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Spin Geometry

Let M be an oriented Riemannian manifold with a SO(n)-frame
bundle P →M . A spin structure on M is a lift:

P̃ →M, Spin(n)-frame bundle.

We consider the associate spin bundle S = P̃ ×γ ∆n, where
φ ∈ Γ∞(S ) are called spinors. Let ∇ the lift of the Levi-Civita
connection on M to P̃ , with ω the associated 1-form.

Γ∞(S ) T ∗X ⊗S TX ⊗S Γ∞(S )∇ g−1
c

Dirac operator D = c ◦ g−1 ◦ ∇
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Spin Geometry

Let ψ ∈ Γ∞(S ),

Dψ = dψ +
1

2

∑
i<j

ωijeiejψ.

We work at the Hilbert space level with H = L2(M,S ) square
integrable spinors

〈ψ, φ〉 =

∫
M
〈ψ(x), φ(x)〉x dvolg

C∞(M) acting as bounded operators on H.
For f ∈ C∞(M), we have the commutator [D, f ]ψ = −ic(df)ψ as an
operator in B(H).
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Spin Geometry

Consider the triple A = C∞(M), D = /∂M , H = (L2(M,S ), π).

µ : A⊗A→ A, µ(a⊗ b) = ab

Then one can define the universal graded differential algebra as follow:

Ω1(A) = ker(µ), da := 1⊗ a− a⊗ 1,

Ωk(A) = {a1da2da3 · · · dak, ai ∈ A} , Ω∗(A) =
⊕
k

Ωk(A).

If in addition, we require that A is equipped with an involution ∗

(da)∗ = d(a∗).
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Spin Geometry

Use the Dirac operator D : H → H and extend the representation
π : A→ B(H) to a representation of Ω(A) in B(H):

π(da) = [D,π(a)] .

Connes’ differential forms Ω∗D := Ω∗(A)/J

The representation in B(H), π(a0da1 · · · dan) = a0 [D, a1] · · · [D, an]

π : Ω∗D → ΩdR(M) a0da1 · · · dan 7→ a0ddRa1 · ddRa2 · · · ddRan

extends to a canonical isomorphism of GDA.
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Spin Geometry

Connes’ distance

d(x, y) = sup
a∈A
{|a(x)− a(y)| , ‖ [D, a] ‖ ≤ 1}

Geodesic distance

dg(x, y) = inf
γ

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt

Then d = dg.
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Question

The spectral triple (C∞(M), /∂M , L
2(M,S )) is a spin geometry.

Question: Can we extend this to the case where M is not a manifold ?

(A, D,H).
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C∗-Algebra and Representations

Let A be a Banach algebra with an involution such that

‖a∗a‖ = ‖a‖2 ∀a ∈ A.

The algebra A is then called a C∗-algebra.

A representation (π,H) is a ∗-homomorphism:

π : A → B(H).

We also introduce the spectrum of a C∗-algebra:

Spec(A) := {[π] | π irreducible} .
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Theorem (Gelfand-Naimark)

Let A be a commutative unital C∗-algebra, then there exists a compact
Hausdorff topological space X such that:

A ' C(X).

Duality space/algebra:

M C∞(M).

X ?
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Manifolds and Triangulations

Let (M, g) be a compact smooth Riemannian manifold.

Theorem (Whitney)

Every k-smooth manifold M has k-smooth triangulation.

Let (Ki) be a sequence of triangulations such that

K1 > K2 > · · · > Ki > · · · φij : Kj → Ki, i < j.

Lemma

The topological space M is homeomorphic to the subspace of all the
maximal points of the inverse limit of the system (Ki, φij).
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The Behncke-Leptin construction

Let P be a partially ordered set (poset).

This construction allows us the association

A(P ) P

such that:
Spec(A(P )) ' P.
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The Behncke-Leptin construction

Axioms of the Behncke-Leptin construction:

1) Associate a separable Hilbert space H(X) and attach to every
point x ∈ X a subspace H(x) ⊆ H(X) that decomposes into:

H(x) = H−(x)⊗H+(x).

where H−(x) ' `2(Z).

2) Let M be the set of maximal points in X:

H(x) = H−(x)⊗ C ' H−(x).

2’) If m is the set of minimal points in X, then x ∈ m, one has:

H(x) = C⊗H+(x) ' H+(x).
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The Behncke-Leptin construction

3) Associate to x ∈ X an operator algebra A(x) acting on H(x)
(extended by zero to the whole space H(X)) such that

A(x) = 1H−(x) ⊗K(H+(x)).

where K(H+(x)) compact operators over H+(x).

4) Build the C∗-algebra A(X) associated to X as the algebra
generated by the subalgebras A(x) when x run over X:

A(X) =
⊕
x∈X

A(x) acting on H(X) =
⊕
x∈X

H(x).

Damien Tageddine (McGill) NDG on Infinitesimal Spaces November 17, 2022 19 / 42



The Behncke-Leptin construction

3) Associate to x ∈ X an operator algebra A(x) acting on H(x)
(extended by zero to the whole space H(X)) such that

A(x) = 1H−(x) ⊗K(H+(x)).

where K(H+(x)) compact operators over H+(x).

4) Build the C∗-algebra A(X) associated to X as the algebra
generated by the subalgebras A(x) when x run over X:

A(X) =
⊕
x∈X

A(x) acting on H(X) =
⊕
x∈X

H(x).

Damien Tageddine (McGill) NDG on Infinitesimal Spaces November 17, 2022 19 / 42



The Behncke-Leptin construction: an example

λ(x)1

µ(y1)1⊗ k(y1) µ(y2)1⊗ k(y2) µ(y3)1⊗ k(y3)

k(z1) k(z2) k(z3)
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The Behncke-Leptin construction

Proposition

A continuous surjection φ : X ′ → X between posets induces a unital
∗-homomorphism φ∗ : A(X)→ A(X ′).

A(X) A(X ′)

X X ′

φ∗

id id′

φ

A(X1) A(X2) · · · A(Xi) · · ·
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Direct limit of C∗-algebras

Define an inductive limit of C∗-algebra:

A′ =

{
a = (an) ∈

∏
n

An : ∃N ∈ N, an+1 = ψn(an) ∀n ≥ N

}
.

Let (An, ψn)n be an inductive sequence in the category of C∗-algebras.
Then there exists an inductive limit (A,ψn,∞) which satisfies the
following:

(i) A =
⋃
n∈N ψn,∞(An);

(ii) For any n ∈ N and a ∈ An, ‖ψn,∞(an)‖ = limp→∞ ‖ψn,p(a)‖.
(ii) For any n ∈ N, a ∈ kerψn,∞ if and only if limp→∞ ‖ψn,p(a)‖ = 0.
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Take It to the Limit

We can draw the following commuting diagram:

A1 A2 · · · Ai · · · A∞

K1 K2 · · · Ki · · · K∞

Proposition (Functorial)

The spectrum Spec(A∞) equipped with the hull-kernel topology is
homeomorphic to the space X∞ and

lim
←
Spec(Ai) ' Spec(lim→ Ai).
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Take it to the limit

Theorem A (D.T. and J-C. Nave)

The limit C∗-algebra A∞ is isometrically ∗-isomorphic to C∗- algebra
of the complex valued continuous sections Γ(M,A∞) over the manifold
M . The center Z(A∞) is isomorphic to C(M,C).

Theorem B (T. and J-C. Nave)

The Hilbert space L2(M) of square integrable functions over the
manifold M is a subspace of H∞:

H∞ = L2(M)⊕H.
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Example of the lattice

Let Λ be the d-dimensional, we can write it as the direct product of d
line lattices:

Λ = L× · · · × L.

Let (A(L), ψL) be a C∗-algebra over L:

A(Λ) = A(L)⊗ · · · ⊗A(L), ψΛ = ΠψL.

Corollary A

The centre of the limit C∗-algebra A∞, Z(A∞) is isometrically
∗-isomorphic to C(Rn) acting on L2(Rn) as a subspace of H∞.
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Abelian subalgebra

The centre of Ai (i <∞) will be denoted by Z(AI). We know by
construction that Ai is generated by the algebras

A(x) = 1H−(x) ⊗K(H+(x))

for x running X. The centre Z(Ai) of Ai is trivial.

We will also consider the commutative subalgebra A generated by the
projectors on H(x) when x ∈M is a maximal point:

A = ⊕x∈M1H(x), a =
∑
i

λipi.

Damien Tageddine (McGill) NDG on Infinitesimal Spaces November 17, 2022 26 / 42



So Far...

We have introduced the following:

A sequence of C∗-algebras Ai with limit C(M)

A sequence of representations Hi with limit L2(M)

We need to define a Dirac operator D.

If (M, g) is a compact spin manifold then data (C∞(M), L2(S), ∂M ) is
enough to recover the geometric structure.
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Finite spectral triple

A spectral triple is the data (A,H, D) where:

(i) A is a real or complex ∗-algebra;

(ii) H is a Hilbert space and a left-representation (π,H) of A in B(H);

(iii) D is a Dirac operator, which is a self-adjoint operator on H.

If in addition, H is equipped with a Z2-grading i.e. there exists a
unitary self-adjoint operator γ ∈ B(H) such that

1) [γ, π(a)] = 0 for all a ∈ A,

2) γ anticommutes with D,

then the spectral triple is said to be even. Otherwise, it is said to be
odd. In the case where H is finite dimensional, then the triple
(A,H, D) is called a discrete spectral triple.
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Finite spectral triple

We consider the spectral triple (A,H(X), ρ), where

h =
⊕
x∈M

C, H(X) = h⊕ h∗

and
π =

⊕
x∈M

πx, ρ = π ⊕ π∗

The triple (A,H, ρ) embeds the commutative algebra A into the
Cartan subalgebra h of the Lie algebra gl(2m,C).

M2m = M+
2m ⊕M

−
2m
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Finite spectral triple

We define the parity element γ ∈M2m(C) such that

γ =

(
1m 0
0 −1m

)

and the Dirac operator

D =
i

h

(
0 D−

D+ 0

)
The graded commutator is then given by :

da = − [D, a] := Da− εaaD,

where εa = 1 if a is even and εa = −1 if a is odd.
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Finite spectral triple

For any element a ∈ A, we have

ρ(a) =



λ1

. . .

λm
λ1

. . .

λm


.

Then,

D =
∑
i<j

ωij êij , da =
∑
i<j

ωijαij(a)êij .
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Dirac operator associated to X

Let D ∈M2m(C) be an odd and hermitian matrix and let ωij be the
coefficients of the block D−. We say that D is an admissible Dirac
operator associate to X if it satisfies:

a) vertices i and j do not share an edge⇔ ωij = 0, ∀i, j ∈M,

b) the eigenvalues µn satisfy the asymptotic µn(D) = O(h−1).

The prototypical example is given by the combinatorial Dirac operator,
for which:

ωij :=

{
1 if i ∼ j,
0 otherwise.
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Case n = 2

Let a = (a1, a2) ∈M2(C) and the Dirac operator:

D =
i

h

(
0 1
−1 0

)
, da =

i

h

(
0 a2 − a1

a1 − a2 0

)
.

If we define the following distance:

d(x, y) = sup
a∈A
{|a(x)− a(y)| : ‖[D, a]‖ ≤ 1}

then one can show that for X = {x, y}

d(x, y) = h.

Without prior assumption, we see the emergence of a small parameter
h in place of the usual distance ∆x.
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Case of a lattice

In the general case of a triangulation Ki, we define Di as the block
matrix

Di =
i

h

(
0 D−i
D+
i 0

)
where D−i is the adjacency matrix associated to Ki.

D−i =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · · · · 0


.
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Case of a lattice

Then the limit operator D∞ acts on A∞ by the commutator:

[D∞, a] = ([D0, a0], [D1, a1], · · · , [Di, ai], · · · ) ∈
∏
i∈I

M−2mi
(C).

Proposition

i) σA∞([D∞, a]) = ∪iσAi([Di, ai])

ii) ‖ [D∞, a] ‖ = ‖dca‖∞
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Differential calculus

(Spectral Theorem)

Let A be a bounded self-adjoint operator on a Hilbert space H. Then
there is a measure space (X,Σ, µ) and a function L∞µ (X) and a unitary
operator U : H → L2

µ(X) such that

U∗TU = A,

where T is the multiplier operator:

T (ϕ)(x) = f(x)ϕ(x),

and ‖T‖ = ‖f‖∞.
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Differential calculus

Theorem C (D.T. and J-C. Nave)

There exists a finite measure µ and a unitary operator

U : L2(R)→ L2(R, dµ)

such that,

U [D, a]U−1φ =
da

dx
φ, ∀φ ∈ L2(R),

Moreover, the norm of [D, a] is given by ‖ [D, a] ‖ = ‖dca‖∞.
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Differential calculus

Theorem C’ (D.T. and J-C. Nave)

There exists a finite measure µ and a unitary operator

U : ⊗di=1L
2(R)→ ⊗di=1L

2(R, dµ),

such that

U [D, a]U−1φ =

d∑
k=1

a1φ1 ⊗ · · · ⊗
∂ak
∂xk

φk ⊗ · · · ⊗ adφd,

for all φ = φ1 ⊗ · · ·φk ⊗ · · · ⊗ φd in ⊗di=1L
2(R).
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Conclusion

We have the following results: given a compact spin manifold (M, g),

associate to each Ki a C∗-algebra Ai with limit C(M),

define a differential structure da = [Di, a] on each Ai,

for the lattice, (Di) converges to the usual Dirac operator ∂M .

Using the same tools than the continuous case (C∞, L2(M), ∂M )

Future works:

Beyond the lattice case (simplicial complex, fractals..),

Application to noncommutative algebraic geometry and p-adic
number theory.

Stay tuned !
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