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ABSTRACT 
A mathematical model for the initiation and propagation of an action potential in a neuron was named 

after its creators in 1952. Since then, the Hodgkin-Huxley model has been used vastly in the world of 

physiology. This project begins by introducing the background physiology of the model’s origin. The 

model’s derivation is given along with all supporting functions and constants. 

The main argument of this project is to complete and compare different numerical methods to solve the 

Hodgkin-Huxley model. Six different numerical methods are first introduced and compared using a 

simple and arbitrary ordinary differential equation. The numerical methods used are: forward Euler, 

modified Euler, backward Euler, Runge-Kutta, Adams-Bashforth-Moulton predictor-corrector, and 

Matlab’s ODE45 function. After initial analysis of the error compared to an exact solution, the 

abovementioned methods are listed in order of increasing accuracy. The order of each method was also 

calculated to compare speed.  

The most significant result was creating Matlab code to solve the Hodgkin-Huxley model for each 

different numerical method. Each solution to the model is plotted to visually compare the differences. 

The methods were also statistically compared to the exact solution by setting the sodium and potassium 

conductances to zero. The action potential obtained from Matlab will be analyzed both physiologically 

and mathematically.  
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THE HODGKIN-HUXLEY MODEL 

BACKGROUND INFORMATION 

The Journal of physiology presented a series of papers in 1952 that would forever change the relationship 

between mathematics and physiology. Alan Lloyd Hodgkin and Andrew Huxley authored a succession 

of five papers describing the nonlinear ordinary differential equations that model how action potentials 

can be initiated and propagated through an axon [1-5]. This project will touch on the first paper in the 

series to give a background identity to the differential equation and its parameters and focus mainly on 

the fifth article which describes the mathematical model to be analyzed in future sections. 

In 1963, the Nobel Prize for physiology and medicine was awarded to Hodgkin and Huxley for their 

ground-breaking research on the squid giant axon. The squid, with its tremendously large axon (up to 

1mm diameter) and minimal conductance [6], allowed the pair to perform many experiments that have 

wide applications across organisms. 

Cole and Curtis in 1939 were the first to identify the increase in membrane conductance during an action 

potential [7] following from a study in 1902 by Bernstein to correctly show the membrane separating two 

solutions of different ionic composition [8]. Bernstein studied the ionic composition of the solutions 

surrounding the membrane and proved there is a much greater concentration of potassium within the 

cell and an increased level of sodium outside. He used this information to conclude that the resting 

membrane potential is close to the potassium equilibrium value during rest, but rose to zero during 

activity. Bernstein reasoned that the activity caused the membrane to degrade, but this was proved 

incorrect in 1938. 

During the year of 1938, Hodgkin collaborated with Cole to directly measure the membrane voltage [9]. 

This experiment was successful and they noticed that during activity the membrane potential will rise 

from the resting value (around -65mV) to well exceed the proposed value of zero (by Bernstein [8]) and 
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almost reverse sign at the peak (Figure 1). Hodgkin and Cole were able to attribute this rise (action 

potential upstroke) to the changing permeability of different ions. 

 

FIGURE 1 THE ORIGNIAL DEPICTION OF A SINGLE ACTION 

POTENTIAL OVER TIME [9] 

To further analyze the membrane changes, the voltage clamp experiment was created. Two pairs of 

electrodes read the voltage drop, while another pair injects current to clamp the voltage to a specific level. 

The changes in permeability and the dynamic link to membrane voltage were finally addressed and 

modeled in 1952 by Hodgkin and Huxley [1-5]. 

ANATOMY OF THE NEURON 

Neurons receive signals through dendrites located on the main bulk of the cell. From there, the signal is 

propagated through the body and sent along the axon to the next neuron (Figure 2). Neurons send signals 

to other neurons via action potentials. An action potential is an explosion of depolarizing current that 

travels along the cell. For an action potential to occur, the depolarization must reach a minimum 

threshold voltage. Action potentials are only fired as an ‘all-or-none’ response. This means that action 

potentials do not vary in size and will not occur if threshold is not reached.  
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FIGURE 2 TWO NEURONS SIDE BY SIDE SHOWING THE PATH OF AN ACTION POTENTIAL. THE 

IMPULSE IS RECEIVED BY THE DENDRITES CLOSE TO THE BODY. IT THEN MAKES ITS WAY TO THE 

AXON WHERE IT TRAVELS TO THE NEXT NEURON OR ENDPOINT. THE SYNAPSE IS A LOCATION OF 

RELEASE OF NEUROTRANSMITTERS TO BEGIN THE ACTION POTENTIAL AT THE NEXT NEURON. 

TAKEN FROM A PUBLIC SOURCE. 

ACTION POTENTIALS 

Action potentials occur in excitable cells including neurons, muscle cells, and endocrine cells. In the case 

of neurons this is a signal that is propagated to relay information. The stepwise process of an action 

potential is described below. 

 

FIGURE 3  THIS IS AN ACTION POTENTIAL CREATED FROM THE 

MATLAB CODE PRODUCED LATER IN THIS PROJECT. EACH TIME 

POINT OF THE CURVE IS EXPLAINED IN THE TEXT BELOW. 

Figure 3 above is a copy of the action potential created using the Matlab program to solve the Hodgkin-

Huxley equation. Each part of the graph will be broken down according to the number sequence: 
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1. At this point in time, the firing threshold has been reached and the action potential begins to fire. 

The sodium channels are now open and an influx of sodium occurs. 

2. The membrane becomes more positive at this point due to sodium entering the cell. Now, the 

potassium channels open and potassium leaves the cell. 

3. At the peak of the action potential, the sodium channels have now become refractory and no 

more sodium is allowed to enter. 

4. During the downfall phase of the action potential, the sodium channel is still in its refractory 

stage and only the potassium ions are passing through the membrane. As the potassium ions 

continue to leave the cell, the membrane potential moves toward the resting value. 

5. At this point, the potassium channels close and the sodium channels begin to leave the refractory 

phase and reset to its resting phase.  

6. The diffusion of extracellular potassium away from the cell causes a very slight increase in 

membrane voltage. It finally returns to its resting value where it can await another action 

potential. While the membrane is hyperpolarized (below resting) the cell cannot fire. This 

prevents the action potential from travelling backwards. 

MATHEMATICAL MODEL 

The Hodgkin-Huxley model is based on the parallel thought of a simple circuit with batteries, resistors 

and capacitors. A basic model of this circuit is shown in Figure 4. Current can be carried through the 

circuit as ions passing through the membrane (resistors) or by charging the capacitors of the membrane 

[5].  
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FIGURE 4 THIS FIGURE SHOWS THE MODEL OF THE CELL AND ITS 

FLOW OF CURRENT IN A SIMPLE CIRCUIT DIAGRAM. THE 

CAPACITOR OF THE MEMBRANE IS SHOWN ON THE FAR LEFT AND 

THE INDIVIDUAL IONIC CURRENT IS SEEN TO TRAVEL DOWN ITS 

RESPECTIVE BRANCH[5]. 

The electrical activity depicted in Figure 4 can be summarized as the famous Hodgkin-Huxley model: 

  
   
  

            

where   is the membrane capacitance,    is the intracellular potential,   is the time,       is the net ionic 

current flowing across the membrane, and      is the externally applied current [5].  The most significant 

advantage of the above equations is to determine the membrane capacitance in such a way that is 

independent of the sign or magnitude of the intracellular potential and minimally affected by the time 

course of   . 

IONIC CURRENT 

The ionic current described in Hodgkin and Huxley’s giant squid axon can be divided into three different 

cases: sodium current, potassium current, and the leakage current [5]. The movement of each of these 

currents is proportional to the conductance times driving force [5]. For example,              .  

Conductance can easily be described by using the notion of the membrane channel. However, in 1952 

when Hodgkin and Huxley were developing their model, there was very little knowledge about these ion 
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channels. The initial findings of the model properties still hold true for the additional information 

acquired about ion channels. For convenience, the 1952’s Hodgkin Huxley model will be explained using 

today’s knowledge of membrane ion channels. 

The conductance is caused by the opening of many microscopic channels in the membrane. Each 

individual membrane contains many gates and when all gates are in the permissive state (allows ions to 

pass through) then the channel is considered to be open [6]. Once a channel is open, all ions of the specific 

channel can flow freely through. The probability of a gate being in the permissive state depends on the 

current value of the membrane voltage. 

To develop the differential equations that describe the conductance, the probability of a gate being open 

is defined as    for any ion, i. Looking at the macroscopic scale,    can also be the fraction of gates that are 

in the permissive state. Also, the amount of gates closed are       , by definition. To obey the first-order 

kinetics [6], 

   
  

                       

where,    and    are the rate constants dependent on the voltage that describe the transient rates of 

permissive and non-permissive gates. 

All gates must be permissive simultaneously for a channel to be considered open. When this occurs, the 

channel will contribute a miniscule amount of conductance on a large scale, otherwise it will not 

contribute anything. The macroscopic conductance depends on many channels being open, which 

depends on an even greater amount of gates being in the permissive state. This leads to the equation, 

         
 

  

where,     is the normalized constant that determines the maximum conductance when all the channels 

are open [5, 6]. 
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Hodgkin and Huxley labeled the probability of a gate being in the permissive state as the name of the 

respective gate. To conform to this method,    is exchanged for the name of the gates – m, n, or h. Each 

channel is defined to have a specific amount of these gates. For example, the sodium channel has three m 

gates and one h gate [5]. Using this notation and the above theory, the ionic currents can be summarized 

by, 

          
               

                   , 

  

  
                    

  

  
                    

  

  
                    

To completely describe the Hodgkin Huxley model, the only thing that remains is to define the six rate 

constants. 

VOLTAGE CLAMP EXPERIMENTS 

This section will describe the voltage clamp experiment for the potassium channels. Both the leakage and 

sodium channels follow the same methods to obtain similar results. 

In the fifth paper of the series by Hodgkin and Huxley, they discovered that as they kept the voltage 

constant, the conductance of the channel increased to a steady value dependant on the initial voltage [5]. 

Their most significant finding was that the rate at which the conductance reached its maximum depended 

greatly on the clamped voltage. More specifically, at 20mV the half-maximum value occurs after 5 ms, but 

at 100mV the half-maximum value is reached after only 2 ms [5]. 
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Hodgkin and Huxley were then able to find the time course of the step value n in the circumstance where 

the voltage is increased by a certain increment after the steady-state is achieved. Initially, the resting 

value of n is 

      
     

           
  

But as the voltage is clamped to a different voltage, Vc, the steady state becomes 

       
      

             
  

A solution can then be found mathematically to solve 
  

  
                   with the above 

restraints. This simple solution is an exponential of the form [6] 

                           
 
 
    

where [6] 

       
 

             
  

After all this information, Hodgkin and Huxley still needed to determine the proper order and type of 

gates for each channel. They used a trial-and-error method to find the proper order of the gates to achieve 

the sigmoidal conductance found from previous results. Since the value of n is bound between zero and 

one, it first needed to be multiplied by the normalization constant     . In the case of potassium, the best 

match is the n value brought to the power of four, such that 

       
   

The conductance for the sodium and leakage channels was obtained by the voltage clamp in the exact 

same manner. The results from this section help to form the desired rate constants. 

 



  

Page 13 

 

  

RATE CONSTANTS 

The values of        and        obtained above by fitting the conductance data will allow        and 

        to be found by using the following relationships [5, 6]: 

      
     

     
  

      
       

     
  

In Figure 5, the plotted circles represent the experimentally acquired values of       ,       ,       , and 

       as a function of voltage. Hodgkin and Huxley then determined curves that fit this data to give the 

following expressions for the rate constants: 

      
          

    
    
  

   
  

               
  

  
   

 

FIGURE 5 THE ASSOCIATED FUNCTION WITH THE N GATING VARIABLE. THE CIRCLES SHOW THE ACTUAL 

RECORDED VALUES WITH THE MODELED EQUATION AS THE SOLID LINE. (A) THE VALE OF N OVER 120MS. THE 

RATIO IS ALWAYS BETWEEN 0 AND 1. (B) THE TAU TIME VARIBLE. (C) SHOWS HOW ALPHA OF N CHANGES OVER 

TIME. (D) THE BETA VALUE OF N. [6] 
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To complete all the associated differential equations needed for the Hodgkin Huxley model the above 

methods are used to find the rate constants for the other gates. Thus, 

      
         

    
    
  

   
 

             
  

  
  

               
  

  
  

      
 

    
    
  

   
  

That concludes all the necessary equations and constants that define the Hodgkin and Huxley model. The 

following sections deal with the different numerical methods used to solve the equations above. 

CORRECTIONS, MODIFICATIONS AND EXTENSIONS 

It has been sixty years since Hodgkin and Huxley made their ground-breaking discovery with minimal 

technology and background information. Since then, many have come forward to offer corrections and 

modifications to the model. There are many slight modifications to the original model to adjust to a 

different cell and different organism, but most follow the same original properties. For the remainder of 

this project, the original results will be respected, but listed below are some of the most common and 

obvious additions. 

Hodgkin and Huxley showed the firing of an action potential with type 2 excitability. Type 2 excitability 

is sustained firing of action potentials from suprathreshold depolarizing current [10]. In 2008, John Clay 

et al. were able to separate this theoretical approach from experimental results by introducing a small 

modification to allow modeling of type 3 excitability. A simple modification provided in their 2008 paper 

slightly adjusts the potassium current [10]. 

There is an enormous amount of extensions to the Hodgkin-Huxley equation. Some examples are: 

bifurcations in the Hodgkin-Huxley model [11], speed dependent on frequency [12], and no external 

signal [13]. Many modifications to the model can be found by tweaking the results to match a different 

organism or different cell within an organism. 
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The most challenging article confronting the Hodgkin-Huxley equation is an article entitled ‘Playing the 

Devil’s advocate: is the Hodgkin-Huxley model useful?’. This article neatly points out that although there 

are many other models with the same function, for the most part they all incorporate basics of the 

Hodgkin-Huxley model [14]. The ideal and universal equation is a marriage between phenomenological 

equations and Hodgkin-Huxley-like models concluding that the Hodgkin-Huxley model will remain in 

the future and has earned its place in today’s day and age [14].  

Despite the numerous efforts to challenge, change and correct the original Hodgkin-Huxley model, it has 

a firm and factual heritage that will merit its existence for time to come. 

NUMERICAL METHODS FOR SOLVING ORDINARY DIFFERENTIAL 

EQUATIONS 

EULER METHODS 

The Euler method is the simplest numerical integration method to solve first order ordinary differential 

equations. In practice, the Euler method is very quick to compute but prone to instability and inaccuracy. 

The results of this method will be compared to other numerical integration techniques in a future chapter. 

FORWARD EULER METHOD 

To find the shape of a curve that has a given starting point and satisfies a certain differential equation, the 

Euler method will calculate the slope of a given point once that point has been calculated. If the actual 

curve starts at the initial point, a0, that is given, the slope can be calculated at that point. Assuming that 

the next point, a1, is extremely close to a0 it can be found on the tangential line. From a1 a new slope and 

tangential line can be calculated leading to the arrival of the next point along the second tangential line 

called a2 [15]. This iteration is completed over time to form a curve that will closely model the actual 

curve. 
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The differential equation                 where the initial condition is         and the value of tn is 

defined to be       , where h is the size of the step, can be solved at tn using the Euler method. The 

Euler method yields the result                    [16]. 

MODIFIED EULER METHOD 

The modified Euler method is very similar to the forward Euler method but it uses the trapezoidal rule to 

find the solution. The trapezoidal rule is an approximation of the integral from a to b as trapezoid, no 

matter the actual path taken. Instead of looking backwards to find the next point, this solution uses a 

combination of the past and current points to determine a solution. It is important to note that          is 

unknown and must be solved for implicitly.  So the modified Euler estimation is given by          

 

 
                       . 

BACKWARD EULER METHOD 

The backward Euler method only uses the current value of the point (i.e.         ). The backward Euler 

method is given by                        . 

RUNGE-KUTTA METHOD 

The most commonly used Runge-Kutta method is the fourth-order Runge-Kutta method or simply 

“RK4”. Given a differential equation                  where the initial condition is          , the RK4 

method yields         
 

 
                and           [17].       is the RK4 approximation 

where 

                         
 

 
     

 

 
              

 

 
     

 

 
                       . 

The next point on the curve is determined by the previous point in addition to the weighted averages of 

four different increments. The first increment, k1, is the Euler increment seen above. It takes into 

consideration the slope of the tangent of the previous point with the step size. The second increment is 

based on the slope of the tangent at the center of the step. The third increment is the slope in the middle, 
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again, with respect to the second increment. Finally, the fourth increment is the slope at the end of the 

step.  

ADAMS-BASHFORTH-MOULTON PREDICTOR-CORRECTOR METHOD 

The methods previously discussed are all single-step methods because they only depend on one previous 

value. The predictor-corrector method depends on several preceding values. For example, the Adams 

predictor-corrector method depends on                   to get the value of     . Unless the first four 

values are given, the next value of the curve cannot be found. This means that the predictor-corrector 

methods are not self-starting. Fortunately, any of the above single-step methods can be used to attain the 

first four values and then the predictor-corrector method can be used henceforth.  

The Adams-Bashforth-Moulton fourth-order method will be discussed to represent the predictor-

corrector method. This method yields the following formula:         
  

   
       , where   is the 

predictor equation,       
 

  
                          , and   is the corrector equation, 

      
 

  
                       . In the Matlab algorithm provided appendix 1.3, the RK4 

method is used to find the first four values and the subsequent values are found using the predictor 

corrector method.  

MATLAB ODE BUILT-IN FUNCTION (ODE45) 

Matlab’s most common native solver for ordinary differential equations is the function ‘ODE45’. This 

function uses a form of Runge-Kutta-type solving with a variable time step for efficient solving [18]. This 

function will also be used in comparison to the above functions when analyzing the Hodgkin-Huxley 

model. 
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MATLAB SOLUTIONS USING NUMERICAL METHODS 

EULER METHODS 

Using the Euler methods described above (forward, modified, and backward), a Matlab file was created 

to analyze the three approximation methods on a given differential equation. The equation          

            has the solution                     that was found using Matlab’s built-in 

differential equation solver. The Matlab code for the for the Euler methods is appended as 1.1. 

Figure 6 shows the output of the three Euler methods. It can be seen that the modified Euler method has 

the most accurate results with the forward and backward methods erring on either side of the exact 

solution. 

 

FIGURE 6 EULER METHODS PLOTTED WITH A STEP SIZE OF 0.1. THE RED SOLID LINE IS THE EXACT SOLUTION TO 

THE EQUATION AND THE BLUE DASHED LINE IS THE SOLUTION FOUND USING THE RESPECTIVE METHOD. TOP: 

FORWARD EULER METHOD; MIDDLE: MODIFIED EULER METHOD; BOTTOM: BACKWARD EULER METHOD. 
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RUNGE-KUTTA METHOD 

Using the same differential equation above as an example, code to compute the RK4 approximation was 

produced in Matlab (appendix 1.2). 

The resultant approximation is visibly more accurate than the previous Euler methods. In Figure 7 it 

seems that the RK4 approximation is identical to the actual solution.  

 

FIGURE 7 A PLOT OF THE EXACT SOLUTION AND THE APPROXIMATE SOLUTION FOUND USING THE 4TH ORDER 

RUNGE-KUTTA METHOD WITH A STEP SIZE OF 0.1. 

ADAMS-BASHFORTH-MOULTON PREDICTOR-CORRECTOR METHOD 

 

The predictor correct method used to find the solution to the above ordinary differential equation. See 

appendix 1.3 for the Matlab code. 

 

 

FIGURE 8 PLOT OF THE EXACT SOLUTION AGAINST THE APPROXIMATE SOLUTION FOUND USING THE 

PREDICTOR CORRECTOR METHOD 
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ODE45 

The innate Matlab function for the ODE45 solution plotted below. The simple Matlab code using the 

function is found in appendix 1.4. 

 

FIGURE 9 PLOT OF THE EXACT SOLUTION AGAINST THE APPROXIMATE SOLUTION FOUND USING THE ODE45 

FUNCTION 

ACCURACY OF METHODS 

ERROR 

Using the error formula,                                     , the error will be calculated for the 

five methods mentioned above. The results are reported in Table 1. 

TABLE 1 ERRORS BETWEEN EXACT SOLUTION AND APPROXIMATE SOLUTION 

Method Average Error 

Forward Euler 0.6102 
Modified Euler 0.1622 
Backward Euler 1.4324 

Runge-Kutta 0.0014 
Predictor-Corrector 0.0083 

ODE45 0.0011 

 

From this very basic analysis using the differential equation                     it can easily be seen 

that the Euler methods are very different from the actual curve when the size of the interval is 0.1. Both 

the Runge-Kutta and predictor-corrector methods serve as a much better approximation to the real curve. 
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ORDER OF THE METHOD 

This section involves taking each method (excluding ODE45 because it is an adaptive method) and 

varying the step size while observing the change in error. The step size, h, was taken as 

                                 for the same solvable differential equation above (             

      ). Figure 10 shows the graph for each numerical method where the step size is plotted against the 

error on a log scale. The log scale is used because the error depends on some exponent of h thus rendering 

a straight-line. This value of the exponent (obtained from the slope of the graph) describes the speed of 

the method. This quantity is known as the order of the method and is shown in Table 2 for each method. 

TABLE 2 ORDER OF THE METHODS 

Method Order of Method 

Forward Euler 0.9958 
Modified Euler 2.0115 
Backward Euler 1.0607 

Runge-Kutta 4.0000 
Predictor-Corrector 4.9075 

 

It can be seen from the order of the methods that the higher order methods are faster. The Runge-Kutta 

method and predictor-corrector method are on about the 4th and 5th order meaning the speed of these 

methods are much faster than the Euler methods. The fastness or speed of a method is determined by the 

gain in accuracy when a computational resource is doubled. Of the Euler methods, the modified Euler is 

twice as fast as the forward and backward versions. Table 2 shows the order (as slope) on the log scales as 

compared to reference orders. 
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FIGURE 10 PLOT OF THE ERRORS FOR DIFFERENT STEP SIZES ON A DOUBLE LOG SCALE. THE SOLID LINES ARE 

THE RESULTS OF THE RESPECTIVE NUMERICAL METHODS. THE DOTTED LINES ARE REFERENCE ORDERS TO 

VISUALLY COMPARE 

Also included in the above plot are reference lines of several different orders to be used as comparison. 

The general formula of        , where h is the step size and s is the order of the method, is used to 

visually compare the different numerical methods with the order values from one to four. 

An example (predictor-corrector) of the Matlab code used to compute the graph of h versus error is 

appended as 1.5. All the other m-files follow the same algorithm using the respective method. 

ANALYSIS OF HODGKIN-HUXLEY MODEL 

SOLVING HODGKIN-HUXLEY DIFFERENTIAL EQUATION 

From the numerical methods discussed and analyzed above, four were chosen to solve the Hodgkin-

Huxley model described in the introduction. The variety of methods is: forward Euler, Runge-Kutta, 

predictor-corrector, and ODE45. 
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The Hodgkin-Huxley model can be summarized neatly into four separate ordinary differential equations 

with some supporting functions. These equations and their constants solved by the above methods are 

listed below [19]: 
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RESULTS 

Solving the Hodgkin-Huxley model with numerical methods provided a solution familiar to the action 

potentials discussed in the introduction. All parts of the action potential are present including the rapid 

uprise, downfall and unexcitable phase. As can be seen in Figure 11, each different numerical method 

provides extremely similar action potentials. This is expected since the errors obtained for each method 

compared to the exact solution above were relatively small.  

 

FIGURE 11 THE SOLUTION OF THE HODGKIN-HUXLEY MODEL BY FOUR DIFFERENT METHODS. TWO ACTION 

POTENTIALS ARE SEEN OVER THE 25SEC TIME SPAN. 

The gating variables are correctly constrained between 0 and 1 in Figure 12. The variables are shown for 

five milliseconds but repeat in the same manner over longer periods of time. All methods are seen to have 

almost identical gating variables except for the ODE45 method. 
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FIGURE 12 A PLOT OF THE DIFFERENT GATING VARIABLES FOUND USING DIFFERENT NUMERICAL METHODS 

The Matlab code written to solve this complex set of equations was written in three parts. The first file 

(appendix 2.1) demonstrates all the methods in succession using the basic form to call the HH function 

(appendix 2.2). This very important function was used for three of the four methods. It allows the calling 

code to be written in its simplest form and provides access to easy manipulation. The third and final part 

is a series of functions that define the alpha and beta characteristics (appendix 2.3). These functions are 

called from both the main code and the HH function. 

EXACT SOLUTION AND COMPARISON OF METHODS 

 

An interesting way to compare the numerical solutions of the Hodgkin-Huxley equation is to use the 

exact solution. An exact solution can be obtained if the sodium and potassium conductance are set equal 

to zero. The new equation is 
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This ordinary differential equation can be solved easily using the method of separation of variables. The 

initial voltage is set to be -60mV. The solution obtained is [19] 

  
 

  
       

  
  

                        

Using the same Matlab code for voltage change, the variables    and    are set equal to zero and plotted 

on the same axis as the exact solution. 

 

FIGURE 13 A PLOT OF THE EXACT SOLUTION TO THE HODGKIN-HUXLEY MODEL USED TO COMPARE THE 

ACCURACY OF THE DIFFERENT NUMERICAL METHODS. 

 

TABLE 3 ERROR OF NUMERICAL METHODS AS COMPARED TO THE EXACT SOLUTION 

Method Average Error 

Forward Euler 0.034984 
Runge-Kutta 0.00000010155 

Predictor Corrector 0.000000012004 
ODE45 0.00030036 

 

It can be easily demonstrated that the forward Euler method is the weakest when the results of the 

different numerical methods are compared to the exact solution. This is what was expected based on the 

initial analysis and resultant speed of computation. Both the Runge-Kutta and predictor-corrector method 
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were significantly more accurate than the forward Euler method. To the contrary of previous results and 

intuition, the ODE45 function was found to be less accurate than the Runge-Kutta and Predictor 

Corrector methods.  

PERSONAL REMARKS 

The essential communication from neuron to neuron is nothing short of amazing. The fact that Hodgkin 

and Huxley were able to create an equation to model this complex behavior, yet simple enough to solve 

and predict might be even more amazing. 

The numerical methods implemented here truly show the simplicity of the model, but the resultant action 

potentials show so much complexity. It was extremely interesting and very satisfying to try the different 

numerical methods to successfully solve the Hodgkin-Huxley model. 

The forward Euler method was the easiest to code, besides, of course, the ODE45 function. The most 

difficult part of the coding was to create the HH function. It was a fairly short code, but it branched out to 

many other functions and returned the current value of the membrane voltage and the three gating 

parameters. Once the HH function was created, the coding was much simpler and involved the use of the 

numerical methods’ basic definitions. 

It was very satisfying to see the code produce action potentials that I have studied in extreme depth in my 

physiology classes. To know what each moment of the simple line means physiologically makes the 

underlying math seem more sophisticated. 

CONCLUSION 

This project offered an initial physiological background to the Hodgkin-Huxley model but focused 

mainly on the mathematics and numerics behind it. The primary objective was to solve the Hodgkin-
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Huxley model by different numerical methods and compare the speed and accuracy of each method 

using different techniques. 

Forward Euler, Runge-Kutta, predictor-corrector, and ODE45 numerical methods were used to first 

calculate a theoretical action potential and associated variables followed by a direct comparison using an 

exact solution. The action potential solved using the numerical methods through Matlab gave a textbook 

result of membrane voltage change over time. 

The Runge-Kutta and predictor-corrector methods gave the most accurate results when compared to the 

exact solution by setting sodium and potassium conductances equal to zero for a step size of 0.04. The 

Matlab ODE45 function produced a slightly less accurate result. The default parameters of ODE45 proved 

to be less accurate than the small step sized used for the former methods. In theory, when comparing 

apples to apples, the ODE45 method will solve the equation closer to the exact result. The Euler method 

proved, again, to be the least accurate. After producing the HH function, all numerical methods become 

quite simple to code and produce similar results.  

The Hodgkin-Huxley model produced customizable and predictable action potentials that reveal a 

tremendous amount of information about neuron signaling. The results in this project confirm the 

hierarchy of numerical methods and simultaneously display the power and beauty of the Hodgkin-

Huxley model. 
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APPENDIX - MATLAB CODES 

1. ARBITRARY ODE 

1.1 EULER METHODS 

 

%% Euler Methods 

  
%DE:= y'(t)+4*y(t)=2*exp(-5*t) 

  
%Exact solution found using Matlab: y(t)=-2*exp(-5*t)+3*exp(-4*t) 
    %Used initial condition of y(0)=1 

  
%========================================= 
%% Forward Euler Method for 1st Order ODE 
%========================================= 

  
h=0.15;     %h is the step size 
t=0:h:4;    %initialize time array 

  
clear ystar;     

  
ystar(1)=1.0;   %initial condition 

  
for i=1:length(t)-1, 
   k=2*exp(-5*t(i))-4*ystar(i); %Calculates derivative at t(i) 
   ystar(i+1)=ystar(i)+h*k;     %Estimates new value of y; 
end 

  
%exact solution 
y=-2*exp(-5*t)+3*exp(-4*t); 

  
%Plot approximate and exact solution. 
subplot(1,3,1) 
plot(t,ystar,'b--',t,y,'r-'); 
legend('Approximate','Exact'); 
title('Forward Euler Approximation, h=0.015'); 
xlabel('Time'); 
ylabel('y*(t), y(t)'); 

  
clear all; 

  
%=========================================== 
%% Modified Euler Method for 1st Order ODE 
%=========================================== 

  
h=0.15;     %h is the step size 
t=0:h:4;    %initialize time array 
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clear ystar;     

  
ystar(1)=1.0;   %initial condition 

  
for i=1:length(t)-1, 
   ynew=ystar(i)+h*(2*exp(-5*t(i))-4*ystar(i)) 
   k=2*exp(-5*t(i+1))-4*ynew 
   ystar(i+1)=ystar(i)+h/2*((2*exp(-5*t(i))-4*ystar(i))+k);     

%Estimates new value of y; 
end 

  
%exact solution 
y=-2*exp(-5*t)+3*exp(-4*t); 

  
%Plot approximate and exact solution. 
subplot(1,3,2) 
plot(t,ystar,'b--',t,y,'r-'); 
legend('Approximate','Exact'); 
title('Modified Euler Approximation, h=0.015'); 
xlabel('Time'); 
ylabel('y*(t), y(t)'); 

  
clear all; 

  
%======================================= 
%Backward Euler Method for 1st Order ODE 
%======================================= 

  
h=0.15;     %h is the step size 
t=0:h:4;    %initialize time array 

  
clear ystar;     

  
ystar(1)=1.0;   %initial condition 

  
for i=1:length(t)-1, 
   ynew=ystar(i)+h*(2*exp(-5*t(i))-4*ystar(i)) 
   k=2*exp(-5*t(i+1))-4*ynew 
   ystar(i+1)=ystar(i)+h*(k);       %Estimates new value of y; 
end 

  
%exact solution 
y=-2*exp(-5*t)+3*exp(-4*t); 

  
%Plot approximate and exact solution. 
subplot(1,3,3) 
plot(t,ystar,'b--',t,y,'r-'); 
legend('Approximate','Exact'); 
title('Backward Euler Approximation, h=0.015'); 
xlabel('Time'); 
ylabel('y*(t), y(t)'); 

 

1.2 RUNGE-KUTTA 
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%==================== 
%% Runge-Kutta Method 
%==================== 

  
%DE:= y'(t)+4*y(t)=2*exp(-5*t) 

  
%Exact solution found using Maple: y(t)=-2*exp(-5*t)+3*exp(-4*t) 
    %Used initial condition of y(0)=1 

  
h=0.1;      %h is the step size 
t=0:h:2.5;  %initialize time array 

  
clear ystar;     

  
ystar(1)=1.0;   %initial condition 

  
for i = 1:length(t)-1 
    k1 = 2*exp(-5*t(i))-4*ystar(i); 
    k2 = 2*exp(-5*(t(i)+h/2))-4*(ystar(i)+(h/2)*k1); 
    k3 = 2*exp(-5*(t(i)+h/2))-4*(ystar(i)+(h/2)*k2); 
    k4 = 2*exp(-5*(t(i)+h))-4*(ystar(i)+(h)*k3) 
    ystar(i+1) = ystar(i) + h/6*(k1 + 2*k2 + 2*k3 + k4); 
end 

  
%exact solution 
y=-2*exp(-5*t)+3*exp(-4*t); 

  
plot(t,y,'r-',t,ystar,'b-.'); 
legend('Exact','Approximate'); 
title('Runge-Kutta (4th Order) Approximation, h=0.15'); 
xlabel('Time'); 
ylabel('y*(t), y(t)'); 

 

1.3 PREDICTOR-CORRECTOR 
 

%============================ 
%% Predictor-Corrector Method 
%============================ 

  
%DE:= y'(t)+4*y(t)=2*exp(-5*t) 

  
%Exact solution found using Maple: y(t)=-2*exp(-5*t)+3*exp(-4*t) 
    %Used initial condition of y(0)=1 

  
h=0.1;      %h is the step size 
t=0:h:2.5;  %initialize time array 

  
clear ystar;     

  
ystar(1)=1.0;   %initial condition 

  
for i = 1:3 % find the first four elements using RK4 
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    k1 = 2*exp(-5*t(i))-4*ystar(i); 
    k2 = 2*exp(-5*(t(i)+h/2))-4*(ystar(i)+(h/2)*k1); 
    k3 = 2*exp(-5*(t(i)+h/2))-4*(ystar(i)+(h/2)*k2); 
    k4 = 2*exp(-5*(t(i)+h))-4*(ystar(i)+(h)*k3) 
    ystar(i+1) = ystar(i) + h/6*(k1 + 2*k2 + 2*k3 + k4); 
end 

  
for i = 4:length(t)-1 % P-C Method 
    yp=ystar(i)+(h/24)*(55*(2*exp(-5*t(i))-4*ystar(i))-59*(2*exp(-

5*t(i-1))-4*ystar(i-1))+37*(2*exp(-5*t(i-2))-4*ystar(i-2))-

9*(2*exp(-5*t(i-3))-4*ystar(i-3))); 
    yc=ystar(i)+(h/24)*(9*(2*exp(-5*t(i+1))-4*yp)+19*(2*exp(-

5*t(i))-4*ystar(i))-5*(2*exp(-5*t(i-1))-4*ystar(i-1))+1*(2*exp(-

5*t(i-2))-4*ystar(i-2))); 
    ystar(i+1)=yc+(19/270)*(yp-yc);    
end 

  

  
%exact solution 
y=-2*exp(-5*t)+3*exp(-4*t); 

  
plot(t,y,'r-',t,ystar,'b-.'); 
legend('Exact','Approximate'); 
title('Predictor-Corrector Approximation, h=0.15'); 
xlabel('Time'); 
ylabel('y*(t), y(t)'); 

 

1.4 ODE45 

 

%============== 
%% ODE45 Method 
%============== 

  
clear all; 
h=0.05 %set initial step size 
tspan=0:h:2; 
xinit=1; 
[t,x] = ode45(@DE, tspan, xinit) %DE is -4*y+2*exp(-5*t); 

  
yact=-2*exp(-5*t)+3*exp(-4*t); %exact solution 

  
plot(t,yact,'r-',t,x,'b-.'); 
legend('Exact','Approximate'); 
title('ODE45 Approximation, h=0.15'); 
xlabel('Time'); 
ylabel('y*(t), y(t)'); 

  
err(x,yact) %error between method and exact solution 

 

1.5 ORDER OF THE METHOD 

 



  

Page 36 

 

  

%% Find the Order of Method for Predictor-Corrector Method 

  
clear all; 
h=0.1 %set initial step size 
t=0:h:2; 
ystar(1)=1.0;   %initial condition 
y=-2*exp(-5*t)+3*exp(-4*t); %exact solution 

  
for j=1:8;      %h is the step size 
    harray(j)=h; %record the h-value 
    h=h/2; %create next h-value 
    t=0:h:2; 
    clear ystar; 
    ystar(1)=1; 
    y=-2*exp(-5*t)+3*exp(-4*t); 
    %PC method for finding ystar 
    for i = 1:3 % find the first four elements using RK4 
        k1 = 2*exp(-5*t(i))-4*ystar(i); 
        k2 = 2*exp(-5*(t(i)+h/2))-4*(ystar(i)+(h/2)*k1); 
        k3 = 2*exp(-5*(t(i)+h/2))-4*(ystar(i)+(h/2)*k2); 
        k4 = 2*exp(-5*(t(i)+h))-4*(ystar(i)+(h)*k3); 
        ystar(i+1) = ystar(i) + h/6*(k1 + 2*k2 + 2*k3 + k4); 
    end 
    for i = 4:length(t)-1 % P-C Method 
        yp=ystar(i)+(h/24)*(55*(2*exp(-5*t(i))-4*ystar(i))-

59*(2*exp(-5*t(i-1))-4*ystar(i-1))+37*(2*exp(-5*t(i-2))-4*ystar(i-

2))-9*(2*exp(-5*t(i-3))-4*ystar(i-3))); 
        yc=ystar(i)+(h/24)*(9*(2*exp(-5*t(i+1))-4*yp)+19*(2*exp(-

5*t(i))-4*ystar(i))-5*(2*exp(-5*t(i-1))-4*ystar(i-1))+1*(2*exp(-

5*t(i-2))-4*ystar(i-2))); 
        ystar(i+1)=yc+(19/270)*(yp-yc); 
    end 
    p(j)=err(ystar,y) %record the error at the coresponding h-

value 
end 

  
%plot on a loglog scale 
loglog(harray,p) 
title('Predictor-Corrector Method - Step Size vs. Error'); 
xlabel('Step Size (h)'); 

 

2. HODGKIN HUXLEY MODEL 

2.1 COMPARISON OF METHODS 

 

%============================== 
%% HH Comparison of all Methods 
%============================== 

  
%% Forward Euler Method 

  
clc; clear; 
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%Constants set for all Methods 
Cm=0.01; % Membrane Capcitance uF/cm^2 
dt=0.04; % Time Step ms 
t=0:dt:25; %Time Array ms 

  
I=0.1; %External Current Applied 

  
ENa=55.17; % mv Na reversal potential 
EK=-72.14; % mv K reversal potential 
El=-49.42; % mv Leakage reversal potential 
gbarNa=1.2; % mS/cm^2 Na conductance 
gbarK=0.36; % mS/cm^2 K conductance 
gbarl=0.003 % mS/cm^2 Leakage conductance 

  
V(1)=-60; % Initial Membrane voltage 
m(1)=am(V(1))/(am(V(1))+bm(V(1))); % Initial m-value 
n(1)=an(V(1))/(an(V(1))+bn(V(1))); % Initial n-value 
h(1)=ah(V(1))/(ah(V(1))+bh(V(1))); % Initial h-value 

  
for i=1:length(t)-1 

    
    %Euler method to find the next m/n/h value 
    m(i+1)=m(i)+dt*((am(V(i))*(1-m(i)))-(bm(V(i))*m(i)));  
    n(i+1)=n(i)+dt*((an(V(i))*(1-n(i)))-(bn(V(i))*n(i))); 
    h(i+1)=h(i)+dt*((ah(V(i))*(1-h(i)))-(bh(V(i))*h(i))); 

  
    gNa=gbarNa*m(i)^3*h(i); 
    gK=gbarK*n(i)^4; 
    gl=gbarl; 

     
    INa=gNa*(V(i)-ENa); 
    IK=gK*(V(i)-EK); 
    Il=gl*(V(i)-El); 

     
    %Euler method to find the next voltage value 
    V(i+1)=V(i)+(dt)*((1/Cm)*(I-(INa+IK+Il))); 

     
end 

  
%Store variables for graphing later 
FE=V; 
FEm=m; 
FEn=n; 
FEh=h; 

  
clear V m n h; 

  
%% Runge-Kutta Method 

  
V(1)=-60; % Initial Membrane voltage 
m(1)=am(V(1))/(am(V(1))+bm(V(1))); % Initial m-value 
n(1)=an(V(1))/(an(V(1))+bn(V(1))); % Initial n-value 
h(1)=ah(V(1))/(ah(V(1))+bh(V(1))); % Initial h-value 
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for i=1:length(t)-1 % Loop through each step until time is 

finished 

    
    %4 step method of Runge-Kutta 
    K1=dt*HH(i,[V(i); n(i); m(i); h(i)]); 
    k1=K1(1,1);n1=K1(2,1);m1=K1(3,1);h1=K1(4,1);% obtain 4 k 

variables (V,m,n,h) from HH function 
    

K2=dt*HH(i+(0.5*dt),[V(i)+(0.5*k1);n(i)+(0.5*n1);m(i)+(0.5*m1);h(i

)+(0.5*h1)]); 
    k2=K2(1,1);n2=K2(2,1);m2=K2(3,1);h2=K2(4,1); 
    

K3=dt*HH(i+(0.5*dt),[V(i)+(0.5*k2);n(i)+(0.5*n2);m(i)+(0.5*m2);h(i

)+(0.5*h2)]); 
    k3=K3(1,1);n3=K3(2,1);m3=K3(3,1);h3=K3(4,1); 
    K4=dt*HH(i+dt,[V(i)+k3;n(i)+n3;m(i)+m3;h(i)+h3]); 
    k4=K4(1,1);n4=K4(2,1);m4=K4(3,1);h4=K4(4,1); 

     
    %create next step for each variable 
    V(i+1)=V(i)+1/6*(k1+2*k2+2*k3+k4); 
    n(i+1)=n(i)+1/6*(n1+2*n2+2*n3+n4); 
    m(i+1)=m(i)+1/6*(m1+2*m2+2*m3+m4); 
    h(i+1)=h(i)+1/6*(h1+2*h2+2*h3+h4); 
end 

  
%set variables for graphing later 
RK=V; 
RKm=m; 
RKn=n; 
RKh=h; 

  
clear V m n h; 
%% PC Method 

  
V(1)=-60; % Initial Membrane voltage 
m(1)=am(V(1))/(am(V(1))+bm(V(1))); % Initial m-value 
n(1)=an(V(1))/(an(V(1))+bn(V(1))); % Initial n-value 
h(1)=ah(V(1))/(ah(V(1))+bh(V(1))); % Initial h-value 

  
%First four steps are found using the Runge-Kutta Method 
for i=1:3 

    
    K1=dt*HH(i,[V(i); n(i); m(i); h(i)]); 
    k1=K1(1,1);n1=K1(2,1);m1=K1(3,1);h1=K1(4,1); 
    

K2=dt*HH(i+(0.5*dt),[V(i)+(0.5*k1);n(i)+(0.5*n1);m(i)+(0.5*m1);h(i

)+(0.5*h1)]); 
    k2=K2(1,1);n2=K2(2,1);m2=K2(3,1);h2=K2(4,1); 
    

K3=dt*HH(i+(0.5*dt),[V(i)+(0.5*k2);n(i)+(0.5*n2);m(i)+(0.5*m2);h(i

)+(0.5*h2)]); 
    k3=K3(1,1);n3=K3(2,1);m3=K3(3,1);h3=K3(4,1); 
    K4=dt*HH(i+dt,[V(i)+k3;n(i)+n3;m(i)+m3;h(i)+h3]); 
    k4=K4(1,1);n4=K4(2,1);m4=K4(3,1);h4=K4(4,1); 
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    V(i+1)=V(i)+1/6*(k1+2*k2+2*k3+k4); 
    n(i+1)=n(i)+1/6*(n1+2*n2+2*n3+n4); 
    m(i+1)=m(i)+1/6*(m1+2*m2+2*m3+m4); 
    h(i+1)=h(i)+1/6*(h1+2*h2+2*h3+h4); 
end 

  
for i = 4:length(t)-1 % P-C Method 

     
    %predictor 
    

yp=[V(i);n(i);m(i);h(i)]+(dt/24)*(55*HH(t(i),[V(i);n(i);m(i);h(i)]

)-59*(HH(t(i-1),[V(i-1);n(i-1);m(i-1);h(i-1)]))+37*(HH(t(i-

2),[V(i-2);n(i-2);m(i-2);h(i-2)]))-9*(HH(t(i-3),[V(i-3);n(i-

3);m(i-3);h(i-3)]))); 
    %corrector 
    

yc=[V(i);n(i);m(i);h(i)]+(dt/24)*(9*(HH(t(i+1),yp))+19*(HH(t(i),[V

(i);n(i);m(i);h(i)]))-5*HH(t(i-1),[V(i-1);n(i-1);m(i-1);h(i-

1)])+HH(t(i-2),[V(i-2);n(i-2);m(i-2);h(i-2)])); 
    C=yc+(19/270)*(yp-yc); 
    V(i+1)=C(1,1); 
    n(i+1)=C(2,1); 
    m(i+1)=C(3,1); 
    h(i+1)=C(4,1); 
end 

  
%Store variables for graphing 
PC=V; 
PCm=m; 
PCn=n; 
PCh=h; 

  
clear V m n h; 

  
%% ODE45 Method 

  
V=-60; % Initial Membrane voltage 
m=am(V)/(am(V)+bm(V)); % Initial m-value 
n=an(V)/(an(V)+bn(V)); % Initial n-value 
h=ah(V)/(ah(V)+bh(V)); % Initial h-value 

  
y0=[V;n;m;h]; 

  
tspan = [0,max(t)]; 

  
%Matlab's ode45 function 
[time,V] = ode45(@HH,tspan,y0); 

  
OD=V(:,1); 
ODn=V(:,2); 
ODm=V(:,3); 
ODh=V(:,4); 
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clear V; 

  
%% Plots 

  
%Plot the functions 
plot(t,FE,t,RK,t,PC,time,OD); 
legend('Forward Euler','Runge-Kutta','Predictor 

Corrector','ODE45'); 
xlabel('Time (ms)'); 
ylabel('Voltage (mV)'); 
title('Voltage Change for Hodgkin-Huxley Model'); 

  

  
figure 
plot(t,FEn,'b',t,RKn,'b:',t,PCn,'b-.',time,ODn,'b--

',t,FEm,'g',t,RKm,'g:',t,PCm,'g-.',time,ODm,'g--

',t,FEh,'r',t,RKh,'r:',t,PCh,'r-.',time,ODh,'r--'); 
ylabel('Gaining Variables') 
xlabel('Time (ms)') 
axis([0 5 0 1]) 
legend('n Euler','n Runge-Kutta','n Predictor Corrector','n 

0ODE45','m Euler','m Runge-Kutta','m Predictor Corrector','m 

ODE45','h Euler','h Runge-Kutta','h Predictor Corrector','h 

ODE45'); 

 

2.2 HH FUNCTION 
 

function dydt = HH(t,y) 

  
% Constants 
ENa=55.17; % mv Na reversal potential 
EK=-72.14; % mv K reversal potential 
El=-49.42; % mv Leakage reversal potential 
gbarNa=1.2; % mS/cm^2 Na conductance 
gbarK=0.36; % mS/cm^2 K conductance 
gbarl=0.003; % mS/cm^2 Leakage conductance 

  
I = 0.1; %Applied Current 
Cm = 0.01; %Membrane Capacitance 

  
% Values set to equal input values 
V = y(1);  
n = y(2); 
m = y(3); 
h = y(4); 

  
gNa=gbarNa*m^3*h; 
gK=gbarK*n^4; 
gl=gbarl; 

  
INa=gNa*(V-ENa); 
IK=gK*(V-EK); 
Il=gl*(V-El); 
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%Hodgkin-Huxley Model Equation 
dydt = [((1/Cm)*(I-(INa+IK+Il))); an(V)*(1-n)-bn(V)*n; am(V)*(1-

m)-bm(V)*m; ah(V)*(1-h)-bh(V)*h]; 

  

2.3 ALPHA AND BETA FUNCTIONS 

 

function a=am(v) %Alpha for Variable m 
    a=0.1*(v+35)/(1-exp(-(v+35)/10)); 
end 

 

function b=bm(v) %Beta for variable m 
b=4.0*exp(-0.0556*(v+60)); 
end 

 

function a=an(v)%Alpha for variable n 
a=0.01*(v+50)/(1-exp(-(v+50)/10)); 
end 

 

function b=bn(v) %Beta for variable n 
b=0.125*exp(-(v+60)/80); 
end 

 

function a=ah(v) %Alpha value for variable h 
a=0.07*exp(-0.05*(v+60)); 
end 

 

function b =bh(v) %beta value for variable h 
b=1/(1+exp(-(0.1)*(v+30))); 
end 

 

 

 


