

(Tangent cone). The tangent cone TX (x) of X at x is de�ned as follows

TX (x) = f0g[
�
yj y 6= 0;9 fxkg � X s.t. xk 6= x and xk ! x;

xk � x

kxk � xk !
y

kyk

�
:

(Normal cone). The normal cone NX (x) of X at x is de�ned as follows

NX (x) = fzj 9 fxkg � X; fzkg s.t. zk 2 TX (xk)� ; xk ! x; zk ! zg :

(Regularity of a set). By de�nition, the X is regular at x if

NX (x) = TX (x)
� :



x

y

Figure 1.11: Tangent cone �gure 1

x

y

Figure 1.12: Tangent cone �gure 2



x

y

Figure 1.13: Normal cone �gure 1

On the �gure (1.11) the X is the closed area bounded by the circle, the
x is the origin, the FX (x) = f(x; y) jy > 0g and TX (x) = f(x; y) jy � 0g.
On the �gure (1.12) the X is the curved line, the x is the origin, the

FX (x) = f(0; 0)g and TX (x) = f(0; y) jy 2 (�1;+1)g.
On the �gure (1.13) the X is the closed area bounded by the curved

shape, the x is the origin, FX (x) = R2n f(0; y) jy 2 (0;+1)g, TX (x) = R2

andNX (x) = f(x; 0) jx 2 (�1;+1)g. To see thatNX (x) = f(x; 0) jx 2 (�1;+1)g
note that the condition zk 2 TX (xk)

� of the de�nition (21.1) requires that
fxkg approach x = (0; 0) along the boundary of X. For any other choice of
fxkg we have TX (x) = R2 and TX (x)

� = f(0; 0)g.

Prop. 21.2 (Tangent cone 2). Let X be a subset of Rn and x 2 X.
Then

TX (x) =

�
yj9 fxkg � X;9 f�kg � (0;+1) s.t. �k ! 0,

xk � x

�k
! y

�
:

Proof. Let y 2 TX (x) then according to the de�nition (21.1) there is a
sequence fxkg � X s.t. xk ! x and xk�x

kxk�xk !
y
kyk . We set �k =

kxk�xk
kyk .



Conversely, let f�kg be the sequence as stated in the proposition then

xk � x

�k
! y ) xk ! x

and
xk � x

kxk � xk =
(xk � x) =�k
kxk � xk =�k

! y

kyk .

Prop. 21.3 (Tangent cone 3). Let X be a subset of Rn and x 2 X.
1. TX (x) is a closed cone.
2. cl (FX (x)) � TX (x).
3. If X is convex then FX (x) and TX (x) are convex and cl (FX (x)) =

TX (x) :

Proof. (1). Consider fykg ; yk 2 TX (x) such that yk ! y. We aim to
show that y 2 TX (x). We exclude non essential case y = 0.
By de�nition of TX (x) there are sequences fxpkg, xpk ! x and xpk�x

kxpk�xk !
yk
kykk as p!1.
There exists an increasing function m (�) s.t.



ym(k) � y


 � 1

k
. We can

also �nd a function p (�) such that p (k) > max(p (k � 1) ;m (k)) ,


xp(k)m(k) � x



 �
1
k
and





 xp(k)m(k)�x
kxp(k)m(k)�xk �

ym(k)

kym(k)k





 � 1
k
. The sequence ~xk � xp(k)m(k) is the se-

quence that we need to show that y 2 TX (x) in context of the de�nition (21.1
).
Proof. (2). FX (x) � TX (x) by de�nitions and by (1) the TX (x) is

closed.
Proof. (3). Since X is convex all the feasible directions �x 2 FX (x) are

of the form � (�x� x), � > 0. Hence, FX (x) is convex. By the proposition
(21.2) theTX(x) consists of y that are limit points sequences of such feasible
directions xk�x

�k
. Hence, TX (x) � cl (FX (x)). Therefore, in combination with

(2), the TX (x) = cl (FX (x)) follows and TX (x) is convex.

Prop. 21.4 (Tangent cone 4). Let X be a nonempty convex subset of
Rn and x 2 X.
1. z 2 TX (x)� , 8�x 2 X : hz; �x� xi � 0.
2. X is regular for all x 2 X: TX (x)

� = NX (x).
3. TX (x) = NX (x)

�.



Proof. Since X is convex, any feasible direction y 2 FX (x) is of the form
� (�x� x) ; � > 0. Hence, (1) follows from the proposition (21.3)-3 and the
de�nition (17.1).
The (2) follows from (1) and the de�nition (21.1).
The (3) is a consequence of the proposition (17.3), (2) and the proposition

(21.3)-1,3.

22 Optimality conditions.

Prop. 22.1 (Minimum of a smooth function). Let f : Rn ! R be
a smooth function and let x� be a minimum of f over the subset X of Rn.
Then

8y 2 TX (x�) : hrf (x�) ; yi � 0:
Equivalently,

�rf (x�) 2 TX (x�)� :
If X is convex then

8x 2 X : hrf (x�) ; x� x�i � 0:

If X = Rn then
rf (x�) = 0:

Proof. Let y 2 TX (x�), y 6= 0 then there exists fxkg ; xk 2 X such that

xk ! x;

xk � x�

kxk � x�k !
y

kyk :

By smoothness of f we have

f (xk) = f (x�) + hrf (x�) ; xk � x�i+ o (kxk � x�k) :

Hence,

0 � f (xk)� f (x�)

kxk � x�k =

�
rf (x�) ; xk � x�

kxk � x�k

�
+
o (kxk � x�k)
kxk � x�k :

We pass the above to the limit and obtain

0 � hrf (x�) ; yi :

The rest of the proposition follows from the proposition (21.4)-1.



Prop. 22.2 (Minimum of a convex function). Let f : Rn ! R be a
convex function and let X be a convex subset of Rn. Then

x� 2 argmin
X

f (x) , 9d 2 @f (x�) s.t. 8x 2 X : hd; x� x�i � 0:

Equivalently,

x� 2 argmin
X

f (x) , 0 2 @f (x�) + TX (x
�)� :

Proof. Assume d 2 @f (x�) and hd; x� x�i � 0 for any x 2 X. Then
by the de�nition (20.5) f (x) � f (x�) � hd; x� x�i � 0 and thus x� 2
argminX f (x).
Conversely, let x� 2 argminX f (x). Then f 0 (x�;x� x�) � 0 for any

x 2 X. According to the proposition (20.7)-1

f 0 (x�;x� x�) = sup
d2@f(x�)

hd; x� x�i :

According to the proposition (20.6) the supd2@f(x�) is taken over a com-
pact set. Also, the hd; x� x�i is a continuous function of d. Hence, the
supd2@f(x�) hd; x� x�i is achieved at some d�. Such d� has the property

8x 2 X : hd�; x� x�i � 0:

The second part of the proposition 0 2 @f (x�) + TX (x
�)� is evident

because the statement hd; x� x�i � 0 may be rewritten as �d 2 TX (x
�)�

according to the de�nition (17.1).

Prop. 22.3 (Local minimum of a sum). Let f1 : Rn ! R be a convex
function, f2 : Rn ! R be a smooth function, X be a subset of Rn, x� be a
local minimum of f = f1 + f2 and let TX (x�) be convex. Then

�rf2 (x�) 2 @f1 (x�) + TX (x
�)� :

Proof. The proof is a repetition of the proofs for the propositions (22.1)
and (22.2).
The �gure (1.14 ) illustrates the condition �rf (x�) 2 TX (x

�)�. The
painted triangle is the constraint set X. The elipses are the level curves of
a function f (x) with the internal elipse is the level curve with the smallest
value. The slightly transparent triangle is the set x�+TX (x�)

�. The arrow is



x2

x1
X

X*

x*+TX(x*)*

Figure 1.14: Optimality for smooth function �gure 1



x2

x1
X

X*

x*+TX(x*)*

Figure 1.15: Optimality for smooth function �gure 2

the vector �rf (x�). Therf (x�) is orthogonal to the level curve that passes
through x� and points to the direction of increase of f . The �rf (x�) points
in direction of decrease. Because the �rf (x�) lies within the TX (x�)� the
point x� minimises f over X. The alternative situation is presented on the
picture (1.15). Here, �rf (x�) lies outside of the TX (x�)�. In addition the
�rf (x�) must be orthogonal to the level curve. Therefore, the level curve
must cross into X thus preventing x� from being the minimum.



23 Lagrange multipliers for equality con-
straints.

We are considering the following problem.

minimize f (x) (1.5)

subject to hi (x) = 0; i = 1; :::;m;

where the f and hi are smooth functions Rn ! R.

Prop. 23.1 (Existence of Lagrange multipliers for equality constraints).
Let x� be a local minimum of the problem (1.5) and

X = fxj hi (x) = 0; i = 1; :::;mg ;
TX (x

�) = fyj hrhi (x�) ; yi = 0; i = 1; :::;mg

then there are scalars f��i gi=1;:::;m such that

rf (x�) +
mX
i=1

��irhi (x�) = 0:

Proof. The condition

TX (x
�) = fyj hrhi (x�) ; yi = 0; i = 1; :::;mg

implies
TX (x

�) = N
�
AT
�
;

where the n�m matrix A consists of the columns fhi (x�)g :

A = khi (x�)ki=1;:::;m .

Hence, 

x;ATy

�
= 0; 8x 2 Rm; 8y 2 N

�
AT
�
= TX (x

�) :

Equivalently,

hz; yi = 0; 8z 2 R (A) ; 8y 2 N
�
AT
�
= TX (x

�) :

Therefore,
R (A) � TX (x

�)� :



We next show that
TX (x

�)� � R (A) :

Indeed, we already established that TX (x�) is a subspace, hence, y 2 TX (x�))
�y 2 TX (x

�). Therefore, if hz; yi � 0;8y 2 TX (x
�) then hz; yi = 0;8y 2

TX (x
�). But

TX (x
�)� = fzj hz; yi � 0;8y 2 TX (x�)g

and we proved already that

R (A) = fzj hz; yi = 0;8y 2 TX (x�)g :

Therefore,
R (A) = TX (x

�)� :

According to the proposition (22.1),

�rf (x�) 2 TX (x�)�

hence,
�rf (x�) 2 Linear hull of frhi (x�)gi=1;:::;m

and the conclusion of the proposition follows.
The condition

TX (x
�) = fyj hrhi (x�) ; yi = 0; i = 1; :::;mg

states that the TX (x�) consists of directions tangent to the level surfaces of
hi crossing the x�. For example,

hi (x) = hai; xi+ bi; i = 1; :::;m)
TX (x) = fyj hai; yi = 0; i = 1; :::;mg .

24 Fritz John optimality conditions.

Prob. 24.1 (Smooth optimization problem). We consider the following
problem

minimize f (x)

subject to x 2 C,
C = X \ fxj hi (x) = 0; i = 1; :::;mg
\ fxj gj (x) � 0; j = 1; :::; rg



where the f; hi; gj are smooth functions Rn ! R and X is a nonempty closed
set.

Prop. 24.2 (Fritz John conditions). Let x� be a local minimum of
the problem (24.1). Then there exist quantities ��0; �

� � f��i gi=1;:::;m ; �� ��
��j
	
j=1;:::;r

such that

1.

�rxL (x
�; ��0; �

�; ��) 2 NX (x
�) ;

L (x; �0; �; �) � ��0f (x) + h�; h (x)i+ h�; g (x)i ;
h (x) � fhi (x)gi=1;:::;m ; g (x) � fgj (x)gj=1;:::;r :

2.

��j � 0; j = 1; :::; r;
��0 � 0:

3.
(��0)

2 + k��k2 + k��k2 6= 0:
4. Let

I � fij ��i 6= 0g ; J =
�
jj ��j 6= 0

	
:

If
I [ J 6= ?

then there exists fxkg � X such that

xk ! x�;

8k : f (xk) < f (x�) ;

8i 2 I : ��ihi (xk) > 0;
8j 2 J : ��jgj (xk) > 0;
8i 62 I : jhi (xk)j = o (w (xk)) ;

8j 62 J : g+j (xk) = o (w (xk))

where g+j (x) = max (0; gj (x)) and

w (x) = min

�
min
i2I

jhi (x)j ;min
j2J

g+j (x)

�
:



Proof. Let

Fk (x) � f (x) +
k

2
kh (x)k2 + k

2



g+ (x)

2 + 1
2
kx� x�k2

for k = 1; 2; :::
Consider the problems

minimize Fk (x) (1.6)

subject to x 2 X \ S"

where
S" = fxj kx� x�k � "g

and " > 0 is such that

8x 2 S" \ C : f (x�) � f (x) :

By the classic version of the Weierstrass theorem there exists a solution
xk of the problem (1.6) for every k . In particular,

Fk (xk) � Fk (x
�) :

Note that x� 2 C ) h (x�) = 0 and g+ (x�) = 0. Hence, we rewrite the last
inequality as

f (xk) +
k

2
kh (xk)k2 +

k

2



g+ (xk)

2 + 1
2
kxk � x�k2 � f (x�) : (1.7)

By construction, fxkg is a bounded sequence. Therefore, is has one or more
limit points �x.
The f is smooth, hence, f (xk) is bounded. Therefore,

kh (xk)k ! 0;


g+ (xk)

! 0

because otherwise k
2
kh (xk)k2 and k

2
kg+ (xk)k2 cannot be bounded by the

f (x�).
Thus, all the limit points �x are feasible:

�x 2 C.

Therefore, by the construction of S" and ",

f (x�) � f (�x) . (1.8)



By passing to the limit the inequality (1.7) and combining with (1.8)we
conclude

�x = x�

for every limit point �x. Thus xk is convergent and

xk ! x�.

According to the proposition (22.1)

�rxF (xk) 2 TX\S" (xk)
� :

By convergence xk ! x�, for large enough k the xk is inside S", hence

TX\S" (xk)
� = TX (xk)

� :

We restrict our attention to such k.
We calculate

rxF (xk) = rxf (xk)+k hh (xk) ;rxh (xk)i+k


g+ (xk) ;rxg

+ (xk)
�
+xk�x�
(1.9)

and introduce the notation

�k =

q
1 + k2 kh (xk)k2 + k2 kg+ (xk)k2;

�0;k =
1

�k
;

�k =
k

�k
h (xk) ;

�k =
k

�k
g+ (xk) :

Note that the sequence of k

f�0;k; �k; �kg

is bounded:
�20;k + k�kk

2 + k�kk2 = 1:
Hence, it has a limit point �

��0;k; �
�
k; �

�
k

	
.



By dividing (1.9) with �k we obtain

�0;kf (xk) + h�k;rxh (xk)i+


�k;rxg

+ (xk)
�
+
1

�k
(xk � x�) 2 TX (xk)� .

We pass the last relationship to the limit k !1 and arrive to

��0f (x
�) + h��;rxh (x

�)i+


��;rxg

+ (x�)
�
2 NX (x

�) ,

(compare with the de�nition (21.1)).
To see that the statement (4) holds, note that by construction of ��k; �

�
k,

�k =
k
�k
h (xk), if i 2 I then ��ihi (xk) > 0 for large enough k. If i 62 I then

the i-th component of �k: (�k)i =
k
�k
hi (xk) has to vanish as k !1. Hence,

if i 62 I then hi (xk) vanishes quicker than any of the hi (xk) for i 62 I. The
consideration for gj is identical.

25 Pseudonormality.

We use the notation of the problem (24.1).

Def. 25.1 (Pseudonormality). The vector x� 2 C is called "pseudo-
normal" if one cannot �nd the vectors �,� and a sequence fxkg � X such
that
1. �h�;rxh (x

�)i � h�;rxg (x
�)i 2 NX (x

�),
2. � � 0, gj (x�) 6= 0) �j = 0 and gj (x�) = 0) �j 6= 0.
3. xk ! x� and h�; h (xk)i+ h�; g (xk)i > 0; 8k.

Note that (1) implies that the proposition (24.2) cannot take place with
��0 = 0. The conditions (2),(3) imply that the components of �; � are "infor-
mative" in the sense that the set I [ J of the proposition (24.2) is nonempty
and the non-zero components of �; � mark those conditions hi (x) = 0 and
gj (x) � 0 that are "active" (xk of the proposition (24.2)�s proof violates
these conditions and the x� lies on the boundary set by such conditions).
We introduce the notation

A (x�) = fjj gj (x�) = 0g :

The condition 2 of the above de�nition may be equivalently written as

� � 0 and A (x�) = fjj �j 6= 0g :



Prop. 25.2 (Constraint quali�cation 1). If X = Rn, x� 2 C and the
vectors frhi (x�)gi=1;:::;m [ frgj (x�)gj2A(x�) are linearly independent then
the vector x� is pseudonormal.

Proof. Since X = Rn we have NX (x
�) = f0g. Hence, the conditions

1 and 2 of the de�nition (25.1), if true, would imply the linear dependence
frhi (x�)gi=1;:::;m [ frgj (x�)gj2A(x�). Therefore, such � and �, as in the
de�nition (25.1), cannot exist.

Prop. 25.3 (Constraint quali�cation 2). IfX = Rn, x� 2 C, A (x�) 6=
? and there exists a y 2 Rn such that

hy;rxhi (x
�)ix = 0; i = 1; :::;m;

hy;rxgj (x
�)ix < 0; j 2 A (x

�)

then the vector x� is pseudonormal.

Here the x-sign after the brackets h � ix indicates that the summation of
the scalar product is applied to the components of the gradient rx.
Proof. In the condition 1 of the de�nition (25.1) the LHS

�h�;rxh (x
�)i � h�;rxg (x

�)i

is a vector of components of the gradient rx. The scalar product applies to i
and j indexes of fhi (x)gi=1;:::;m and fgj (x)gj=1;:::;r. We appy the scalar prod-
uct with respect to components of the gradient rx and write the following
consequence of the condition 1:*

y;
mX
i=1

�irxhi (x
�) +

rX
j=1

�jrxgj (x
�)

+
x

= 0:

Here we used that NX (x
�) = f0g for X = Rn. We rearrange the terms as

follows
mX
i=1

�i hy;rxhi (x
�)ix +

rX
j=1

�j hy;rxgj (x
�)ix = 0:

Therefore, the � and � as in the de�nition (25.1) cannot exist because the �rst
sum

Pm
i=1 �i hy;rxhi (x

�)ix is zero by the condition hy;rxhi (x
�)ix = 0 of the

proposition and the second sum is negative by the condition hy;rxgj (x
�)ix <

0; j 2 A (x�) of the proposition and the condition 2 of the de�nition (25.1).



Prop. 25.4 (Constraint quali�cation 3). If X = Rn, x� 2 C, the
functions hi (x) are a¢ ne and the functions gj (x) are concave then the vector
x� is pseudonormal.

Proof. By the conditions on hi and gi we have

hi (x) = hi (x
�) + hrxhi (x

�) ; x� x�ix ;
gi (x) � gi (x

�) + hrxgi (x
�) ; x� x�ix

for any x 2 Rn. Therefore, for any � and �

mX
i=1

�ihi (x) +
rX
j=1

�igi (x) �
mX
i=1

�ihi (x
�) +

rX
j=1

�jgj (x
�)

+

*
mX
i=1

�irxhi (x
�) +

rX
j=1

�jrxgj (x
�) ; x� x�

+
:

By the inclusion x 2 C, the �rst sum is zero and the second sum is non-
positive. Hence, if � and � satisfy the condition 1 of the de�nition (25.1
):

mX
i=1

�irxhi (x
�) +

rX
j=1

�jrxgj (x
�) 2 NRn (x�) = f0g

then the condition 3 of the de�nition (25.1) must fail.

Prop. 25.5 (Constraint quali�cation 4). Let X = Rn, x� 2 C, the x�
is pseudonormal for the set

�C = fxj hi (x) = 0; i = 1; :::;m; gj (x) < 0; j = �r + 1; :::; rg ;

and for some �r < r. Furthemore, there exists a y 2 Rn such that

hy;rxhi (x
�)ix = 0; i = 1; :::;m;

hy;rxgj (x
�)ix � 0; j 2 A (x

�) ;

hy;rxgj (x
�)ix < 0; j 2 f1; :::; �rg \ A (x

�) :

Proof. Note that A (x�) 6= ? because if A (x�) = ? then � = 0 and the
conditions 1,2,3 of the de�nition (25.1) are satis�ed for the set �C . The rest
of the proof is a repetition of the proof of the proposition (25.3).



Prop. 25.6 (Constraint quali�cation 5). Assume that the following
conditions are satis�ed.
1. The functions hi (x), i = �m+ 1; :::;m are linear for some �m � m.
2. The does not exists a � = f�igi=1;:::;m such that

�h�;rxh (x
�)i 2 NX (x

�)

and not all f�igi=1;:::; �m are zero.
3. Let

VL (x
�) = fyj hy;rxhi (x

�)ix = 0; i = �m+ 1; :::;mg :

Either VL (x�)\Interior(NX (x
�)�) 6= ? orX is convex and VL (x�)\ri (NX (x

�)�) 6=
?.
4. There exists a y 2 NX (x

�)� such that

hy;rxhi (x
�)ix = 0; i = 1; :::;m;

hy;rxgj (x
�)ix < 0; j 2 A (x

�) :

Then the vector x� is pseudonormal.

Proof. We assume that all the conditions of the de�nition (25.1) hold
and reach a contradition.
We introduce the notation


 � h�;rxh (x
�)i+ h�;rxg (x

�)i .

According to the condition 4 of this proposition and condition 2 of the de�-
nition (25.1), there exists a y 2 NX (x

�)� such that

hy; 
ix < 0; when A (x�) 6= ?;
hy; 
i = 0; when A (x�) = ?:

The condition 1 of the de�nition (25.1) requires that

�
 2 N (x�)

thus
hz;�
i � 0 for any z 2 N (x�)� .

Hence, we already proven the statement for the case A (x�) 6= ?.



It remains to consider the case A (x�) = ? under the assumption that
the conditions 1,2,3 of of the de�nition (25.1) and the conditions 1,2,3,4
of this proposition are true and arrive to contradiction. By the assumpion
A (x�) = ?, we have

gj (x
�) < 0; j = 1; :::; r;

and by condition 2 of the de�nition (25.1) we have

� = 0:

The condition 1 of the de�nition (25.1) implies

�h�;rxh (x
�)i = �

�mX
i=1

�irxhi (x
�)�

mX
i= �m+1

�irxhi (x
�) 2 NX (x

�) :

Hence, by the condition 2 of the propositon, all f�igi=1;:::; �m are zero:

� � �
mX

i= �m+1

�irxhi (x
�) 2 NX (x

�) :

By the condition 3 there is a y from the interior of NX (x
�)� such that

hy;rxhi (x
�)ix = 0; i = �m+ 1; :::;m:

Hence,

hy; �ix =
*
y;�

mX
i= �m+1

�irxhi (x
�)

+
x

= �
�mX
i=1

�i hy;rxhi (x
�)ix = 0:

Hence, we have found a point � 2 NX (x
�) and an interior point y of NX (x

�)�

such that
hy; �i = 0.

This is a contradiction. For an interior point of a cone NX (x
�)� we must

have
hy; �i < 0:



26 Lagrangian duality.

We consider the following problem.

Prob. 26.1 (Primal problem). Find

f � = inf
x2C

f (x)

where
C = fxj x 2 X; h (x) = 0; g (x) � 0g ;

X � Rn, x 2 Rn,

h (x) = fhi (x)gi=1;:::;m ;
g (x) = fgj (x)gj=1;:::;r ,

and f; hi; gj : Rn ! R.

We introduce the notation

L (x; �; �) = f (x) + h�; h (x)i+ h�; g (x)i ;
S = f(h (x) ; g (x) ; f (x)) jx 2 Xg :

26.1 Geometric multipliers.

Def. 26.1.1 (Geometric multiplier). The pair (��; ��) is a called a "geo-
metric multiplier" for the problem (26.1) if �� � 0 and

f � = inf
x2X

L (x; ��; ��) :

The following statement directly follows from the de�nitions (26.1),(26.1.1).

Prop. 26.1.2 (Visualization lemma). Assume �1 < f � < +1.
1. The hyperplane in Rm+r+1 with normal (�; �; 1) that passes through

(h (x) ; g (x) ; f (x)) also passes through (0; 0; L (x; �; �)).
2. Among all hyperplanes with normal (�; �; 1) that contain the set S in

the upper halfspace, the highest level of interseption with the axis f(0; 0; w) jw 2 Rg
is given by infx2X L (x; �; �).



Prop. 26.1.3 (Geometric multiplier property). Let (��; ��) be a geomet-
ric multiplier then x� is a global minimum of the problem (26.1) if and only
if x� 2 C and

L (x�; ��; ��) = min
x2X

L (x; ��; ��) ;

h��; g (x�)i = 0:

Proof. Note that x� 2 C implies h (x�) = 0 and g (x�) � 0 and the de�ni-
tion (26.1.1) requires � � 0. Hence, Hence, h��; h (x)i = 0 and h��; g (x�)i � 0.
Let x� be a global minimum of the problem (26.1) then

f � = min
x2C

f (x) = f (x�) :

By the de�nition (26.1.1),

f � = inf
x2X

L (x; ��; ��) = inf
x2X

ff (x) + h��; h (x)i+ h��; g (x)ig :

Therefore, h��; g (x�)i = 0 and L (x�; ��; ��) = minx2X L (x; ��; ��).
The statement is proven similarly in the other direction.

Def. 26.1.4 (Lagrange multiplier). The pair (��; ��) is called "Lagrange
multiplier of the problem (26.1) associated with the solution x�" if

0 2 @f (x�) + h��; @h (x�)i+ h��; @gi+ TX (x
�)�

and
�� � 0; h��; g (x�)i = 0:

The following statement is a consequence of the proposition (22.3) and
de�nitions.

Prop. 26.1.5 Assume that the problem (26.1) has at least one solution
x�.
1. Let f and fgig are either convex or smooth , fhig are smooth, X is

closed and TX (x�) is convex then every geometric multiplier is a Lagrange
multiplier.
2. Let f and fgig are convex, fhig are a¢ ne and X is closed and convex

then the sets of Lagrange and geometric multiplier coincide.



26.2 Dual problem.

Prob. 26.2.1 (Dual problem). Find

sup
�2Rm;�2Rr;��0

q (�; �)

where
q (�; �) = inf

x2X
L (x; �; �) .

The dual problem delivers the highest crossing point for the set

S = f(h (x) ; g (x) ; f (x)) j x 2 Xg :

Note that q is an inf of a collection of a¢ ne functions. Hence, it is concave,
upper semi-continuous and may be studied with the means of the propositions
(14.2),(14.3). In particular, the following statement directly follows from
the proposition (14.2), the geometrical interpretation of the (26.1.2) and the
de�nition (26.1.1).

Prop. 26.2.2 (Duality gap and geometric multipliers). The following
alternative takes place.
1. If q� = f � (="there is no duality gap") then the set of geometric

multipliers is equal to the set of solutions of the problem (26.2.1).
2. If q� < f � (="there is a duality gap") then the set of geometric multi-

pliers is empty.

26.3 Connection of dual problemwith minimax the-
ory.

Prop. 26.3.1 1. The problem (26.1) is equivalent to

inf
x2X

sup
�2Rm;�2Rr;��0

L (x; �; �) :

2. The problem (26.2.1) is equivalent to

sup
�2Rm;�2Rr;��0

inf
x2X

L (x; �; �) :



Proof. Note that

sup
�2Rm;�2Rr;��0

ff (x) + h�; h (x)i+ h�; g (x)ig =

8<: f (x) , if h (x) = 0; g (x) � 0

1 ; otherwise

9=; :

The rest follows from the de�nitions of the problems (26.1) and (26.2.1).

Prop. 26.3.2 (Necessary and su¢ cient optimality conditions).The vec-
tors (x�; ��; ��) form a solution of the problem (26.1) and a geometric mul-
tiplier pair if and only if the following four conditions hold.

x� 2 C (1.10)

�� � 0 (1.11)

L (x�; ��; ��) = min
x2X

L (x; ��; ��) (1.12)

h��; g (x�)i = 0 (1.13)

Proof. If the (x�; ��; ��) form a solution of the problem (26.1) and a
geometric multiplier pair then the statements (1.10 ) and (1.11 ) follow
from the de�nitions and (1.12 ),(1.13 ) follow from the proposition (26.1.3).
Conversely, using the conditions of the theorem we obtain

f � � f (x�) = L (x�; ��; ��) = min
x2X

L (x; ��; ��) = q (��; ��) � q�:

The the equiality
f � = q�

follows from the propositions (26.1.2) and (14.1).

27 Conjugate duality.

Prop. 27.1 For any convex function f

f (x) = sup
fb;�jhx;bi��<f(x);8xg

(hx; bi � �)



Figure 1.16: epi f is the intersection of the upper half planes.

Proof. Each a¢ ne function h (x) = hx; bi � � corresponds to a hyper-
plane. By the proposition (12.2), for any point below epigraph of f there
exists a hyperplane that separates such point from the epi f . Hence, for
any such point (x; �) ; x 2 dom f � < f (x) there exists a pair (b; �) s.t.
hx; bi � � < 0 and hy; bi � � < f (y) for 8y 2 dom f .

Coroll. 27.2 The set epi f is equal to intersection of the upper half-planes
de�ned by the hyperplanes from proof of the previous statement.

Let us denote F = epi f . Let us introduce a set

F � = f(x�; ��) j8x 2 dom f; hx�; xi � �� � f (x)g :

Such set is not empty and it is an epigraph of some function because if
(x0; �0) 2 F �then (x0; �) 2 F � for all � > �0. Let us denote such function
f �. By de�nition

f � (x�) = inf f��j8x 2 dom f : hx�; xi � �� � f (x)g
= inf f��j8x 2 dom f : hx�; xi � f (x) � ��g
= sup

x2dom f
fhx�; xi � f (x)g ,

dom f � = fx�j hx�; xi � f (x) < +1; 8x 2 dom fg :



Figure 1.17: Geometrical meaning of f(x�).

Let us introduce

F �� = f(x��; ���) j8x� 2 dom f �; hx��; x�i � ��� � f � (x�)g ;

f �� (x��) = inf f���j8x� 2 dom f �: hx��; x�i � ��� � f � (x�)g
= sup

x�2dom f�
fhx��; x�i � f � (x�)g ,

dom f �� = fx��j hx��; x�i � f � (x�) < +1; 8x� 2 dom f �g :
Observe that dom f �� = dom f . Indeed,

hx��; x�i � f � (x�) < +1; 8x� 2 dom f �

means that 9c = const

hx��; x�i � f � (x�) < c

or
hx��; x�i � c < f� (x�)

where the x� and � = f � (x�) run through all the hyperplanes that de�ne
epi f . For the same reason the in�mum of such c is the f (x��):

f (x��) = inf fcj8x� 2 dom f �: hx��; x�i � f � (x�) � cg
= sup

x�2dom f�
fhx��; x�i � f � (x�)g :



Summ. 27.3 (Conjugate duality theorem). We de�ne the operation of
taking a dual function f � by

f � (x�) = sup
x2dom f

fhx�; xi � f (x)g :

Then
f �� = cl f

for all proper convex functions.

The closure part: cl f comes from the fact that taking a¢ ne envelopes
includes boundary points of the epi f into the �nal result epi f��.

27.1 Support function.

Def. 27.1.1 The indicator function � (�jC) of a convex set C is a func-
tion of the form

� (xjC) =

0@ 0; if x 2 C

+1, if x =2 C

1A :

The support function �� (�jC) is the conjugate of the indicator function.

According to the de�nition

�� (x�jC) = sup
x2dom �(�jC)

fhx�; xi � � (xjC)g (1.14)

= sup
x2C

hx�; xi :

Note that �� (x�jC) is a positively homogenous function of x�. Suppose
f (x) is some proper convex positively homogenous function. Consider the
conjugate

f � (x�) = sup
x2dom f

fhx�; xi � f (x)g :

By the positive homogenuity x 2 dom f ) �x 2 dom f; 8� > 0. Conse-
quently, for any � > 0,

sup
x2dom f

fhx�; xi � f (x)g = sup
x2dom f

fhx�; �xi � f (�x)g = � sup
x2dom f

fhx�; xi � f (x)g :



Hence, f � (x�) is either 0 or +1. Introduce the set

C = fx�j8x; hx�; xi � f (x)g :

Such set is a dom f�. Indeed, if hx�; xi � f (x) then hx�; xi � f (x) � 0
and 0 is reached by scaling with �. Then f � (x�) = 0. On the other hand if
hx�; xi > f (x) then hx�; xi � f (x) > 0 and +1 is reached by scaling.

Summ. 27.1.2 (Convex homogenous function property). If f (x) is a proper
convex positively homegenous function then

f � (x�) = � (x�jC) ;
C = fx�j8x; hx�; xi � f (x)g

and
�� (x�jC) = cl f .

The last part of the summary follows from the summary (27.3). We es-
tablished one-to-one correspondence between convex sets and proper convex
positively homegenous functions.
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