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Notes on Convex Analysis

All of the action happens in R" (n-dimensional space of real variables).
We consider vectors (=points) z,vy, ... € R™, functions f, g, ... : R” — R and
subsets A, B,... C R"™. The space R" is equipped with the scalar product

(-,): Vz,y € R? (x,y) = > 2y and the norm |z| = \/(z, z).

1 Basic concepts of convex analysis.

1.1 Affine sets and hyperplanes.

Def. 1.1.1 The setly, = {(1 —0)x + 0y|0 € R} is called "the line through
x andy". The set M is called "affine” iff l,, € M for Vx,y € M. The op-

eration on set x + M = {x + yly € M} is called "translation of M by a". If

L is a subspace then the set x + L is called "parallel to L.

Subspace is an affine set containing the origin. Every affine set is a
translation of some subspace.

Def. 1.1.2 Dimension of the affine set is the dimension of the parallel
subspace. Affine sets of dimension n — 1 are called "hyperplanes”. The set
M+ = {y|ly L M} is called "orthogonal complement of M."

Prop. 1.1.3 (Hyperplane representation) Hyperplanes are sets of the form
Hy g = {z](z,b) = B}.



Proof. Supspaces of dimension n — 1 are orthogonal complements of
vectors. Hyperplanes are translations of such subspaces. =

Prop. 1.1.4 Affine sets have the form Apy, = {x|Bx = b} where B is
a matrix and b is a vector. Consequently, affine sets are interesections of
hyperplanes.

Proof. If M is an affine set then M = L + a for some subspace L. Let
{bx} be the basis of L+ then L = (LL)L = {z|(z,b;) = 0 for all k}. We set
B = {b;} as a union of columns and b = Ba. =

Intersection of affine sets is an affine set. Hence, we introduce the affine
hull as follows.

Def. 1.1.5 (Affine hull). The affine hull of the set S is aff S =
N{all affine A s.t. SCA}A.

1.2 Convex sets and cones.

Def. 1.2.1 (Convex set). The set I, = {(1 —0)x+ 0y|d € R} is called
"the line segment between x and y". The set C is called "convex" iff I, C C
for ¥x,y € C. Dimension of the conver set is the dimension of its affine

hull.

Intersection of convex sets is a convex set. Consequently, for any collec-
tions of numbers {3} and points {b;} the set Ny {x| (x, bx) < Bi} is convex.

Def. 1.2.2 (Convex hull). The convex hull conv(S) of any set S is the
intersection of all convex sets that contain S. If the collection of numbers
{A\i} is such that Y, A\, =1 and A\, > 0 then the sum ), A\iby is called "the

convez combination of points {by}".

Prop. 1.2.3 The convex hull of set S consists of all convex combina-
tions of all elements of S.

Def. 1.2.4 (Convex Hull Cone Relative Interior). The set K is called
a "cone if it is closed with respect to positive scalar mutiplication: Ax € K
for YA > 0 and Vo € K. The convex cone "generated by the set S” and
denoted "cone(S)" is the convex hull of all the lines joining all points of S
with the origin. Let B denote a unit ball. The "closure” of the set C 1is
the set cl(C) = Neso (C +eB). The "relative interior” is the set ri(C) =
{z|3e > 0,(x+eB)Naff C CC}.



1.3 Convex functions and epigraphs.

Def. 1.3.1 (Convex and proper function). The "epigraph" of a func-
tion f is the set epi(f) = {(z,pn)|r € R",un > f(x)}, see the picture (1.1
). The function f is "convex" iff the set epi(f) is convex. The "effective
domain" is the set dom(f) = {z|f (z) < +o0}.

The function is "proper" if the epigraph is nonempty and does not contain
a vertical line.

The consideration of the entire notes on convex analysis is restricted
to proper functions. Hence, all functions that are said to be convex are also
presumed to be proper.

Prop. 1.3.2 (Main property of convex function). A function f is con-
ver iff Ve,y e R*, V8 € [0,1] f(fz+(1—-0)y) <0f (z)+(1—0) f(y).
Prop. 1.3.3 A smooth function [ is convez iff the matriz of second

derivatives s non-negatively determined.
Proof. Fix two points zy and x; and denote
z(0) =0z 4+ (1 —0) x.

Let D be the matrix of second derivatives

PT_ ()
O0x,0x; 0

taken at the point zy. Note that
x(0) — 9 =0 (x1 — x0) -

D =

k=1,...n; j=1,...,n;

We use the Taylor decomposition

f(z1) = [ (z0) + (VS (z0) ,21 — zo) + (w1 — 20, D (x1 — 20)) + 0 (|1 — 950”2) ;
F(x(0)) = f(x0) + 0 (Vaf (o), a1 — w0) + 07 (21 — 20, D (w1 — 0)) + 0 ([|21 — w0|%) -

If we assume that the function is convex then we have, by the proposition
(1.3.2),

f(z(0) <(1—=10)f(xo) —0f (z1) =
f (o) +0(Vaf (o), x1 — x0) + 0% (21 — 20, D (21 — 39)) + 0 (|21 — :cOHQ)
< (1—10) f(xo)
— 0 (f (x0) + (Vaf (w0) ;21 — w0) + (w1 — w0, D (w1 — x0)) + 0 (1 — mo|*)) -
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Figure 1.1: Convex function f acting from R? to R. Level sets lev,(f).



Hence,
92 <£U1 — X, D (.I'l — ZC())> < 0 <£U1 — Xy, D (.I'l — ZC())>

for 6 € (0,1). Therefore,
0 < (y, Dy)

forany y =21 —xp. ®

Prop. 1.3.4 (Preservation of convezity).

LoIf{fiticy, > Ji t R = (=00, +00] are convex functions and {\;} are
positive real numbers then Y. \ig; is convex.

2. If f : R" — (—o00,+0x| is a conver function and A is a matriz then
g(x) = f(Az) is conver.

8. If {fitiers fi + R" = (—00,+00] are conver functions and I is an
arbitrary index set then g (x) = sup;e; fi (x) is convex.

2 Caratheodory’s theorem.

Thm. 2.1 Let X be a non-empty subset of R".
1. For every x € cone (X) there are linearly independent vectors {z1, ...,z },
r; € X,i=1,...,m such that

T = E T,
)

for some a; € R, a; > 0 and finite m > 0.
2. For every x € conv (X) there are vectors {xy,...,xn}, ©; € X, i =

1,...,m such that
xr = Z)\ZZL‘Z,

for some \; € R, X\; >0, > .\ =1 and the vectors {xy — x1, ..., 2 — 1}
are lineraly independent.

Remark 2.2 The Caratheodory theorem does not state that {x,...,xm,}
might serve as a fized basis. Indeed, on the picture (1.2 ) if the set X
is open then for any pair of vectors x1 and x4 from X a point x* € cone (X)
may be found outside of the area span by the positively linear combinations
of r1 and x5.
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Figure 1.2: Caratheodory theorem remark.

Proof. 1. The definition of cone (X) provides that there are some vectors
{z;},z; € X such that
r = Z ;5.

If such vectors are linearly dependent then there are numbers [;
We take a linear combination of two equalities
L= Z (@i —B;) z;

and note that for at least one 7 the ; is positive. Hence, a 7 exists such that
all (a; —vB;) are non negative and (a;, — yf3;,) = 0 for at least one index
19. Hence, we decreased the number of terms in the sum. We continue this
process until {x;} are linearly independent. m

Proof. 2. The definition of conv (X) provides that there are some vectors



{z;}, x; € X such that

r = Z)\ZI“
1=> "\,

Ai > 0.
We consider (z,1) € R"™ and restate the above conditions as
(2, 1) = Ai(z;,1),
Ai > 0.

Therefore, (z,1) € cone({(y,1)]y € X}). The first part of the theorem
applies and the vectors (z;, 1) may be assumed linearly independent. Hence,
no all non-zero {G;}, B; € R exist such that

Z@- (z;,1) = 0.

Equivalently,
> Biwi+ prry =0,
i#1
Z Bi + 1 = 0.
i1

We express the ; from the second equation and substitute it into the first.
We obtain the following consequence

i#1
We conclude that no all non-zero {f;} exist such that the above is true.
Hence, the {z; — 21} are linearly independent. m

3 Relative interior.

Prop. 3.1 Let C be a nonempty convex set consisting of more then
one point.
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Figure 1.3: Relative interior.

a. (Non emptiness of relative interior). The ri(C) is not empty and
aff(C)=aff(ri(C)). Ifm =dim (af f(C) then there are vectors xy, ..., T, €
ri (C) such that x1 — xg, ..., Ty — xo Span the subspace parallel to af f (C).

b. (Line segment principle). If x € ri (C) and T € cl (C) then all point
of the line connecting x and T, except possibly the T, belong to i (C).

Let a, a € C be a vector such that aff(C —a) is a subspace. One
can choose vectors {y,} such that y, € C' — a, y, are linearly independent
and the linear span of {yy} is af f (C' — a). All convex combinations of {yy}
belong to C' and also belong to 7i (C'). Hence, the 7i (C') is not empty. We
construct {zj} as claimed in (a) by taking z; = yr + a. Consequently,
aff(C)=aff(ri(C)).

The statement (b) is evident from the picture (1.3 ).



4 Recession cone.

Def. 4.1 A wvector y is a direction of recession of the set C iff for
Ve € C, VA > 0 we have x + My € C.

Directions of recession of a set C' constitute a cone that we denote Rc.
We introduce the notation

Le={ylye Re, —y€ Rc}.

The L, if not empty, constitutes a subspace. We call it a "linearity space"
of C.

Prop. 4.2 (Main properties of direction of recession) Let C be a
closed convex set.

1. The vector y is a direction of recession if C' contains {\y + z|\ > 0}
for at least one x € C'.

2. C 1is either compact or has a direction of recession.

To see that the closedness is necessary consider the set Cy = {(z,y) |z € (0,1),y > 0},
see the figure (1.4 ). The only candidate for the direction of recession is
(0,1). However, the point (0,0) € C translates outside of C' along (0,1).

Proof. 1. The statement (1) follows from the construction on the picture
(1.5 ). We start from the point z and a direction of recession y. We take
any point Z and show that {\y + Z|\ > 0} C C as follows.

For small enough sphere around 7 if we take {z,}, z, — oo then {a,}
must be in C. Then the limit A = lim, a,, is in C. Hence, {\y + z} C C for
small enough A > 0.

We conclude that {A\y + Z|A >0} C C for all A by contradiction. If
there is a finite A\ = argsup, {\y +Z € C|\ > 0} then we step back ¢ =
(/_\ — 5) y + = for small enough £ and build an 2e-sphere around xy as in the
first part of this proof.

2. Take a point yg € C and assume existence of x, € C such that

Tn—Yo
llzn—yoll

T, — 00. A limit point of } is a direction of recession. m

Prop. 4.3 (Recession cone of intersection). Let X and Y be closed
convex sets and X NY # &. Then Rxny = Rx N Ry.
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Figure 1.4: Closedness and recession



Figure 1.5: Direction of recession.



To see that the requirement X N'Y # & is necessary consider the sets
cl (Cy) and cl (Cy) + (2,0) for Cy = {(x,y) |x € (0,1),y > 0}, see the figure
(1.4 ). These do not intersect but have a common direction of recession.

To see that the closedness is necessary consider Cy and 7i(Cp). The
intersection is 7i (Cp). It has a direction of recession (0,1). The Cj has no
direction of recession.

Proof. The statement (4.3) follows from (4.2 -1) and the definitions.
n

Prop. 4.4 (Recession cone of inverse image). Let C' be a nonempty
closed convex subset of R™, let A be a n by m matriz and let W be a nonempty
convex compact subset of R™. Let the set

V={zeClAz e W}

be nonempty. Then
Ry =RcNN(A).

Proof. By definition of V' we have V = A1 [IW] N C. The sets A~! [W]
and C' are convex and closed. Hence, the proposition (4.3) applies. It
remains to note that Ry-1yy = N (A). =

Note that the compactness of W is important. In absence of compact-

ness we cannot state that the A=![IW] is closed and we cannot state that
RA—l(W) — N(A)

Prop. 4.5 (Decomposition of a convex set). For any subspace S con-
tained in L¢ for a non-empty convexr set C C R™ we have

C=S5+(CNns*).

Proof. Let S be a subspace contained in L. For any © € R™ the affine
set  + S intersects S*. If x € C then  + S C C. Hence, the intersection
(x+95)N (CDSL) is not empty. Then x = y + 2z for some y € S and
zeE(@+S)N(CNSY). =

5 Intersection of nested convex sets.

Intersection of nested closed compact sets is not empty.



Intersection of nested unbounded closed convex sets may be empty. Con-
sider Cy, = {(z,y) |y > k}, Ni.Cr = @. The sets Cj, escape to infinity along
the common direction of recession (0,1). However, if all directions of reces-
sion are included in a common linearity space then this cannot happen as
stated in the proposition below.

Prop. 5.1 (Principal intersection result). Let {Cy},_, . be a se-
quence of nonempty closed convex sets, Cy, C R™. Let Ry and Ly be the
recession cone and linearity space of Cy and let

R = N Ry,
L =nNLy.

If Cyiqy C Cy and R = L then the intersection NpC} is nonempty and
NCr = L + é
for some nonempty compact set C.

Proof. Starting from some k the Lj has to stop decreasing because it is
a space of finite dimension. After such k we have L, = L. Let us restrict
attention to such k.

Starting from some k£ we must have

R, NLt=0.

Indeed, if this is not so then for every k there is v, € R N L. We consider
ZL = m € RN L*. The sets Ry, are closed and nested. Hence, a limit point

of such sequence {z;} has to be in R. This contradicts the condition R = L.
We now apply the result (4.5).

Ch=L+ (CunL").
Hence,
NeCr = L+ Ny (Ck N LJ‘) .

Starting from some £ the set (C’k N Ll) has no direction of recession. Hence,

the sets C, N L+ are nested and compact. We conclude C' = N (C’;c N LL) #
g.



Prop. 5.2 (Linear intersection result). Let {Cr} be a sequence of
closed convex subsets of R".
Let the set X be given by the relationships

X ={z|{aj,z) <bj, j=1,...,1}

where a; € R"™ and b; € R.
Assume that
1. Ck+1 C Cy for all k.
2. XNCy # D for all k.
3. Rx "R C L, where R = Uy Ry, L =UyLy, Ry, = Re,, Ly = Le, .
Then X N (NgCy) # @.

To see that the X has to be linear conider X = {(z,y) |z > 0,2y > 1} and
Cy = {(x, y)|xr € [O, %] } Such X and C}, fail only the linearity requirement
and the conclusion of the theorem.

Proof. If Rx N R = Lx N L then the statement is a consequence of the
(5.1). We exclude such case from further consideration.

We consider the case when Ry NR # LxNL. Since always Lx C Rx,L C
R and Rx N R C L then there has to be a y € Rx N R that does not belong
to Lx.

Let us take a sequence {zy} such that 2, € X NCj. Since the sets Cy are
nested it is enough to prove the statement for some subsequence.

For any k we form the sum z; — Ay, A € R. Since y € Rx N R and
—y ¢ Rx then for some M\: the 2, — \yy = Ty lies on the boundary of X.
Hence, (a;,,Z;) = bj,. The X is given by a finite number of linear conditions.
Hence, there is some jj such that (a;,, Zy) = bj, for infinite number of k. We
restrict our attention to such subsequence.

The set X = X N {z| (a;,, ) = bj,} satisfies the conditions of the propo-
sition within the subspace {z| (aj,,z) = bj,} and aff (X) is one dimension
smaller then aff (X). Therefore, we proceed by induction in the number
of dimensions of aff (X). The proposition is true for dimension 0 (X is a
point). Then we assume that it is true for dimaff (X) = [ and prove it for
dimaff (X) = [+1 using the construction above. Indeed, since the proposi-
tion holds for X then the intersection X N (NC}) is not empty for the chosen
subindexing of k. But X C X hence X N (M;,Cy) # 3. =



Prop. 5.3 (Quadratic intersection result). Let {Cy} be a sequence
of subsets of R™ given by

Cr = {z| (z,Qz) + {(a,z) + b < wy},

where Q) is a symmetric positive semidefinite matrix, a is a vector, b is a
scalar and wy, is a non-increasing sequence of real numbers converging to 0.
Let X be a subset of R™ of the form

X ={z|(z,Q,x) + (aj,z) +b; <0, j=1,...,r}

where the Q) are positive semidefinite matrizes.
Let X N CY, be nonempty for all k.
Then the intersection X N (N,C) is nonempty.

Proof. The elements of recession cones and linear spaces of C}, are given
by

R = {y|Qy = 07 <aay> < 0}7
L={ylQy=0, {(a,y) =0}

and are k-independent.

If Rx N R = Lx N L then the statement follows from the (5.1). Hence,
we consider the situation Ly N L C Rx N R and Rx N R # @. If there is a
y € Rx N R then a’y < 0 and for any z € X, A > 0 we have = + \y € X.
Note,

(24 Mg, Q (2 + A\g)) + (a2 + Ay) +b = (2,Qa) + {a.2) + A (a,y) +D.

If (a,y) < 0 then for a sufficiently large A the x + Ay lies in all C} and in
X and we are done.

Therefore, it remains to consider a situation when for any y € Rx N R we
have (a,y) =0=y € Lbuty ¢ Lx = —y ¢ Rx.

The recession cone of X is given by

Rx ={y|Q;y =0, (a;,y) <0, j=1,...,r}.

Hence, we are considering the case when for any y € RxNR we have (a,y) = 0
and (a;,y) < 0 for some j.



We now proceed by induction in the number of conditions r. For r = 0
the case that we are considering is excluded. Hence, we assume that the
proposition holds for 7 and proceed to prove that it hold for 7 + 1. We are
interested only in adding an equation with (a7, 1,y) < 0 because the all the
equations with (azy1,y) = 0 may be arranged to be in the beginning of the
induction and, hence, fall into the Rx = Lx category.

A step of the induction in 7 proceeds in the following stages.

1. Assume that the statement holds for 7.

2. Let X be the 7 4+ 1-equations set.

3. Let X be the set holding 7 equations of X. The exclusion of a condition
from X makes the X a bigger set. Hence, the conditions of the statement
holds for the set X and X N (N;Cy) is not empty.

4. We take a point z € X N (NkCk) and a direction § € Rx N R. In
our case a;Fg < 0 for the one additional equation. Hence, we can construct
x =T+ Ay € X N (NiCy) by taking a sufficiently large A. m

6 Preservation of closeness under linear
transformation.

The set C' = {(x,y) |x > 0,xy > 1} is a closed convex set. The projection on
the x-axis is a linear transformation. The image of C' under such transfor-
mation is open.

Prop. 6.1 (Preservation of closeness result). Let C' be a nonempty
subset of R™ and let A be an m X n matriz.

1. If Re NN (A) C L¢ then the set AC' is closed.
2. Let X be a nonempty subset of R™ given by linear constraints

X ={z|(aj,z) <b;,j=1,...,r}.

If Rx N Re NN (A) C L¢ then the set A(C N X) is closed.
3. Let C is given by the quadratic constaints

O = {al (2, Q) + {a 2) +b; < 0,5 = 1,.r)

where the Q) are positive semidefinite matrices. Then the set AC is closed.



Proof. (1). Let z € ¢l (AC) = Ve > 0 B(z,e) N AC # @, where the
B (z,¢€) is the ball around z of radius . The sets C., = A~ [B(z,&;) N AC|
are nested if ¢, | 0. It is suffice to prove that N, C;, is not empty for any
sequence {e},ex > 0,4 | 0.

We have

C.=A1[B(z2,e)NAC) ={x € C | Axr € B(z,¢)}.
Therefore, by the proposition (4.4),

Re. = Re NN (A),
Le, = Le NN (A).

Consequently, in the context of the proposition (5.1) for {C., },

R=RcNN(A),
L=LcNN(A).
Since, generally
L¢c C Re,

to accomplish the condition R = L of the (5.1) it is enough to have
RcN N (A) C L¢

as required by the theorem. m

Proof. (2). Let z € cl(A[CNX]). We introduce the sets C., =
A7 [B(z,e,) N A[C N X]] for €, | 0 and aim to prove that the intersection
Ne, Ce, is not empty.

We have

C.=A""B(z,e) NA[CNX]|}={x e CNX | Axr € B(z,¢)}.
By the propositions (4.3) and (4.4)

Re. = ReNRx NN (A),
Lo, = LeN Ly NN (A).

Consequently, in the context of the proposition (5.1) for {C;, },

(
R=RcNRxNN (A,
L=LcNLyNN(A).



Since, generally
LecNLx C ReN Ry,

to accomplish the condition R = L of the (5.1) it is enough to have
RxﬂRcﬂN(A) C Le.

[ ]

Proof. (3). Let z € ¢l (AC). We introduce the sets C., = A™! [B(z,¢;) N AC|
for €4, | 0 and aim to prove that the intersection N, C;, is not empty.

We have

C.=A"{B(z,¢e) N AC}
={reC|Ax € B(z,¢)}
=Cn{z| [|[Az - zZ|° < e}
=CNn{z| (z,A"Azx) — 2 (2, Ax) + (z,2) < e} .

We now apply the proposition (5.3) to conclude the proof. m

7 Weierstrass Theorem.

A continuous function attains its minimum on a compact set. Such statement
is the simplest version of the Weierstrass theorem. In this section we prove
an extended version. We need some preliminary results and definitions.

Def. 7.1 (Limit points) Let {x)} be a sequence of real numbers.
1. Let yp, = sup{xx|k > m}, 2z, = inf {xx|k > m}. We introduce the
notation

lim sup z, = lim y,,,
m—o0

k—o00
lim kinf rr = lim z,.
If {xx} is not bounded from above then we write limsup,_, . x; = 00.
If {xx} is not bounded from below then we write liminfy . z; = —o0.
2. The point xq is a limit point of the sequence {xy} is there is an infinite
number of points from {xy} in an e-neibourhood of xy for any e > 0.



Prop. 7.2 The limsup,,_, ., = s the greatest limit point of the se-
quence {xy}. The liminfy_ ., xy is the smallest limit point of the sequence

{z1}-

Def. 7.3 A function f: R™+— [—o00,400| is proper if its epigraph is
nonempty and does not contain a vertical line. The function f is closed if
the epi (f) is a closed set.

Def. 7.4 A function [ is lower semicontinuous if for any x and
{zk}, 2 — = we have

f(z) <lim sup f (zg) -

k—o00

Prop. 7.5 (Closeness and lower semicontinuity). Let f be a function
f:R" — [—o0,+0o0]. The following statements are equivalent:

1. The level sets Vi () = {z| f () <~} are closed for every v € R.

2. The function f is lower semicontinuous.

3. The epi (f) is a closed set.

Proof. (1) implies (2). Since the level sets are closed we have that for
any sequence {zy} and vector x such that z, — = and f (z5) < v we must
also have f (x) <. Assume that (2) is not true. Then there exists a y and
{yx} such that yp — y and limsup, f () < o < f(y) for some scalar a.
This constitutes a contradition with the noted consequence of closeness of
the level sets.

The rest may be proved with similar means. m

Prop. 7.6 (Weierstrass theorem). Let f : R™ — (—o0,+00] be a
closed proper function. If any of the below three conditions holds then the set
arg mingegn f (x) is nonempty and compact.

1. dom (f) is bounded.

2. There exists an v € R such that the level set Vi (v) = {z| f (z) <~}
s nonempty and bounded.

3. If ||k || — oo then f(xp) — oco.

Proof. 1. Let {zx} be a sequence such that f(z;) — inf f. Since
dom (f) is bounded the sequence xj has a limit point z*. By proposition
(7.5) the f is lower semicontinuous. Hence, f(z*) = inf f. Therefore,



arg min f is nonempty. The arg min f is an intersection of level sets. Hence,
the compactness of argmin f follows from the boundedness of dom (f) and
closeness of the level sets.

The (2) proves similarly to (1).

The (3) implies (2). =

8 Local minima of convex function.

Prop. 8.1 (Local minima of convex function). Let X be a convex
subset of R™ and let f : R"™ — (—o00, +00| be a proper convex function. Then
a local minimum is also a global minimum.

Proof. If zj is a local minimum and z; is a different point and a global
minimum then f takes values smaller then f (z() at all points on the line
(20, z1] because of the convexity. m

9 Projection on convex set.

Prop. 9.1 (Projection theorem). Let C' be a nonempty closed convex
set.
1. For any x € R" there exists a unique vector

Pe (z) = argmin ||z — x|
called the projection of x on C.
2. The Pc (x) could be defined as the only vector with the property
(y — Po(2))" (x — Po(x) <0, Yy e C.

If the C' s affine and S is a subspace parallel to C' then the above may be
replaced with
(x — Po (1)) € S*.

3. The function Po () is continuous and nonexpansive:
|Pe (x) = Pe ()]l < [le =yl
4. The distance function
d(z,C) = min [z — 2|

18 convez.



Proof. (1) follows from the theorem (7.6).
(2) We use notation xg = P (z). Clearly, xy has to lie on the boundary
of C. Also, the z( has to satisfy the condition

0
g — 2|l >0
a€||x0+€z x|| >

where the z is taken among all directions such that zy + £z remain in C' for
small € > 0. The differentiation reveals that

(2,09 —x) > 0.

For any y € C the difference y — ¢ is a valid z. Hence, the (2) follows.
(3) Since P¢ (x) € C' we can write from (2)

(Po(y) — Po(z),2 — Po(z)) <0,
(Pc (r) = Po(y),y — Po(y)) <0.

We add the above and obtain
2(Pc(y) — Po(x),x —y+ Po(y) — Po(x)) <0.

Hence,

(P (x) = Po (y))” < (Pe () = P (y) .« —y)
|

<
<|[Pc(z) = Pc@I llz—yl-

(4) follows from (3) and definition of convexity. =

10 Existence of solution of convex opti-
mization problem.

Prop. 10.1 (Directions of recession). Let f : R" — (—o0,+00] be a
closed proper convex function.
1. All nonempty level sets Vi () have the same recession cone given by

Ry = Ry, = {y|(4.0) € Repi() } -

2. If one nonempty level set is compact then all the level sets are compact.



Proof. Given a direction y and a point z the function g (A\) = f (z + \y)
is either nonincreasing or increasing starting from some large enough A. If
it is nonincreasing then y is in Ry, (,) for any 7. The rest follows from the
proposition (4.2). m

Prop. 10.2 (Basic existence result). Let X be a closed convex subset
of R" and let f : R" — (—00,400] be a closed proper convex function such
that X Ndom (f) # @. The set argmingex f (z) is nonempty and compact if
and only if the X and f have no common directions of recession.

If X and f has no common direction of recession then the minimum
cannot escape to infinity. Such intuition may be formalized into a proof
by considering intersections of the nested compact convex sets C}, = X N
Vi () with the sequence {7;} converging to the inf,cx f (z). The following
proposition is a consequence of the same observation and the propositions
(5.1),(5.2) and (5.3).

Prop. 10.3 (Unbounded existence result). Let X be a closed convex
subset of R"™ and let f : R™ +— (—o0,+00] be a closed proper convex function
such that X Ndom (f) # @. The set arginf,cx f (z) is nonempty if any of
the following conditions hold.

1. RxﬂRf:LxﬂLf.

2. Rx N Ry C Ly and X is given by the linear constraints

X ={z| (aj,z) <b;, j=1,...,r}

for some a;, b;.
3. inf.ex f () > —o0 and f, X are of the form

f(z) = (z,Qx) + (c,x),
X ={z[(z,Q;x) + (a;,x) + b; <0, j=1,...,r}

where the (), Q); are positive semidefinite matrizes.

Remark 10.4 The convex function f is constant on the subspace Ly.



11 Partial minimization of convex func-
tions.

Prop. 11.1 (Converzity of partial minimum). Let F' : R +— [—00, +00]
be a convex function. Then the function f given by

[ (@)= inf F(z,2)
18 convez.

The proof of the above proposition is a direct verification based on defi-
nitions.

The study of closeness of the partial minimum is based on the following
observation.

Suppose the level set Vi (v) = {z| f (z) <~} is nonempty for some ~.
Let {~} be a sequence such that v, | 7. Then

{z] f(z) <7} =0l {z] 3(x,2) : F(2,2) <m}e

Theset {(x,2) | F'(x,z) < }isclosedif F (z, z) is closed. Theset {z| I(x,z): F(x,2) < %}
is a projection of {(x,z)| F (x,z) < ~}. Its closeness may be studied by

means of the proposition (6.1). The intersection preserves the closeness.

Hence, we arrive to the following proposition.

Prop. 11.2 (Partial minimization result). Let F' : R™™ — [—o00, +00]
be a closed proper convex function. Then the function f (x) = inf,crm F' (x, 2)
1s closed, convex and proper if any of the following conditions hold.

0. There ezist T € R" and ¥ € R such that Up (Z,7) = {z| F (z,2) <7}
18 nonempty and compact.

1. There exist T € R™ and ¥ € R such that Up (Z,7) is nonempty and
Ly s = Rup@a)-

F (‘,L.7 Z) Y (:E? Z) e C? . . .
2. F(x,z) = , where the C' is given by the lin-
+00, otherwise.

earity constraints
C=A{(z,2)|(a,(x,2)) <b;, j=1,...,r},
and there exists T such that

RF(Q_D,-) — LF(:T?,~) .



F(‘,’E? Z)?($7 Z) e C? . .
3. F(x,z) = , where the C is given by the
400, otherwise.

quadratic constraints
C= {(1'72) | <(£C, Z) ) Qj (SC,Z)> + <aj7 (:L‘,Z>> + bj < 07 j = 17 -"7T};
where the (); are positive semidefinite and there exists T such that

—00 < f(Z) < +o0.

12 Hyperplanes and separation.
Def. 12.1 Hyperplane in R™ is a set of the form
H.p={z| (a,z) =b}.
The a is called the "normal vector”. The sets
{z] (a,2) =0}, {x] (a,2) <b}

are called "closed halfspaces” associated with H, .
The two sets Cy and Cy are separated by H,, if either

(a,r1) <b<{a,z3), Yoy € C1,Vy € Cy

or
(a,x1> >b> <CL, ZL'2>, VYV, € C’l,ng € Cs.

The two sets Cy and Cy are strictly separated by H,, if the above inequal-
ities are strict.

A hyperplane H,;, may be represented as

Hu.p =7+ {z| (a,z) =0},
b= (a,z)

for any fixed 7 € H,yp.



Prop. 12.2 (Supporting hyperplane theorem). Let C be a nonempty
conver subset of R"™ and x € R™. If & does not belong to interior of C' then
there is a hyperplane that passes through T and contains C' in one of its closed
halfspaces:

HHGJ?[) 1T e Ha,b,
(a,z) < {a,z), Y € C.

Proof. If 7 ¢ ¢l (C) then we obtain the normal vector by projecting on
C:
a= Po () —7Z.

The b may be obtained from the requirement that the H,, = H (z) pass
trough 7.

If z € cl (C') by does not belong to interior of C' then there is a sequence
{zx} such that z;, — T and zx & cl(C). We utilise the construction from
the case = ¢ ¢l (C) to obtain a sequence H (xy) = H,,p,. The {a;} may
be normalized to unity. The {ax} then has a limit point. Such limit point
delivers the sought out hyperplane because of the proposition 9.1-2. ]

Prop. 12.3 (Separating hyperplane theorem). If the Cyi,Cq are two
nonempty disjoint convex sets then there is a hyperplane that separates them.

Proof. Apply the proposition (12.2) to the set C' = C} — Cy and Z = 0.
|

Two nonempty convex disjoint sets C'y, Cs are not necessarily strictly sepa-
rated. For example, C; = {(z,y) |z <0}, Cy = {(z,y) |z > 0,y > 0,zy > 1}
do not have a strictly separating hyperplane.

Prop. 12.4 (Strict hyperplane separation 1). Let Cy and Cy are two
nonempty convex disjoint sets. If Cy — Cy is closed then there is a strictly
separating hyperplane.

Proof. Let PCl*CQ (0) =1+ X9, 1 € Cl, To € Cg. Set

To— 21 _ To+ Ty _
, T = . b=al7.
2 2

a =

By the closedness, a # 0. The H, strictly separates Cy,Cy. m



Let C; and C be two disjoint closed convex subsets of R". To investigate
the conditions for C; — Cs to be closed we introduce the subset C' = C; x Cy
of R*™, note that the transformation A (z1, ) — x; — z5 is linear and seek
to apply the proposition (6.1). We note that (' is closed and convex,

Re = Re, X Rey,
and
N (A) ={(z1,22) | 21 — 22 = 0}
={(z1,22) | 21 = 22}
The condition Rc N N (A) C L¢ of the proposition (6.1) becomes
Re, N Re, © Lo, N Le,.

We arrive to the following additional sufficient conditions for strict sepa-
ration.

Prop. 12.5 (Strict hyperplane separation 2). Let Cy and Cy are two
nonempty convex disjoint sets. There is a strictly separating hyperplane if
any of the following conditions holds.

1. C is closed and Cy is compact.

2. C1,Cy are closed and Re, N Rey, = Ley N Le,.

3. Cy is closed, Cy is given by the linearity constraints Cy = {z| (aj,z) < bj,j =1, ...

and RC’1 N Rcz C LC’l-
4. C1 and Cy are given by quadratic constraints

C’i = {.%’ <$, QU%‘> + (aij,@ + bij S O,j = 1, T}
where the Q;; are positive semidefinite matrices.

Prop. 12.6 (Intersection of halfspaces). The closure of convex hull of
a set C' is the intersection of all closed halfspaces that contain C.

Proof. If there is a point in C' that is not contained in the intersection
of halfplanes then we arrive to contradition by using the theorem (12.2). =



Def. 12.7 The subsets C1,Cy of R™ are properly separated by a hyper-
plane H,, if the following conditions are true
sup (a,z1) < inf (a,xs),
21€C z2€Co
inf (a,z1) < sup (a,xs).

r1€C1 22€CH

Let [ be aline [ = {z| x = 29 + Aa, A € R} for some z. The definition of
the proper separation requires that P, (C; N Cs) is a single point or nothing
and P, (C7 U Cy) consists of more then one point.

The sets C1 = {(z,y) |r € [0,2],y =0} and Cy = {(z,y) |z € [1,3],y = 0}
may not be properly separated.

The sets Cy = {(x,y) |x € [0,2],y =0} and Cy = {(z,y) |z € [0,1],y € [0,1]}
are properly separated by the x-axis H(j ).

Prop. 12.8 (Proper separation 1) Let C' is a subset of R" and x € R™.
There is a properly separating hyperplane for C' and{z} if

x&ri(C).

Proof. If x ¢ aff(C) then {z} and aff (C) are strictly separated by
the proposition 12.5-2.

If z € aff (C) then we translate af f (C) into a subspace S and apply
the 12.5-2 within aff (C) to obtain some separating plane H then extend
it to a hyperplane by H = H + S*. m

Prop. 12.9 (Proper separation 2) The two subsets Cy,Cy of R"™ are
properly separated if
ri (Cy) Nri(Cy) = .

Proof. Apply the proposition (12.8) to C =C; —Cyand 2z =0. =

13 Nonvertical separation.

Given a space R™"! we can separate the last variable (z,y) € R"™,y € R
and call a hyperplane vertical if its normal vector is of the form (z,0). A set
{(xo, A) |A € R} for a fixed zyp € R" is called a vertical line.



Prop. 13.1 (Nonvertical separation). Let C' be a nonempty convex
subset of R that contains no vertical lines. Then:

1. The C' s contained in a halfspace of a nonvertical hyperplane.

2. If v & cl(C) then there is a nonvertical hyperplane that separates C
and .

Proof. 1. By contradition and proposition (12.6), if all halfspaces that
surround C' come from vertical hyperplanes then C' must have a vertical line.

2. Consider Po () —x = a. If a is not of the form (u,0) then we are
done. If its is of the form (1, 0) then we use a perturbation on the figure (1.6
). First, take any hyperplane from the part (1) of the statement. There are
no points of C' in the part of the space below the broken plane (A,0,D). We
perform a slight e—perturbation the hyperplane (A,B) into that area while
maintaining separation from the point x. m

14 Minimal common and maximal cross-
ing points.

Let M be a subset of R"*1. The M may have common points with the
(n + 1)-th coordinate axis. We introduce the quantity

w* (M) = inf w.

(0,w)eM

A normal vector to a nonvertical hyperplane may be normalized to a form
(i, 1). A nonvertical hyperplane that crosses the (n + 1)-th coordinate axis
at the point (0,¢) and has a normal vector (u, 1) has the representation

H (11, ) = {(u, w) | w+ (p, u) = €} .

Indeed,

H(;},,S) = {(u7w)| <(u’w) - (076)7(M71)> = 0}
={(w,w)| {(v,w—¢),(p1)) =0}
={(w,w)| {p,u) +w—-E§=0}.

The set M is contained in the upper half plane of H (u, &) iff

{<w+ {p,u), V(u,w) € M.



Pc(x)

Figure 1.6: Nonvertical separation.



Hence, the quantity

q(p, M) = inf {w+ (u,u)}
(uw,w)eM
is the maximum (n + 1)-th axis crossing level for all hyperplances that con-
tain the set M in the upper half space and have the normal vector (p,1).
The ¢ (-, M) is a concave function.
We introduce the quantity

¢ (M) = sup q(u, M).
HER™
Prop. 14.1 (Weak duality theorem). Let M be a subset of R™"!.
Then
¢ (M) <w*(M).

Proof. ¢ (11, M) = inf(y wyenm {w + (1, w) } <infouwyen {w} =w* (M). =
We investigate the conditions for the equality

¢ (M) = w* (M).

Observe that by definition of these quantitites all that is needed is existence
of a supporting hyperplane at a point (0,w*). The pictures (1.7)-(1.9)
show basic examples when this may or may not happen.

Prop. 14.2 (Crossing theorem 1). Let M be a subset of R""'. As-
sume the following:

1. M and (n + 1)-th axis have nonempty intersection and w* # oc.
2. The set

M = {(u,w) |30 : w < w, (u,w) € M}
1S convez.
Then q* (M) = w* (M) if and only if for any sequence {(ug, wg)} C M
such that ur, — 0 we have
w* < lim kinf Wy,
Proof. By definition of w*, w* € ¢l (M) C ¢l (M).
M contains no vertical lines. Indeed, if it does then by the proposition

(4.2) one may infinitely go along the vector (ug,—1) inside M starting from
any (ug,w) € M. This contradicts the condition 1.



w*=q*

Figure 1.7: Crossing points figure 1



W*

Figure 1.8: Crossing points figure 2. The upper boundary is included in the
set. The other boundaries are excluded.



Figure 1.9: Crossing points figure 3



We have (0,w* —¢) & cl (M) for any small positive e. Indeed, on the
contrary, if (0,w* —¢) € ¢l (M) then by definition of the closure one can
construct the sequence {(ug, wy)} C M that violates w* < liminfy,_, ., wy.

Therefore, by the proposition (13.1), there is a nonvertical separation
of M from (0,w* — ¢) for any small positive e. The (n + 1)-th axis crossing
point for such separating hyperplane must be between (0, w*) and (0, w* — ¢).
Hence, ¢* = w*. =

Prop. 14.3 (Crossing theorem 2). Let M be a subset of R"™'. As-
sume the following:

1. M and (n + 1)-th axis have nonempty intersection and w* # oc.

2. The set

M = {(u,w) 3w : w < w, (u,w) € M}

18 Convez.

3. 0 € ri (D), where the set D is defined by
D={ul3weR: (u,w) e M}.

Then ¢* (M) = w* (M) and the solution set Q* = {u| q(u) = ¢*} has the

form )
Q" = (aff (D)r. + @
L

where the set Q is nonempty convex and compact and (af f (D))zn is the or-
thogonal complement of af f (D) relative to the plane of the first n coordinates
{(u,0) |lu € R"}.

Proof. By the proposition (12.8) there is a separating hyperplane H for
the point (0, w*) and set M. Such hyperplane cannot be vertical. Indeed,
if it is vertical then the point (0, w*) projects on the plane {(u,0)|u € R™}
along the H onto the origin 0. Indeed, the segment

[(O’ w*) ) P{(u,0)|u€R”} ((07 w*))} = [(07 'LU*) ) (07 O)]

would belong to H. But then the condition 0 € ri (D) is violated because it
would belong to the boundary of D. Therefore the H is nonvertical, ¢* (M) =
w* (M) and Q* is nonempty.

We next claim that Lo« = (aff (D))én Indeed, by construction of D,
if it has an orthogonal complement in {(u,0)|u € R"} then we can rotate



Figure 1.10: Crossing theorem 2 figure



coordinate system to make (aff (D))x. a coordinate subspace and then re-

move the coordinates that span the (aff (D))g. from the consideration (see
the picture (1.10)).

In addition, Rg- Naf f (D) = &. To see this, consider any hyperplane H,
corresponding normal p that delivers ¢* (M) and the perturbation pu+An, n €
aff (D), A € R. If n € Ry~ then p+ An can be made arbitrarily close to
horizontal and H would be close to vertical by taking large enough +A.
Hence, such 7 can be in Ry« only if ri (D) = {0}. If 7i (D) = {0} then the
statement is trivially true. We exclude such case from consideration.

We conclude that Lo« = Ro- = (af f (D));n

We next apply the proposition (4.5) within the R”

Q" = Lo + (Q* N (LQ*>7L2n>

with Lo+ = (af f (D))i2 The @Q* and af f (D) have no common direction of
recession as we already established. Hence,

Q" = (aff (D)gn + Q

for some convex and nonempty Q. The Q is compact by 4.2-2. =

15 Minimax theory.

Let ¢ be a function ¢ : X x Z — R where the X and Z are subsets of R"
and R™ respectively. We always have

inf < inf .
inf ¢ (z,2) < inf EEZW (2, 2)

Therefore,

inf < inf .
sup inf ¢ (#,2) < inf Sup ¢ (v,2)

In this section we investigate the conditions for

inf = inf 1.1
itelg;gxcb(x,Z) ;gxiggcb(wﬂ) (1.1)

and attainment of the sup and inf.



Def. 15.1 The pair (z*,2*) € X x Z is called a saddle point of ¢ iff

¢ (a",2) <@ (a",2") < ¢ (x,27)
forVx e X, Vz € Z.

Prop. 15.2 (Saddle point’s defining property). The pair (x*,z*) is a
saddle point iff the relationship (1.1) holds and

x* € arg inf {sup¢ (, z)} ,

z€X | zez

Z* € argsup { inf gb(x,z)} :

2cz |z€X

We introduce the function p : R™ — [—o00, +00] given by

p(u) = inf sup{¢ (2,2) — (u, 2)} . (1.2)
z€X Ley
Prop. 15.3 (Minimax lemma 1).Assume that ¢ (-,z) is convex for

each z € Z. Then the function p is convex.

Proof. The statement is a consequence of the propositions (13.4) and
(11.1). m

We will be using results of the section 14. Following that section we
define

M = epi(p),
w (M) =p(0) = inf sup¢ (@, 2),
f
0 M) = ik e},
¢ (M )—Supq(u,M)-
Prop. 15.4 (Minimax lemma 2). Let ¢ : X X Z — (—o0,+00) and

—¢ (x,-) is closed and convex for every x € X. Then
inf:cGX ¢(Qf,u) y M E Za

2. ¢* (M) =w* (M) iff the relationship (1.1) holds.

1. q(p) =



Proof. By definitions we have

q(p) = inf {w+ (pu)} (1.3)

(uw,w)€epi(p)

= _inf  A{p(u) + (p,u)}

u€dom(p)=R"

— ing { inf sup {0 (2.2) = (w20} + ()}

UER™ X ez

= nf inf Sup {¢(x,2) + (u,p—2)}.

Since ;1 € Z we nonincrease the last quantity by choosing z = p among the
sup,., values. We obtain

q(n) 2 inf ¢ (z, ).

Next, we prove that ¢ (¢) < inf,cx ¢ (x, u) when p € Z.
Take any small ¢ > 0 and fix zp € Z. Since the function —¢ (z,-) is
convex then there is a separating hyperplane

H (1, c2) = {(z,0) |w+ (N2, 2) = 2}

between the point (zg, —¢ (z, 2z9) — €) and epi (—¢ (x,-)). Hence, the point
(20, —¢ (x, 20) — €) lies below H (1, ¢,):

—¢(x,20) — €+ (N2, 20) < o
and the epi (—¢ (x,-)) lies above H (1, ¢;):
Ve Z, —¢(x,2)+ (N, 2) > Co
We combinte both inequalities into the statement
—¢ (2, 20) — € + (1, 20) < =@ (2, 2) + (1, 2)

where we claim existence of such 7, for any z € Z. We transform the
inequality as follows

¢ (z,2) + (N2, 20 — 2) < O (w,20) + €.

We intend to combine this result with the expression (1.3) above. Hence,
we set zp = p and perform the operation inf, cg» inf,cx sup,.,. We obtain

¢(u) < inf ¢ (z, 1) +e.



Hence,
q(p) < mf é(z,pn),ne 2

Next, we prove that ¢ (1) = —oo when p & Z. Indeed, if i ¢ Z then for
any r € X and any w € R the point (i, w) lies away from the epigraph of
the convex function —¢ (x,-) of z € Z. Hence, there is always a nonvertical
hyperplane

H (112, ¢2) = {(z,w) [ w+ (02, 2) = ca}

that separates any (g, w),pu ¢ Z from epi (—¢ (z,-)) and the epi (—¢ (z,-))
lies in the upper half plane.

w + <77xvﬁ> < ¢,
_(rb (ZE, Z) + <77$’Z> > Cq,s Vz e Z.

Hence,
—w = ¢($72)+<77x7ﬂ—2>

where we claim existence of such 7, and the statement holds for fixed i ¢ Z
and w and any z € Z. Again, we apply the operation inf, cgn inf,cx sup,..
Then the RHS becomes ¢ (1) and the LHS may be let to —oo. We conclude
that

With the representation

il’lfmeng(.ﬁU,,M), He Za

q(p) =

proven we remark that

q¢" (M) = sup q(u) = sup inf ¢ (z, )
HERMT neEZ reX

w* (M) =p(0) = (inf sup{¢ (z, 2) — (u, z>}) = inf sup ¢ (z, 2) .

veX ez €X 27

Therefore the statement (2) of the proposition follows. =



Prop. 15.5 (Minimax theorem). Let X and Z be nonempty convex
subsets of R"™ and R™ respectively and let ¢ be a function ¢ : X X Z +— R
such that

1. For every x € X the function —¢ (x,-) : Z — R is convex and closed,

2. For every z € Z the function ¢ (-, z) : X — R is convez,

3. infex sup,e, ¢ (2, 2) < o0o.

Then

1.The minimaz equality

i ot
sup inf ¢ (z,2) = inf SUp ¢ (z,2)

holds iff the function p given by the formula (1.2) is lower semicontinuous
at 0.

2. If 0 € ri (dom (p)) then the minimax equality holds and the suppremum
over Z in sup,c, inf,ex ¢ (x, 2) is finite and is attained. Furthemore,

arg sup [inf o (x, z)} is compact < 0 € ri(dom (p)) .
zez |veX

Proof. The statement follows from propositions (15.3)-(15.4) and (14.2
)-(14.3) applied to the epigraph of p. m

16 Saddle point theory.

Let X and Z be nonempty convex subsets of R™ and R respectively and
let ¢ be a function ¢ : X x Z —— R. We introduce the following notations.

p(u) = inf F(z,u),

TERM
F (o) = supzezw(x,z)—;;zﬂ,xe)(’ |
oo, T ,
t,(z) = ¢ (x,2), € X, |
OO,x%X
r()= ] tRheea

00, t € X



t(x) =supt, (z), v € R",
2€Z

r(z)=supr,(z), z€ R™
zeX
The following statements are consequences of the propositions (15.5) and
(11.2).

Prop. 16.1 (Saddle point result 1) Assume that

1. Vz € Z the function t, is convex and closed,

2. Yz € X the function r, is convex and closed,

3. infex sup,c, ¢ (2, 2) < o0.

Then the minimax equality

i ~inf
sup inf ¢ (,2) = inf Sup 6 (z,2)

holds and X* = arginf,cx [sup,c, ¢ (¢, 2)] is nonempty under any of the
following conditions.

0. The level sets of the function t are compact.

1. The recession cone and the constancy space of the function t are equal.
2. The function F (z,u) has the form

F(z,u),(z,u) € C,
o0, (z,u) & C

F(z,u) =

with F being a closed proper convex function and set C being given by the

linear constraints
C ={(z,u) |Ax + Bu < b}

and Rc C L.
3. —oo < infyex sup,c, ¢ (2, 2),

o (z,2) = (x,Qz) + (c,z) + (2, Mz) — (2, Rz) — (d, 2) ,

where (), R are symmetric matrices, Q is positive semidefinite, R is positive

definite,
Z—R"
X ={z| (z,Qjz) + (aj,z)+b; <0, j=1,....r},

where the Q) are positive semidefinite matrizes.
In addition, if (0) holds then X* is compact.



Prop. 16.2 (Saddle point result 2). Assume that

1. Vz € Z the function t, is convex and closed,

2. Vx € X the function r, is convex and closed,

3. Fither inf,ex sup,c, ¢ (x,2) < 00 or —o0 < sup,cy inf,ex ¢ (z, 2).

Then

(a) If the the level sets of functions r and t are compact then the set of
saddle points of ¢ is nonempty and compact.

(b) If R, = L, and Ry = L, then the set of saddle points of ¢ is nonempty.

Prop. 16.3 (Saddle point theorem). Assume that

1. Vz € Z the function t, is convex and closed,

2. Vx € X the function r, is convex and closed,

Then the set of saddle points of ¢ is nonempty and compact if any of the
following conditions are satisfied

1. X and Y are compact.

2. 7 is compact and {z| x € X, ¢ (x,z) <~} is nonempty and compact
for some z € Z and 7.

3. X is compact and {z| z € Z, ¢ (z,z) >~} is nonempty and compact
for some z € X and 7.

4. {z|ze X, ¢(x,2) <~} and {z| z € Z, ¢(Z,z) >~} are nonempty
and compact for some z € Z, z € X and 7.

17 Polar cones.

Prop. 17.1 (Polar cone definition). For a nonempty set C we define
the polar cone C*:

¢ ={y| (y,z) <0,vz € C}.
The following statement is a direct consequence of the definitions.

Prop. 17.2 (Polar cone properties). For any nonempty set C, we
have

1. C* is a closed convex set.

2. C* = (c (C))" = (conv (C))* = (cone (C))".

3. If C C M for some set M then M* C C*.



Prop. 17.3 (Polar cone theorem). For any nonempty cone C we have
C* = ¢l (conv (C)) .
If C is closed and convex then C** = C.

Proof. First, we show that for any nonempty C' we have C C C**.
Indeed, by the definitions, for a fixed x € C

reC=YyeC (z,y) <0

Therefore, v € C** = {z| (z,y) <0,Vy € C*}.

Next, we prove that for a closed nonempty C', we have C** C C.

Let x € C**. Since C is closed, there exists the projection Po (). Let us
translate the coordinate system so that P (z) = 0. Then by the proposition
(9.1)-2 we have

(z,2) <0, VzeC.
Hence,
Cciz} = {z}™ CcCn

We already established that

Therefore,
reC”

but also
x e C™.

Hence, for a nonempty set M = C* (empty M is a trivial case) we have
reMNM*.

By the definition of polar cone, we always have M NM* = {0} for a nonempty
M. Hence, z =0= Po (z) € C.

Finally, we prove that C** = ¢l (conv (C')). By the proposition (17.2), we
have

C* = (cl (conv (C)))".

Therefore,
C*™* = (cl (conv (C)))™.

We already proved that (cl (conv (C)))™ = ¢l (conv (C)). =



18 Polyhedral cones.
Def. 18.1 A cone C' is polyhedral if it has the form
C=A{z| (aj,z) <0, j=1,...,r}.
A cone C is finitely generated if it has the form
C = cone ({ay,...,a,}) = {:z:\ T = Z,ujaj, w>0, j=1, ...,r}
j=1
where aq, ...,a, € R"™.
Prop. 18.2 (Polar polyhedral cone). Let ay,...,a, € R™. Then
C = cone ({ay, ...,a,})

1s closed and
= {y’ <aj7y> < 07 ] = 17 ...,7’} .

Proof. First we prove that C* = {y| (a;,y) <0, j=1,...,r}. Indeed,
by the definition of polar cone

C* ={y| (z,y) <0, Vz € C}

= {y| Zﬂj (aj,y) <0, Vu; > O}
= {yl {aj,9) < 0}.

Next, we prove that C'is close by induction in 7.

For r =1 it is closed.

We assume that C,. = cone ({ay, ...,a,}) is closed and prove that C,. 1 =
cone ({a, ..., ar, ar11}) is closed. Without loss of generality we assume ||a;|| =
1,5

Take any sequence {xy},zr € Crp1, 2, — 9. We aim to prove that
xo € Cry1. We have

Tk = Yp + Mlri1, Y € Cry A > 0.



The A\, must be a bounded sequence. Hence, we take a subsequence con-
verging to some limit point and restrict consideration to such subsequence:

)\k—)\o—>0, )\020

We have
Tp = Y + Aotry1 + (A — Xo) Grp1 — To.

Therefore, y, must be convergent:
Y — Yo
and yop € C,. by the induction hypothesis. Hence,

2o = Yo + Nolrg1, Yo € Cr, Ao >0
= Ig € Cr+1.

]
Prop. 18.3 (Farkas lemma). Let

P=A{y|l (y,e;)=0,i=1,....,m, (y,a;) <0, j=1,...,1},

C = {$| JIER”, x:Z)\iei—i—Zujaj, o >0, )\IER}

i=1 j=1

where eq, ..., €y, a1, ...,a, € R™.
Then
P =C.

Proof. Note that

C= {x| reR" x= Zx\jeinLZ/\; (—ei)+Zujaj, p; >0, AF>0,A > 0}
i=1 i=1

J=1

= cone ({e1, —€1, ..., €m, —€m, A1, ..., Ar })

P=A{y| (bp,y) <0,k=1,...,K},

{br} = {e1,—e1,....em, —€m,a1,...;a,} .



Therefore, by the proposition (18.2),

c*=P
and C'is closed. Hence,
C=C"=Pp.
|
Prop. 18.4 (Minkowski-Weyl theorem). A cone is polyhedral if and

only if it is finitely generated.
Proof. Suppose C' C R" is a finitely generated cone
C = cone ({ay,...,a,}).
We prove that there exist vectors {b;} such that
C ={y| (y,b;) <0, for some set of indexes j} .

Let H be a linear span of {ai,...,a,}, and £k = dim H. We introduce

-----

transformations A and A as follows

A=Al
k
aj = ijpezn
p=1
U= HCPJ” )

k
€p = E :ijaf
Jj=1

The transformation ¥ is known as "orthogonalization". Some of its columns
have all zero elements because {a;} might be linearly dependent.



We have

Zﬂjaavﬂj 2 0}

oo {
{ Zﬂj Z Ajpps 11 > 0}
-
{

ZepZ:“J ipr Mj = O}
yl (v, ep) ZNJ ipy Hj >O}

j=1

Let

.,
Kp = E :MjAjpv
=1

K1 M1

Rk Hr

We introduce the vectors {z,}:

Z1 €1
e
Zr €L
then -~
€1 yT61
yTZp — yT 19T — 19T
€L yTek
p - p
R1 M1
=T || =9 ] =
KR Lo




Therefore,
C. ={yl| (y,z,) >0, for p such that z, # 0}.

[ |
Def. 18.5 A set P is a polyhedral set if it is nonempty and has the
form
P={z| (aj,z) <b;, j=1,...,r}.
Prop. 18.6 (Minkowski- Weyl representation). A set P is polyhedral
uf

P = conv ({v1,...,v}) + cone ({aq, ..., a,})

..........

Proof. Note that the inequality
<aj7 ‘73> < bj

may be represented as

((aj,=b;), (z,1)) <0.
Based on this observation we aim to apply the proposition (18.4). Set of the
form {(y,1)} is not cone. We consider

P = {(y7w) | <(aj’ _bj) ) <y7w)> <0, w=> 0}

Observe that P = {x| (x,1) € f’} By the proposition (18.4), we have

P = cone ({z, ..., 5 }).
We introduce the notation
Z = (uj,w;) € R", u; € R", w; € R,
J?={jl w; =0}, J* = {j|l w; > 0}.
We have
p= {x| (z,1) € 15}

== Z Hjts ZMJ:LMZO

jeJtUJO jeJt

= conv ({uj}j€ﬁ> + cone <{“j}jeJ0) .



Def. 18.7 A function f : R™ — (—o0,+00] is polyhedral if epi (f) is
polyhedral.

The following proposition is a direct consequence of the definition.

Prop. 18.8 (Polyhedral function). Let f : R" — (—o0,+00] be a
convez function. Then f is polyhedral if and only if dom (f) is polyhedral
and

f(z) = max {(a;,x)+b;}.

7j=1,....m

19 Extreme points.

Def. 19.1 For a nonempty convexr set C' the point x is an extreme
point if there is no two points u,w € C such that x € (u,w). We denote
ep (C) the set of all extreme points.

Prop. 19.2 (Krein-Milman theorem). Let C' be a nonempty convex
set. Then
1. For a hyperplane H that contains C' in one of its closed halfspaces

ep(CNH)Cep(C).
2. If C is closed then
Le=2 < ep(C) # 2.
3. If C is compact then
C = conv (ep (C)) .

Proof. (1). Assume the contrary: 3z : x € ep(CNH), x & ep(C).
Then there must be u,w € C': x € (u,w). There are three cases:

a. u,w ¢ H. Since x € (u,w) and x € H this means that H does not
contain C' in one of its halfspaces.

b. u,w € H. Then x € ep (C' N H).

c. w € Hyw ¢ H. Impossible because z € (u,w) and z € H. m

Proof. (2). If Lo # @ then any candidate x to be in ep (C) may be
translated in both directions along any y € L while remaining in C. Hence,
Lo # @ = ep(C)=@. Wehave ep (C) # @ = Lc = @ for the same reason.



If Lc = @ then for any point © € C' there is a direction y such that the line
{z|]z = x 4+ Ay, A > 0} hits the relative boundary of C' at some point z,. By
proposition (12.8) there is a properly separating hyperplane H at that point.
By closedness of C' the set H N C' is not empty and Ly~c = &. We reduced
the dimensionality of our proof. Because of the part (1) of the proposition
we can complete this proof by induction in the number of dimensions. m

Proof. (3). We prove the statement by induction in the number of
dimensions of R™. For n = 1 the statement is trivial. Assume that it is
true in R"'. Let C € R"and z € C, & ep(C). There is a line that
passes through z such that © € [z1, 23] and x1,29 € O 79 (C). There are
properly seprating hyperplanes H; and Hy at points x; and z5. By applying
the statement in R"™', z; € conv(ep(CNH;)), i = 1,2. Then by (1),
x; € conv (ep (C)), i=1,2. Hence, x € conv (ep (C)). =

Prop. 19.3 (Extreme points of polyhedral set 1). Let P be a polyhedral
set. According to the proposition (18.6)

P = conv ({v1, ..., v }) + cone ({ay, ..., a. }).

We have
ep(P) C {1, ...,um}.

Proof. According to the proposition (18.6) any point = € P has the
representation x = y + z, y € conv ({v1,...,un}), 2 € cone ({a,...,a.}).
An extreme point z* € ep (P) may not have a non zero z-part because it
would contradict the definition of the extreme point. The z* also cannot
be a convex combination of {vy,...,v,,}. Therefore, the only possibility is
z* € {vg, ..., Uy} W

Prop. 19.4 (Extreme points of polyhedral set 2). Let P be a polyhedral
subset of R™. Then
1. Let P has the form

P ={x| (aj,z) <bj, j=1,..,r}

and denote

A, ={qj| (a;,v) =b;, je{l,...,r}}
then

veEep(P)edimA,=n andv € P.



2. Let P has the form

P=A{z| x>0, (aj,z)=0b;, j=1,..,r}
={z| >0, Ax =b},

.....

A= |la||, b= (b))

and denote
ke{k| vp#0,k=1,...,n}

Bv = ||ajk||j:1 ..... r;

then v € ep (P) iff B, has the maximal rank (all columns are linearly inde-
pendent) and v € P.
3. Let P has the form

P=A{z| c<z<d, (aj,z)=0b;, j=1,..,r}
={z| c<z<d, Az =0}, ¢,de R",

=1,...,

A= llall, b= (b))

and denote
Co = Ilagel[j37 St =)

then v € ep (P) iff C, has the maximal rank (all columns are linearly inde-
pendent) and v € P.

Proof. (1). We state that v € ep(P) iff for any direction vector y €
R™, |ly|]| = 1 such that
v+ty€e P

for some t # 0 and any small € > 0 one of the conditions
vteye P

is violated. If dim A, = n then no y can be orthogonal to all a; € A, and
then one of the conditions a] (v 4 ey) < b; is violated. Hence,

dimA,=n=v€ep(P).
Conversely, if there is a y that is orthogonal to all A, then for such y

<aj7v+ty> < bj



if ve P. Hence,v € ep(P). m
Proof. (2). We apply the part (1) of the proposition. In context of the
part (1) the P is represented by

P ={x| (aj,z) <b, —(a;,x)<—=bj, j=1,...,1, —ex <0, k=1,...,n}

where the {e;} is the coordinate basis. Therefore, the A, for such situation
has the form

A, ={aj| (a;,v) =b;, je€{1,...,r}} U {ex|vy, = 0}.

Note that v € P is given, hence, the condition (a;,v) = b; above is not re-
strictive. The set {ex|vy, = 0} contains linearly independent vectors. Let k =

# {ex|vr, = 0}. We cannot state that according to (1), for v € ep (P) we need
to have at least n—k independent vectors among {a,| (a;,v) = b;, j € {1,...,7}}.
Indeed, some of the a; might be in the linear span of the {e;|v; = 0}. Hence,
we need to exclude the projection on {ex|vy = 0}. For v € ep (P) we need to
have

dim {a; — Ppeyjwo=opa; } =n —k

where the P, is the projection. The original matrix ||a;x|| has n columns
in total. To establish the last equality it is enough to form a matrix from the
columns {a;}, remove the k columns that correspond to (vj) = 0 and check
that the remaining matrix has the maximal rank n — k. =

Proof. The proof of (3) is the same as the proof of (2). m

Prop. 19.5 Let C' be a closed convex set with at least one extreme
point. A convex function f: C — R that attains a maximum over C attains
the maximum at some extreme point of C.

Proof. Let S be a segment S = {z|lx =a+6(b—a), 6 € (0,1)}. Note
that S is open. A convex function that attains its maximum at S is constant
on S. Such statement follows directly from the definition of convexity.

The proof is based on the above statement and the theorem (12.8). Let
x* be a point where the maximum is attained. By the above statement either
f is constant on C' or z* & ri (C). In the former case we are done. In the
latter case there is a properly separating hyperplane H. Since z* € C' we
have * € HNC. If HNC = {2*} then we are done: the z* is an extreme
point. Otherwise we observe that we reduce the dimension of the proof by
switching the consideration from C'to HNC. =



20 Directional derivative and subdifferen-

tial.
Prop. 20.1 (Nondecreasing ratio). Let I be an interval of R and f (x)
1s a convex function on I. The function
fly) —f
ha.y) = LW T
y—x

s nondecreasing in each argument.

Proof. Observe that h (z,y) = h(y,z). Hence, we assume = < y without
loss of generality. We aim to show that h (z,z) — h(y,x) > 0 for 2 <y < z.
There exists a 6 such that y = 0x+(1 — ) z. We use such # and the definition
of convexity to calculate

fE) @) fly)—f)

h(z,x)—h(y,z) =

z— y—x
@) - f@) flr+(1-0)2)— f(z)
z2—x r+(1—0)z—=x
SfG) - f@) 0f(e)+(A-0)f(2)— f(x)
- z—x Oxr+(1—-0)z—=x
G- -1 f@)+(0-0)f(2)
Z— @-1ax+(1-6)z
= 0.
]
Def. 20.2 (Left and right derivatives). Let f be a convex function on

the interval I C R. The left and right derivatives f~, f+ of f are defined by
flz+e)—f(z)

+ s
f* (@) = inf . :
_ flx)— f(zx—e¢
£ () = sup (@) — fle—¢)
e>0 €
Prop. 20.3 (Properties of left and right derivative). Let I be an in-

terval I C R and let f be a convex function on I.
Lf (@) <), wel



2. If x € ri(I) then f*(x) and f~ (x) are finite.
3. If v,y eri(I) and x <y then [T (z) < f~ (y).
4. The functions f+, f~ are nondecreasing.

Proof. The statements are consequences of the proposition (20.1). m

Def. 20.4 (Directional derivative). For a function f : R" — R the
directional derivative is defined by

() el @) —fy)

e>0 g

Let f be a convex function f : R™ — R. We use the notation (z,z) €
R,z € R", z € R. Fix z9,d € R". A hyperplane H that passes
through the point (xg, f (z¢)) and has the normal vector (—d, 1) is given by
the relationship

H = {(I7Z) | <($07 f (ZEO)) - (.I‘, Z) ) (_d’ 1)> = 0}

Equivalently,
H ={(z,2)| (d,x—z0) + [ (0) = 2}.
The epi (f) lies above H iff

for Vy € R", (d,y — xo) + f (z0) < f ()

or

Vy € R", [ (w0) = (d;x0) < [ (y) = {d,) - (1.4)

Def. 20.5 (Subgradient and subdifferential). The vector d € R™ is a
subgradient to the function f at (xq, f (x0)) iff the relationship (1.4 ) holds.
The set of all subgradients at xo is called subdifferential at xq and denoted

Prop. 20.6 (Existence of subdifferential). Let f : R™ — R be a con-
vex function. For any xog € R™ the Of (xq) is nonempty, convex and compact
set.



Proof. We match the conditions of the present proposition with the
setup of the proposition (14.3) as follows

M = {(u,w)| f (xo+u) <w},
D=R"
0€D.

Hence, according to the proposition (14.3)

w* — q*
where
w'= inf w=f(zx
ot f (20)

and ¢* is the maximal crossing point of the hyperplanes H (u, f (zo)) =
{(u,w) | w+ {(u,u) = f (o)} such that the M lies above the hyperplane
H (p, f (z9)). Hence, there is a u such that

v(“aw) € M> wEf(xo)_ <:u7u>
or
Vu € R", f(zo+u) = f(xo) — (1,u)-
Set y = xg + u then

VyeR”, f(y) > f('TO)_ <u,y—x0>

Hence, —i is a subgradient. The rest of the conclusions follow from the
conclusions of the proposition (14.3) and D = R". =
The following statements are verified with similar techniques.

Prop. 20.7 (Properties of subgradient).
1. Let f : R™ — R be a convex function. For any v € R" and any
y € R™ we have

Naiy) = d) .
[ (zy) Jax, (y,d)

2. For convex functions fi, fo : R" — R

I(fi+ f2) (x) =0f1(z) + Ofa.



3. For a m X n matriz A
Of (Az) = ATof (Ax).
4. Let g be a smooth function R — R and F (x) = g (f (x)) then
F'(zsy) = Vg (f (@) [/ (z;9).
If g is convex and nondecreasing then
OF (x) = Vg (f (x))0f (x).

Prop. 20.8 Let f : R" — (—o00,400| be a proper convex function
then

Vo € ri(dom (f)): Of (x)=S-+G

where the S is a subspace parallel to af f (dom (f)) and G is a nonempty
compact set. Furthemore, 0f (x) is nonmepty and compact iff x is in interior

of dom (f).

Proof. The proof of the proposition (20.5) applies almost without
changes. m

21 Feasible direction cone, tangent cone
and normal cone.

Def. 21.1 Let X be a subset of R" and x be a point in X.
(Feasible direction cone). The feasuble direction cone Fx (x) of X at x is

defined as follows.
Fx (z) ={y| Jeo > 0 s.t. Ve € (0,60), x+cy € X}.

(Tangent cone). The tangent cone Tx (x) of X at x is defined as follows

Tx (x) = {O}U{yl y#0,3{zr} C X s.t. z # x and x — =, Hik — iH . HZ” } .
L —

(Normal cone). The normal cone Nx (x) of X at x is defined as follows
Nx (z) = {z| 3{zx} C X, {21} s.t. 21 € Tx (wp)" 2 — T, 26 — 2.
(Regularity of a set). By definition, the X is reqular at x if

Nx (z) =Tx (x)".



Figure 1.11: Tangent cone figure 1

Figure 1.12: Tangent cone figure 2



AY

Figure 1.13: Normal cone figure 1

On the figure (1.11) the X is the closed area bounded by the circle, the
x is the origin, the Fx (z) = {(z,y) |y > 0} and Tx (z) = {(z,y) |y > 0}.
On the figure (1.12) the X is the curved line, the x is the origin, the
Fx (z) ={(0,0)} and T'x (z) = {(0,y) |y € (—o0, +00)}.
On the figure (1.13) the X is the closed area bounded by the curved
shape, the z is the origin, Fx () = R*\ {(0,¥) |y € (0,+00)}, Tx (z) = R?
and Nx (z) = {(x,0) |z € (=00, +00)}. Tosee that Ny (z) = {(z,0) |z € (—o0, +00)}
note that the condition z; € Tx ()" of the definition (21.1) requires that
{zx} approach x = (0,0) along the boundary of X. For any other choice of
{z1} we have Tx () = R? and Tx (z)* = {(0,0)}.

Prop. 21.2 (Tangent cone 2). Let X be a subset of R" and x € X.
Then

Tx (x) = {y|§|{x;§} C X,3{ax} C (0,400) s.t. a — 0, xka_ . y} :
k

Proof. Let y € T'x (z) then according to the definition (21.1) there is a

sequence {z;} C X s.t. z, — z and —Hii:z\\ — Hz_\l We set oy, = “mﬁy_\lx“'



Conversely, let {ay} be the sequence as stated in the proposition then

T — T
—Y=Tp T
Qg

and

Th—T (xp — ) [y y

lee =2l law — 2l fow Nyl

[

Prop. 21.3 (Tangent cone 3). Let X be a subset of R" and x € X.

1. Tx (z) is a closed cone.

2. e (Fx (z)) CTx ().

3. If X is convex then Fx (z) and Tx (x) are convex and cl (Fx (x)) =
TX (x) .

Proof. (1). Consider {yx},yr € Tx (z) such that y, — y. We aim to
show that y € T'x (). We exclude non essential case y = 0.

By definition of T () there are sequences {x, }, ,x — x and Hi”’“*z“ —
pk—
m as p — oQ.
There exists an increasing function m (-) s.t. Hym(k) — y|| < % We can

also find a function p () such that p (k) > max(p (k — 1) ,m (k)) , ||zpteme) — || <

1 Tp(k)ym (k) —T Ym(k) 1 . .
1 and ‘ Hw;k)m(k)—wH — Tom | < 1. The sequence Ty, = Tpmymr) is the se-
quence that we need to show that y € T'x (x) in context of the definition (21.1

). m

Proof. (2). Fx (x) C Tx (z) by definitions and by (1) the T (z) is
closed. m

Proof. (3). Since X is convex all the feasible directions 7 € Fx (x) are
of the form a (Z — z), a > 0. Hence, Fx (z) is convex. By the proposition
(21.2) theT'x(z) consists of y that are limit points sequences of such feasible
directions *:~=. Hence, Ty () C cl (Fix (x)). Therefore, in combination with
(2), the T'x () = ¢l (Fx (z)) follows and T'x (z) is convex. m

Prop. 21.4 (Tangent cone 4). Let X be a nonempty convex subset of
R" and x € X.

1. 2e€Tx(x)"©VzeX: (z,z—2x)<0.

2. X s regular for allx € X: Tx (z)" = Nx ().



Proof. Since X is convex, any feasible direction y € Fx (z) is of the form
a(z —x), a > 0. Hence, (1) follows from the proposition (21.3)-3 and the
definition (17.1).

The (2) follows from (1) and the definition (21.1).

The (3) is a consequence of the proposition (17.3), (2) and the proposition
(21.3)-1,3. m

22 Optimality conditions.

Prop. 22.1 (Minimum of a smooth function). Let f : R™ — R be
a smooth function and let x* be a minimum of f over the subset X of R".
Then

VyeTx(z®) : (Vf(a"),y)=0.

Equivalently,
—Vf (l’*> eTx (l’*)* .
If X is convex then
Vee X © (Vf(z"),z—2a%) >0.

If X =R" then
Vf(z*)=0.

Proof. Let y € Tx (z*), y # 0 then there exists {xy}, 2, € X such that

T — T,
T — " Y

— .
e =2l [lyll
By smoothness of f we have
fa) = F @) + (V@) o —2%) +o((log — 27])).
Hence,

f(zy) = f(z7)

[l

0<

~(vi@),
We pass the above to the limit and obtain

0<(Vf(x"),y).
The rest of the proposition follows from the proposition (21.4)-1. m

T — x* o(||lxy — x*
o) oll o))

[k — =] [l



Prop. 22.2 (Minimum of a convex function). Let f : R" — R be a
conver function and let X be a convexr subset of R™. Then

" € argrr}}nf(x) & dd e of () st. Ve e X (d,x—2z") > 0.
Equivalently,

s argrr%nf(x) & 0€df (x%)+ Tx (2)".

—x*) > 0 for any z € X. Then

Proof. Assume d € 0f (z*) and (d,
— *) > (d,x —2*) > 0 and thus z* €

by the definition (20.5) f(z) — f(x
argminy f ().

Conversely, let x* € argminy f(x). Then f’(z*;2 —2*) > 0 for any
x € X. According to the proposition (20.7)-1

f(x*%x—a")= sup (d,xz—2z%).
dedf(z*)

According to the proposition (20.6) the sup;cs+ is taken over a com-
pact set. Also, the (d,z — x*) is a continuous function of d. Hence, the
SUDgeaf(s+) (d, T — x*) is achieved at some d*. Such d* has the property

Vee X: (d,x—a")>0.

The second part of the proposition 0 € Of (z*) + Tx (z*)* is evident
because the statement (d,z — 2*) > 0 may be rewritten as —d € T (z*)"
according to the definition (17.1). m

Prop. 22.3 (Local minimum of a sum). Let f; : R" — R be a convex
function, fo : R™ — R be a smooth function, X be a subset of R"™, z* be a
local minimum of f = f1 + fo and let T (z*) be convex. Then

—V i (x*) € 0fy (z%) + Tx (z*)".

Proof. The proof is a repetition of the proofs for the propositions (22.1)
and (22.2). =

The figure (1.14) illustrates the condition —Vf (z*) € Tx (z*)*. The
painted triangle is the constraint set X. The elipses are the level curves of
a function f (x) with the internal elipse is the level curve with the smallest
value. The slightly transparent triangle is the set 2* + Ty (2*)*. The arrow is



Figure 1.14: Optimality for smooth function figure 1



Figure 1.15: Optimality for smooth function figure 2

the vector —V f (z*). The V f (z*) is orthogonal to the level curve that passes
through 2* and points to the direction of increase of f. The —V f (z*) points
in direction of decrease. Because the —V f (z*) lies within the Ty (z*)* the
point z* minimises f over X. The alternative situation is presented on the
picture (1.15). Here, —V [ (z*) lies outside of the Tx (z*)". In addition the
—V f (z*) must be orthogonal to the level curve. Therefore, the level curve
must cross into X thus preventing x* from being the minimum.



23 Lagrange multipliers for equality con-
straints.
We are considering the following problem.
minimize f (x) (1.5)
subject to h; (z) =0, i =1,...,m,
where the f and h; are smooth functions R" — R.

Prop. 23.1 (Existence of Lagrange multipliers for equality constraints).
Let z* be a local minimum of the problem (1.5) and

X ={z| hij(x)=0,i=1,...,m},
Tx () ={y| (Vhi(z"),y) =0, i=1,..,m}

then there are scalars {\;},_, . such that

-----

Proof. The condition
Tx (z%) ={y| (Vhi(z"),y) =0, i=1,..,m}

implies

Ty (z*) = N (A7),

where the n x m matrix A consists of the columns {h; (z*)} :

A= [hi (7)1

..... m "

Hence,
<33,ATy> =0, VreR™ Vye N (AT) =Tx (z7).

Equivalently,
(z,y) =0, Vz € R(A), Vy € N (AT) = Tx (z*).

Therefore,
R(A) C Tx (z*)".



We next show that
Tx (:C*)* CR(A).

Indeed, we already established that T'x (z*) is a subspace, hence, y € T (z*) =
—y € Tx (z*). Therefore, if (z,y) < 0,Vy € Tx (z*) then (z,y) = 0,Vy €
TX (.I'*> But

Tx (27)" = {z[(2,y) <0,Vy € Tx (2")}

and we proved already that
R(A) ={z](z,y) =0,Vy € T'x (z")}.

Therefore,
R(A) = Ty (a")".
According to the proposition (22.1),
~Vf(x*) e Tx ()"
hence,
—V f (z*) € Linear hull of {Vh; (z*)},_,

and the conclusion of the proposition follows. m
The condition

Tx (") ={y| (Vhi(z"),y) =0, i=1,...,m}
states that the T'x (z*) consists of directions tangent to the level surfaces of
h; crossing the x*. For example,
hi (x) = (aj,x) + b, i =1,....,m =
Tx (z) ={y| (ai,y)=0,i=1,...,m}.

24 Fritz John optimality conditions.

Prob. 24.1 (Smooth optimization problem). We consider the following
problem

minimize f (x)
subject to x € C,
C=Xn{x| hi(x)=0, i=1,...,m}
N{z| gj(z) <0, j=1,...,r}



where the f, h;, g; are smooth functions R™ — R and X is a nonempty closed
set.

Prop. 24.2 (Fritz John conditions). Let x* be a local minimum of
the problem (24.1). Then there exist quantities pg, \* = {\f}._, .0 =

.....

-----

1.
—V.L (z", puy, A", ") € Nx (z7),
Lz, po, A p) = pof () + (A h(2)) + (g (2))
h(z) ={hi(@)}ioy s 9(@) =195 (I)}jzl ..... re

2.

:U’; Z 07 ] = 17 7y

fo = 0
3.

%\ 2 *|2 %12
(o)™ + (17 + [lws]I” # 0.

4. Let

T={i| A #0}, 7= {jl u; #0}.

If
IUJ 40

then there exists {x} C X such that

T

W f () < £ (),
Viel: \h;(xg) >0,

Vi€ J:pigi (vx) >0,

Vi@ I:|hi (ax)| = o(w (),
Vi J g (wr) =o(w(xy))

where g (x) = max (0, g; (x)) and

. . . ) . +
w (o) = win {1 o) i g )



Proof. Let
k k 2 1 .
Fila) =7 @)+ S Ih@I? + 5 o @I + 3 e — ]

for k=1,2,...
Consider the problems

minimize Fy, (z) (1.6)

subject to x € X N .S,

where
Se = {af[|lx — 2™ < e}

and € > 0 is such that
Vee S.NC: f(z") < f(x).

By the classic version of the Weierstrass theorem there exists a solution
xy, of the problem (1.6) for every k . In particular,

Note that 2* € C' = h(z*) =0 and g* (z*) = 0. Hence, we rewrite the last
inequality as

s k 2 12 x
N R ) P = AC B K

By construction, {z;} is a bounded sequence. Therefore, is has one or more
limit points Z.
The f is smooth, hence, f (xj) is bounded. Therefore,
1h (@)l =0, |lg* (@4)]| — 0

because otherwise % ||h (z)|* and Ellg* (z1)]|> cannot be bounded by the
f ).
Thus, all the limit points = are feasible:
zedC.

Therefore, by the construction of S. and ¢,

fa") < f(3). (18)



By passing to the limit the inequality (1.7) and combining with (1.8) we
conclude

T =2z

for every limit point . Thus z; is convergent and
TE — .
According to the proposition (22.1)
—V.F (z1) € Txns. (z1)" .
By convergence x, — x*, for large enough £ the x; is inside S., hence
Txns. (w)" = Tx ()" -

We restrict our attention to such k.
We calculate

V. F (21) = Vo f (vi)+k (b (2h), Voh (2)) +E (g7 (21) , Vg™ ($k>>+x(k1_9 33

and introduce the notation

e = /L B @) P + 42 g (@)l

1
,LLO,]C - 5k7
k
= —h
)‘k 6k (xk)a
k
M = 5 - (1)

Note that the sequence of &

{No,k; >\k7 Nk}

is bounded:
2 2
fio.x + Ill” + lwll® = 1.

Hence, it has a limit point

{11 10> Moo 1} -



By dividing (1.9) with 6 we obtain

1 «
pogf (zr) + My Vah (zr)) + (i, Vg™t () + o (zp — %) € Tx (z)" .
We pass the last relationship to the limit £ — oo and arrive to
pof (%) + (N Veh (27) + (0", Veg* (27)) € Nx (27,

(compare with the definition (21.1)).

To see that the statement (4) holds, note that by construction of A}, uj,
Ak = ih(wk), if ¢ € I then Afh; (x) > 0 for large enough k. If i ¢ I then
the i-th component of A\i: (A), = ihi (x) has to vanish as k — oo. Hence,
if i & I then h; (ry) vanishes quicker than any of the h; (zy) for i ¢ I. The
consideration for g; is identical. m

25 Pseudonormality.
We use the notation of the problem (24.1).

Def. 25.1 (Pseudonormality). The vector x* € C' is called "pseudo-
normal” if one cannot find the vectors A\, and a sequence {xy} C X such
that

1. — <)‘7Vxh (aj*» - <ﬂ>vzg (l‘*)> € Nx (1’*),

2. p=0,9; (@) #0=p; =0 and g; (") = 0= p; #0.

3.z — o and (N, h(vg)) + (1, 9 (zx)) > 0, VEk.

Note that (1) implies that the proposition (24.2) cannot take place with
ug = 0. The conditions (2),(3) imply that the components of A, i are "infor-
mative" in the sense that the set I U J of the proposition (24.2) is nonempty
and the non-zero components of A\, u mark those conditions h; (z) = 0 and
gj (z) < 0 that are "active" (x) of the proposition (24.2)’s proof violates
these conditions and the x* lies on the boundary set by such conditions).

We introduce the notation

A(x") = {jl g; («") = 0} .
The condition 2 of the above definition may be equivalently written as

p >0 and A(e*) = {j] 1y # 0}



Prop. 25.2 (Constraint qualification 1). If X = R"™, z* € C and the
vectors {Vh; (2*)},_; ., U {V; (#7)};cpn are linearly independent then
the vector x* is pseudonormal.

Proof. Since X = R" we have Nx (z*) = {0}. Hence, the conditions
1 and 2 of the definition (25.1), if true, would imply the linear dependence
{Vhi(@)}izin YAV (#7)}jca(er)- Therefore, such A and p, as in the
definition (25.1), cannot exist. m

Prop. 25.3 (Constraint qualification 2). If X = R", x* € C, A(z*) #
& and there exists a y € R™ such that

(y,Vzh; (%)), =0, i=1,...m
(y,Vag; (z%)) <0, j € A(z%)

then the vector x* is pseudonormal.

Here the z-sign after the brackets ( - )_ indicates that the summation of
the scalar product is applied to the components of the gradient V,.
Proof. In the condition 1 of the definition (25.1) the LHS

is a vector of components of the gradient V,. The scalar product applies to ¢
and j indexes of {h; (z)},_, _,, and {g;(2)},_, .. We appy the scalar prod-
uct with respect to components of the gradient V, and write the following
consequence of the condition 1:

<y7ZAVh +Zm 29; (% > =0.

xT

Here we used that Nx (z*) = {0} for X = R". We rearrange the terms as
follows

Z)\ (y, Vih; (z +Zu3 y,Vag; (z7)), = 0.

Therefore, the A and s as in the deﬁmtlon (25.1) cannot exist because the first
sum » " A (y, Vh; (2%)), is zero by the condition (y, V,h; (z*)), = 0 of the
proposition and the second sum is negative by the condition (y, V,g; (z*)), <
0, 7 € A(x*) of the proposition and the condition 2 of the definition (25.1).
n



Prop. 25.4 (Constraint qualification 3). If X = R", z* € C, the
functions h; (z) are affine and the functions g; (x) are concave then the vector
x* is pseudonormal.

Proof. By the conditions on h; and g; we have

hi () = hi (27) + (Vehi (%), 0 = 27),,
9i () < gi (27) + (Vagi (¢7) 2 — 27),

for any x € R". Therefore, for any A and p

Z Aihi (z) + Zuigi () < Z Aihi (%) + Zujgj (x
<Z)\Vh —l—Zuj 29 (x ,x—x>.

By the inclusion x € C, the first sum is zero and the second sum is non-
positive. Hence, if A and p satisfy the condition 1 of the definition (25.1

):
Z/\Vh +Zu] 295 (z*) € Ngn (2¥) = {0}

then the condition 3 of the definition (25.1) must fail. m

Prop. 25.5 (Constraint qualification 4). Let X = R", z* € C, the x*
s pseudonormal for the set

C={z|hi(x)=0,i=1,...m; g; () <0,j=7F+1,....,r},
and for some 7 < r. Furthemore, there exists a y € R" such that

(y, Vzhi (")), =0, i=1,..,m;
<y’vxgj ('r*));p S 07 .] € A(I*) )
(Y, Vag; (27)), <0, je{l,.., T} NA(x").
Proof. Note that A (2*) # @ because if A (z*) = @ then p = 0 and the

conditions 1,2,3 of the definition (25.1) are satisfied for the set C'. The rest
of the proof is a repetition of the proof of the proposition (25.3). m



Prop. 25.6 (Constraint qualification 5). Assume that the following
conditions are satisfied.

1. The functions h; (z), i = m + 1, ...,m are linear for some m < m.

2. The does not exists a A = {\;},_; such that

—(\, V h(x%)) € Nx (z%)

and not all {\;},_,
3. Let

~~~~~

Vi (%) ={y| (v, Vzhi(2")), =0, i=m+1,..,m}.

FEither Vi, (x*) NiInterior(Nx (z*)") # @ or X is convex and Vi, (z*)Nri (Nx (z*)*) #
.
4. There exists a y € Nx (x*)* such that

(y, Vzhi (")), =0, i=1,...,m;
(Y, Vag; (7)), <0, j€ A(x").

Then the vector x* is pseudonormal.

Proof. We assume that all the conditions of the definition (25.1) hold
and reach a contradition.
We introduce the notation

v = (A Veh (7)) + (1, Vag (27)) -

According to the condition 4 of this proposition and condition 2 of the defi-
nition (25.1), there exists a ¥ € Nx (z*)" such that

(y,7), <0, when A(27) # &,
(y,7) =0, when A (z") = @.

The condition 1 of the definition (25.1) requires that
—7 € N (27)

thus
(z,—7) <0 for any z € N (z*)".

Hence, we already proven the statement for the case A (z*) # @.



It remains to consider the case A (z*) = @ under the assumption that
the conditions 1,2,3 of of the definition (25.1) and the conditions 1,2,3,4
of this proposition are true and arrive to contradiction. By the assumpion
A (x*) = @, we have

gj (") <0, j=1,...r,
and by condition 2 of the definition (25.1) we have

nw=0.
The condition 1 of the definition (25.1) implies

—(\, V,h (z Z)\Vh Z)\Vh ) € Ny (¢*) .

i=m+1

Hence, by the condition 2 of the propositon, all {\;},_, . are zero:

Z)\Vh *) € Nx (¢*).
i=m-+1

By the condition 3 there is a y from the interior of Nx (z*)* such that
(y,Vihi (%)), =0, i=m+1,...,m

Hence,

i=m+1

(¥, Q). < Z/\Vh >x

==Y Ay, Vahi (%), = 0.

=1

Hence, we have found a point ¢ € Nx (z*) and an interior point y of Nx (z*)*
such that

(y,¢) =0.

This is a contradiction. For an interior point of a cone Nx (z*)" we must
have

(y,¢) <0



26 Lagrangian duality.
We consider the following problem.

Prob. 26.1  (Primal problem). Find

fr=inf f(2)
where
C={z|zeX, h(z)=0, g(x) <0},
XCR", zeR”,

and f,hi,gj : R" — R.
We introduce the notation

Lz, A p) = f(x) + XN h(2) + (p g (2))
S=A{(x),g(x), f(x))|ze X},

26.1 Geometric multipliers.

Def. 26.1.1 (Geometric multiplier). The pair (X\*, u*) is a called a "geo-
metric multiplier” for the problem (26.1) if u* > 0 and

fr=mf Lz, A", p7).
The following statement directly follows from the definitions (26.1),(26.1.1).

Prop. 26.1.2 (Visualization lemma). Assume —oo < f* < +o00.

1. The hyperplane in R™ T with normal (\, u,1) that passes through
(h(z),g(x), f(x)) also passes through (0,0, L (z, A, 11)).

2. Among all hyperplanes with normal (X, p1, 1) that contain the set S in
the upper halfspace, the highest level of interseption with the axis {(0,0,w) |w € R}
is given by inf.ex L (x, A\, ).



Prop. 26.1.3 (Geometric multiplier property). Let (\*, ui*) be a geomet-
ric multiplier then x* is a global minimum of the problem (26.1) if and only
if € C and

L(z*, A ,u)zgg)rclL(x,/\ ),
(1", g (")) =0.

Proof. Note that * € C implies h (2*) = 0 and ¢ (z*) < 0 and the defini-
tion (26.1.1) requires p < 0. Hence, Hence, (A\*, h (x)) = 0 and (u*, g (z*)) < 0.
Let z* be a global minimum of the problem (26.1) then

J*=min f(x) = f(27).

zeC

By the definition (26.1.1),

J* = inf L (2, N, p) = inf {f (2) + (N, (@) + s g (2)}
zeX reX
Therefore, (1*, g (z*)) =0 and L (2*, \*, u*) = mingex L (z, \*, u*).
The statement is proven similarly in the other direction. m

Def. 26.1.4 (Lagrange multiplier). The pair (\*, u*) is called "Lagrange
multiplier of the problem (26.1) associated with the solution z*" if

0 € af () + (\*,0h (%)) + (u*,dg) + Tx (z*)*

and
pr =0, (u,g (") =0.

The following statement is a consequence of the proposition (22.3) and
definitions.

Prop. 26.1.5 Assume that the problem (26.1) has at least one solution
T*.

1. Let f and {g;} are either convex or smooth , {h;} are smooth, X is
closed and Tx (xz*) is convex then every geometric multiplier is a Lagrange
multiplier.

2. Let f and {g;} are convex, {h;} are affine and X is closed and convex

then the sets of Lagrange and geometric multiplier coincide.



26.2 Dual problem.
Prob. 26.2.1 (Dual problem). Find

sup q (A )
AER™ PERT >0

where
(A p) = mf L(z,A p).

The dual problem delivers the highest crossing point for the set

S={(h(x),g(),f(z))|zeX}.

Note that ¢ is an inf of a collection of affine functions. Hence, it is concave,
upper semi-continuous and may be studied with the means of the propositions
(14.2),(14.3). In particular, the following statement directly follows from
the proposition (14.2), the geometrical interpretation of the (26.1.2) and the
definition (26.1.1).

Prop. 26.2.2 (Duality gap and geometric multipliers). The following
alternative takes place.

1. If ¢¢ = f* (="there is no duality gap") then the set of geometric
multipliers is equal to the set of solutions of the problem (26.2.1).

2. If ¢* < f* (="there is a duality gap") then the set of geometric multi-
pliers is empty.

26.3 Connection of dual problem with minimax the-
ory.

Prop. 26.3.1 1. The problem (26.1) is equivalent to

inf sup L(x, A\ ).

TEX NeR™ PeR™ >0
2. The problem (26.2.1) is equivalent to

sup inf L (z, A\, p).

AER™M peR” 1>0 TEX



Proof. Note that

x),ifh(z)=0, g(x) <
sup {f (@) + R (@) + (g (2))} = f@),ifh(z) =0, g(z) <0

AER™ UERT >0 oo, otherwise
The rest follows from the definitions of the problems (26.1) and (26.2.1).m
Prop. 26.3.2 (Necessary and sufficient optimality conditions). The vec-

tors (x*, \*, u*) form a solution of the problem (26.1) and a geometric mul-
tiplier pair if and only if the following four conditions hold.

s eC (1.10)

w>0 (1.11)

L(x*, N\ ") = mi}r{1L (2, \*, ") (1.12)
Te

("9 (2")) =0 (1.13)

Proof. If the (z*, \*, u*) form a solution of the problem (26.1) and a
geometric multiplier pair then the statements (1.10 ) and (1.11 ) follow
from the definitions and (1.12 ),(1.13 ) follow from the proposition (26.1.3).

Conversely, using the conditions of the theorem we obtain

S ) = LN ) = min L (V) = g (Vo) < g

The the equiality
f* — q*
follows from the propositions (26.1.2) and (14.1). m

27 Conjugate duality.

Prop. 27.1 For any convex function f

f(z) = sup ((z,0) = )
{bvﬁl <1‘,b>—ﬁ<f(l‘),vx}



h(X)=x*x+B7
> X

Figure 1.16: ept f is the intersection of the upper half planes.

Proof. Each affine function h (x) = (x,b) — B corresponds to a hyper-
plane. By the proposition (12.2), for any point below epigraph of f there
exists a hyperplane that separates such point from the epi f. Hence, for
any such point (x,p),z € dom f p < f(x) there exists a pair (b, 3) s.t.
(x,b) — B <0and (y,b) — B < f(y) for Vy e dom f. m

Coroll. 27.2  The setepi f is equal to intersection of the upper half-planes
defined by the hyperplanes from proof of the previous statement.

Let us denote F' = epi f. Let us introduce a set
F*=A{(a",8") Nz € dom f, (z%,2) — " < f(2)}.

Such set is not empty and it is an epigraph of some function because if

(20, Bo) € F*then (zq,3) € F* for all 5 > [y. Let us denote such function
f*. By definition

F* (%) = inf {5°|Var € dom f: {a",2) — 5 < f (x)
= inf {5*|Vz € dom f: (x*,z) — f(z) < B*
= sup {(z"2) - f(2)},

zedom f

}
}

dom f* = {x*| (z*,x) — f (z) < 400, Vz € dom f}.



} F5(x*)

> X

Figure 1.17: Geometrical meaning of f(z*).

Let us introduce

= sup (=", 27) — " (a7)},

z*edom f*
dom f* ={a™| (™ 2*) — f* (") < 400, Va* € dom f*}.
Observe that dom f** = dom f. Indeed,
(™, 2") — f* (%) < 00, Va* € dom f*

means that de = const

or
(@™, 2%) —c < f*(27)

where the z* and § = f*(z*) run through all the hyperplanes that define

epi f. For the same reason the infimum of such c¢ is the f (z**):

f (™) =inf {c|Va* € dom f*: (™, 2%) — f* (z*) < ¢}
= sup {(z",2") — " (2")}.

z*Edom f*



Summ. 27.3  (Conjugate duality theorem). We define the operation of
taking a dual function f* by

fr@") = sup {(z%,x) = f(x)}.

xe€dom f

Then

for all proper convex functions.

The closure part: ¢l f comes from the fact that taking affine envelopes
includes boundary points of the epi f into the final result epi f**.

27.1 Support function.

Def. 27.1.1 The indicator function § (-|C) of a convex set C' is a func-
tion of the form

0,if v € C
+oo, ifr ¢ C

5 (z]C) =

The support function 6* (-|C') is the conjugate of the indicator function.

According to the definition

S (2*|C) = sup {(z",z) =6 (z]|C)} (1.14)
z€dom 6(-|C)

= sup (", z) .
zeC

Note that 6* (z*|C) is a positively homogenous function of x*. Suppose
f (z) is some proper convex positively homogenous function. Consider the
conjugate
fr@) = sup {{z%2) - f(2)}.
zedom f
By the positive homogenuity x € dom f = Az € dom f, VA > 0. Conse-
quently, for any A > 0,

sup {(2%,2) — f(2)} = sup {(&"Az) — f(Ar)} =X sup {{z",2) = f(2)}.

xz€dom f z€dom f z€dom f



Hence, f* (2*) is either 0 or +oo. Introduce the set
C={a"Ve, (z%,2) < f(2)}.

Such set is a dom f*. Indeed, if (z*,z) < f(z) then (z*,2) — f(z) < 0
and 0 is reached by scaling with A\. Then f*(z*) = 0. On the other hand if
(x*,x) > f () then (z*,x) — f () > 0 and +oo is reached by scaling.

Summ. 27.1.2 (Convex homogenous function property). If f (z) is a proper
convex positively homegenous function then

fr (@) =6 (27]C),
C = {z*|Va, (2", 2) < f(2)}

and

0 (z*|C) =dl f.

The last part of the summary follows from the summary (27.3). We es-
tablished one-to-one correspondence between convex sets and proper convex
positively homegenous functions.
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