
Noncommutative differential
geometry and infinitesimal spaces

Damien Tageddine

Department of Mathematics and Statistics
McGill University, Montreal

April, 2023

A thesis submitted to McGill University in partial fulfillment of
the requirements of the degree of Doctor of Philosophy

c© Damien Tageddine 2023



Abstract

In this thesis dissertation, we introduce the language of noncommutative differential
geometry to formalize discrete differential calculus.

In Chapter 2, we begin with a brief review of the inverse limit of posets as
an approximation of topological spaces. We then show how to associate a C∗-
algebra over a poset, giving it a piecewise-linear structure. Furthermore, we explain
how dually the algebra of continuous function C(M) over a manifold M can be
approximated by a direct limit of C∗-algebras over posets. Finally, in the spirit of
noncommutative differential geometry, we define a finite dimensional spectral triple
on each poset. We show how the usual finite difference calculus is recovered as the
eigenvalues of the commutator with the Dirac operator. We prove a convergence
result in the case of the d-lattice in Rd and for the torus Td.

Chapter 3 presents a follow-up work on the noncommutative differential geom-
etry on discrete spaces introduced in the previous chapter. On the one hand, we
reformulate the definition of finite dimensional compatible Dirac operators using
Clifford algebras. This definition also leads to a new construction of a Laplace oper-
ator. We then show that any sequence of compatible Dirac operators (Dn)n∈N yields
to a bounded operator. On the other hand, after a brief introduction of Green’s
function on manifolds, we show that when the Dirac operators are interpreted as
transition matrices, the sequence (Dn)n∈N converges in average to the usual Dirac
operator on a spin manifold. The same conclusion can be drawn for the Laplace
operator.
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Résumé

Dans cette thèse, nous introduisons le langage de la géométrie différentielle noncom-
mutative afin de formaliser le calcul différentiel discret.

Dans le Chapitre 2, nous commençons par une brève description de limites in-
verses d’ensembles partiellement ordonnés (parfois appelé poset d’après l’anglais
partially ordered set) comme approximation d’espace topologique. Nous montrons
ensuite comment une C∗-algèbre peut être associée à un poset. Cette C∗-algèbre
induit, de fait, une structure linéaire par morceau sur l’espace en question. En
outre, nous expliquons comment, de manière duale, l’algèbre des fonctions continue
C(M) sur une variétéM peut être approximée par une limite directe de C∗-algèbres
associées à des posets. Enfin, et dans l’esprit de la géométrie différentielle non-
commutative, nous définissons un triplet spectral sur chaque poset. Nous montrons
que les formules de différences finies usuelles se retrouvent comme valeurs propres
du commutateur avec l’opérateur de Dirac. Nous prouvons la convergence de ces
formules dans le cas de la d-lattice et du tore Td.

Le Chapitre 3 est une suite immédiate des travaux sur la géométrie différentielle
noncommutative sur des espaces discrets développés dans le chapitre précédent.
D’une part, nous reformulons la définition d’opérateur de Dirac de dimension finie
en termes d’algèbre de Clifford. Cette définition conduit à une nouvelle construction
du Laplacien. Nous montrons ensuite que n’importe quelle séquence d’opérateurs
de Dirac (Dn)n∈N définit un opérateur borné. D’autre part, suit à une brève intro-
duction sur les fonctions de Green définies sur des variétés lisses, nous montrons que
lorsque les opérateurs de Dirac sont interprétés comme des matrices de transition, la
séquence d’opérateur (Dn)n∈N converge en moyenne vers l’opérateur de Dirac clas-
sique sur une variété avec une structure spinorielle. Une conclusion semblable est
démontrée pour l’opérateur de Laplace.
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Introduction

The approximation theory of partial differential equations (PDE) can take various

aspects. Traditionally, numerical analysis proposes different strategies to discretize

operators. Depending on the situation, finite differences, finite elements, finite vol-

umes, or spectral methods may be utilized. In this process, the focus is usually ana-

lytical. That is, the aim is to control asymptotic convergence of the approximation

error in a small parameter (∆t,∆x, ...). In fact, only a small subset of discretization

techniques aim to preserve certain underlying structures (e.g. geometric, algebraic,

etc. . . ) of the continuous operator at the discrete level.

The general motivation for the present work is the discretization of partial differ-

ential equations (PDE). This thesis aims at laying down the foundation of a broad

framework to study discrete differential calculus in a discretization-free fashion. Us-

ing the tools of noncommutative differential geometry, we establish a geometric

formalism of finite difference calculus in order to tackle the problem of differential

operators approximations.

0.1 Related approaches and background

The approximation theory of partial differential equations (PDE) can take several

aspects. The various methods rely on the intuitive geometric idea that the fine

structure of a space M (one can think of a domain in Rd or a smooth manifold) is

discrete. The resulting discretized space, say X, is governed by a parameter — being

a grid spacing, the size of a mesh or a time step for example — denoted by h, ε or

∆x, which plays the role of an infinitesimal. In the rest of this work, we will loosely

call this type of discrete space infinitesimal space. Information extracted from the
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0.1. RELATED APPROACHES AND BACKGROUND

continuous space can be represented by a family of morphisms (χx)x∈X with

χx : C∞(M)! C, χx(f) = f(x),

which can be related to either sampling morphisms in finite difference (volume)

language, or nodal basis in finite element denominations. These maps encapsulate

the local data available from the algebra of functions over the continuous space M .

The geometric approach of discrete differential calculus has been pioneered by

Whitney in his work on geometric integration theory [127]. The classical differential

forms can be interpreted as cochains when restricted to a simplicial complex K by

means of the de Rham map:

C : Ωp(M)! Cp(K,Z), C(ω) := σ 7! 〈ω, σ〉 .

Vice-versa, a cochain can be used to define a differential form using Whitney’s

interpolation map W : Cp(K,Z)! Ωp(M),

W(x0, . . . , xp) = p!

p∑
i=0

(−1)iλidλ0 ∧ · · · ∧ d̂λi ∧ · · · ∧ dλp.

This viewpoint has then been successfully used in lattice (quantum) field theory in

[128, 109, 1] and in computational electromagnetism [26, 114].

Moreover, the idea of deriving a discrete theory that parallels the continuous one

has then been further explored by Hirani in the discrete exterior calculus (DEC)

[72] and subsequently developed by Desbrun et al. [45]. In DEC, the point of view

— which is also shared to some extent by our work — is that the discrete theory

can, and indeed should, stand on its own right. The authors base their approach

on simplicial complexes and its differential calculus on chains and cochains. In that

setting, a differential form is an element in the dual of the space of chains. The

basic data in the theory is given by the triple (K,Ω∗(K), d) where K is a simplicial

complex, d is the coboundary map and Ω∗(K) the space of cochains. To this, one

10
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adds a Hodge-star map:

(K,Ω∗(K), d), ∗ : Ωk(K)! Ωd−k(∗K)

where ∗K is the dual simplicial complex.

In the realm of finite element method, the pioneering work of Arnold et al. [5, 4]

has also initiated a change of paradigm. The main idea behind is that geometrical

and topological properties of differential operators are key points to understand

how their discrete counterpart can be derived. The finite element exterior calculus

(FEEC) is the result of this work and aims at studying approximations of PDEs that

arise from Hilbert complexes. Let W1,W2 be Hilbert spaces along with a differential

map d : W1 ! W2. The fundamental data of FEEC is then given by the polynomial

subspaces W h
1 and W h

2 determined by projection maps π1 and π2 such that the

following diagram commutes:

W1 W2

W h
1 W h

2

d

π1 π2

d

The discretization can be again summarized by the triple (W,d,Ω(W )) where W

is a polynomial algebra, d a derivation map generating the exterior algebra Ω(W )

with coefficients in W .

One can also mention of Christiansen et al. [32] on compatible differential forms

on simplicial complexes. Geometric integration and more generally structure pre-

serving methods have applied this change of paradigm too [3, 103, 93, 68, 33]. Sym-

metries and conservation laws of discrete operators parallel their continuous coun-

terparts [73, 122]. It has been shown that long-term stability can be obtained as

a by-product [124]. Finally, for an application of Lie groups to construct invariant

discretization schemes, one can refer to [20]. Overall, in the geometric discretization

framework, the realization is that classical analysis of consistency and stability is no

longer the main criteria to look for in a discretization. In this context, consistency

and stability are a consequence of preserving geometrical properties.
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Nevertheless, a fair amount of the theory of PDEs is developed on (subdomains

of) Rn, hence the later approaches are, at least in their original incarnations, focused

on Euclidean spaces. However, examples of partial differential equations arise in a

wide variety of applications. As such, extensions of some of the previously men-

tioned techniques to non-Euclidean domains remains a challenge. Hence, a crucial

question in the theory of discretization, is the generalization of classical geometric

approaches to smooth manifolds. Also, and still on the topic of convergence analysis

of finite elements, [125] studies the cotangent discretization of the Laplace-Beltrami

operator; the key result is that mean cruvature vectors converge in the sense of dis-

tributions, but fail to converge in L2. Finally, there are the central research advances

on diffusion maps in [85, 35] and the one on random point clouds in [17, 18]. As one

can see, approaching the problem of compatible discretizations on manifolds rests

heavily on the initial setup chosen to tackle it. The various results are therefore

quite different, and perhaps appear disconnected from one another.

0.2 Present work

The main question that we would like to address in this work is the existence of a

unifying framework to geometric discretizations. This question can be divided into

three subsidiary questions.

The space: the existence of a sequence of approximating spaces, with topologi-

cal structures and metric specified at an early stage, that converges — in a suitable

sense — to a manifold.

The algebra: tied to the question of space is the question of the algebra of “func-

tions” and local coordinates. One needs to identify an associative algebra playing

the role of the algebra of continuous functions over a space that does not necessarily

possess a manifold structure. It is a well established fact from the theory of Banach

algebras [59] that C∗-algebras can be realized as the set of continuous sections over

some topological space. In a very intuitive description, an element of a C∗-algebras

12
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can be thought as (noncommutative) functions over a space called the spectrum of

a C∗-algebra [51, 24]. Hence, if one identifies the points of this spectrum one-to-one

with the usual points of a topological space X, then a C∗-algebra appears as a good

candidate for the set of continuous functions over X. Indeed, their normed space

structure is a powerful tool to study boundedness and convergence of its elements.

Thus, in the same fashion as for the space itself, can one construct a nested sequence

of algebras such that the limit is essentially the space of continuous functions over

the original manifold ?

The geometry: once the questions of space and algebra are addressed, it re-

mains to define (if it exists and is it unique ?) a differential calculus — understood

from an algebraic/geometric point of view in opposition to the usual analytic per-

spective — on such a space. What does such a differential structure on an infinites-

imal space look like ? One can already notice that it will irremediably differ from

its continuous counterpart since functions and forms do not commute anymore:

gdf 6= dfg. (1)

Moreover, the differential calculus is intimately tied to connections and distances

between points parametrized by h. This fact is reminiscent of the continuous theory,

where the line element ds — one can think of an infinitesimal displacement vector

in a metric space — on a n-dimensional Riemannian manifold is a function of the

metric tensor. Moreover, it is a well established fact in spin geometry [37, pp. 552-

557] that this metric information can be summarized in a single operator /D called

the Dirac operator [107, pp. 406-407] such that :

ds = /D
−1
. (2)

Therefore, the metric can be deduced — in principle — from the data of the Dirac

operator. Hence, one have a dual description of space : one purely topological given

by an open cover and one purely algebraic given by the Dirac operator.

13
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0.3 The noncommutative geometry framework

In this thesis we consider the formalism of Noncommutative Differential Geometry

(NDG). NDG has been introduced by Connes in a series of papers [36] compiled in

the red book [37] — and later extensively developed by Connes and his collabora-

tors [39, 38]. This branch of mathematics is concerned with a geometric approach to

noncommutative algebras [82, 120, 110, 111, 112]. In Connes’ work, a noncommuta-

tive space is — heuristically speaking — the dual space of a C∗-algebra by analogy

to the Gelfand theory where commutative C∗-algebras are dual objects to locally

compact Hausdorff spaces. In fact, the notion of space becomes secondary and is

replaced by the notion of a spectral triple (A,H,D) — where A is a C∗-algebra, H

is a Hilbert space on which A is realized as an algebra of bounded linear operators,

D is a Dirac operator. A new type of differential calculus using functional analysis

is then derived; it is now referred to as quantized calculus. We also mention another

type of noncommutative differential geometry over matrix algebras developed by

Dubois-Violette et al. [54] and exposed in more detail in [91, 95, 94].

The idea of approximating a bounded region of space-time with finite topolog-

ical spaces as been pushed by Sorkin [113]. Important examples of noncommuta-

tive spaces are provided by noncommutative lattices, which are a particular case of

posets. This topic has been thoroughly studied by Bimonte et al. [22, 23] — summa-

rized in Landi’s book [86] — and techniques from noncommutative geometry have

been used to construct models of gauge theory on these noncommutative lattices in

Balachandran et al. [9, 10, 8]. It is also worth mentioning another approach to dis-

crete noncommutative spaces and their differential calculus in the work of Dimakis

et al. [47].

0.4 Objectives

The main objective of this work is to derive ab initio finite difference calculus using

the language of noncommutative geometry. This leads us to define tools from differ-

ential geometry such as differential maps along with their differential complex, affine
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0.5. CONTRIBUTIONS OF THIS THESIS

connections and a Laplace operator. It also allows us to study spectral convergence

with respect to a parameter h. Indeed, the natural setting of C∗-algebras, through

their representations into operator algebras, allows us to use the machinery of func-

tional calculus. This main objective can be divided into three sub-objectives. First,

we aim at establishing a proper notion of discrete space X, starting uniquely from

the knowledge of a manifold M along with its algebra of functions. Secondly, we

want to exhibit the algebra of continuous sections Γ (X) over X. Following Gelfand-

Naimark’s theorem, this should be a C∗-algebra A. Thirdly, we define a so-called

Dirac operator D governing the differential geometry over the space X. Once such

an operator is defined, it provides an exterior algebra Ω(A) and some usual machin-

ery from differential geometry.

In this work, we are able to give an intrinsic description of finite difference calcu-

lus in terms of noncommutative geometry and its quantized calculus. We recover

some usual tools of differential geometry, such as an exterior derivative. Higher-

order approximations are restated in terms of Z2-graded traces induced by positive

operators. We also define and establish convergence of differential operators on in-

finitesimal spaces to their continuous counterpart. We further prove a generalized

result on direct limits of C∗-algebras over posets. This extends the result of Bimonte

et al. [23] proven in the special case of noncommutative lattice. Therefore, this work

opens the door to a general framework to study approximation theory of PDEs.

0.5 Contributions of this thesis

In Chapter 2, we start by recalling general results on approximation of a compact

Hausdorff spaceM by a sequence of ordered simplicial complexes (Proposition 2.1.1).

We construct an inverse system of triangulations, (Kn) which become sufficiently

fine for large n. We associate to each space Kn a C∗-algebra An such that the

triangulation Kn is identified with its spectrum Spec(An). The C∗-algebras give a

piecewise-linear structure to the triangulations. We then form an inductive system

15
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(An) with limit a C∗-algebra A∞ and the functorial relation:

lim
 
Spec(Ai) ' Spec(lim

!
Ai).

In addition, the algebra A∞ contains the space of continuous functions C(M) in its

center. Hence, the space C(M) can be approximated by a sequence of C∗-algebras

over each simplicial complex (Theorem 2.2.1 and Proposition 2.2.5):

C(M) ⊂
⋃
n∈N

φ∗n,∞(An).

Furthermore, we define spectral triples (An, hn, Dn) on every triangulation Xn. We

prove that the usual finite difference approximations are recovered as eigenvalues of

the exterior derivative operator (Proposition 2.3.4). More precisely, we construct

the following sequence:

[D, a] = ([D0, a0], [D1, a1], · · · , [Dn, an], · · · ),

and we show convergence of this differential operator to the classical de Rham dif-

ferential in the case of the d-dimensional lattice (Proposition 3) and the d-torus.

In Chapter 3, we fix a triangulation X, and associate a collection of Dirac oper-

ators (Dt)t∈N, where each matrix Dt can be seen as an irreducible matrix associated

to the graph G obtained from X. The graph has n vertices labelled 1, . . . , n, and

there is an edge from vertex i to a vertex j precisely when ωij 6= 0. More precisely,

in the probabilistic setting, a vertex i is connected to a vertex j with probability

ωij. Then, if we let at ∈ Dom(Dt) and define the average operator,

SN =
1

N

N∑
t=1

et [Dt, at] e
∗
t , (3)

where (et)t∈N is some family of projections. The key here is to choose the coefficients

ωtij associated to Dt in order for the average operator SN to converge to [D, a] as

N ! ∞, where D is the Dirac operator on the spin manifold M . The main result
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of this chapter goes as follows:

Let
{
xki0
}n
k=1

be a sequence of i.i.d. sampled points from a uniform distribution on

an open normal neighbourhood Up of a point p in a compact Riemannian manifold

M of dimension d. Let S̃~n
n be the associated operator given by:

Ŝ~n
n : C∞(Up)!M2(R)⊗ U(gl2mn), Ŝ~n

n (a) :=
1

n

n∑
k=1

ek
[
Dk
X , ak

]
e∗k. (4)

Put ~n = n−α, where α > 0, then for a ∈ C∞(Up), in probability:

lim
n!∞

Ψ ◦ Ŝ~n
n (a) = [D, a] (p).

Additionally, a similar result is proved for the case of the Laplace operator.

0.6 Outline

We end the introduction with an outline of the contents of the thesis. We have

attempted to keep this document reasonably self-contained; where details are insuf-

ficient, we provide references for the interested reader.

Chapter 1 reviews the general theory that we believe is necessary to understand

the results present in this thesis. We start with a brief overview of C∗-algebra, with

a focus on the standard results of Gelfand and Naimark in the commutative case

and the GNS construction in the noncommutative case. We then introduce some

machinery of differential geometry. Vector and principal bundles are reviewed along

with connections. Furthermore, we define the spin structure on a manifold which

is crucial to construct the Dirac operator. Finally, we draw the general outlines of

noncommutative differential geometry; from the definition of spectral triples to the

construction of Dixmier’s trace. The classical example of the two points space is

also treated.

Chapter 2 starts by reviewing some technical preliminaries on inverse limits of

triangulations and their associated posets. Then we construct a C∗-algebra over

each poset and study the direct limit. Finally, the differential structure is presented

in the form of spectral triples; we conclude with a discussion on the convergence
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results for the d-lattice in Rd and for the torus Td.

Chapter 3 starts with a presentation of the main results of Chapter 2. We then

give a brief introduction to Clifford algebras. This introduction is used to then

define Dirac operators on finite dimensional spaces in the Clifford algebra setting.

In Section 3.2, we introduce a specific Hamilton-Jacobi equation with its associated

Green function on Rd first, and their generalizations on a Riemannian manifold

then. This is followed by some technical lemmas required to define the coefficients

ωij necessary to prove the main theorems in Chapter 3. In Section 3.4, we prove our

Theorem 3.4.1, and we obtain as a by-product a convergence result on the Laplacian.

Chapter 4 concludes this thesis with a brief overview of open questions and future

projects that the author plans to address in the future.
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Chapter 1

Preliminaries

1.1 C∗-algebras and their spectra

In this section, we recall the theory of C∗-algebras and some fundamental results

that will be useful in the present work.

1.1.1 Banach algebras

Let (V, ‖ · ‖) be a normed vector space. The space (V, ‖ · ‖) is called a Banach space

if in addition V is complete with respect to the norm ‖ · ‖. If V is in addition an

algebra, then we say that ‖ · ‖ is multiplicative if

‖xy‖ ≤ ‖x‖‖y‖, ∀x, y ∈ V. (1.1)

Definition 1.1.1 (Banach algebra). Let A be an associative algebra with an un-

derlying normed vector space (A, ‖ · ‖). Then (A, ‖ · ‖) is a Banach algebra if in

addition:

i) The norm ‖ · ‖ is multiplicative,

ii) (A, ‖ · ‖) is a Banach space.

We will say that A is a unital Banach algebra if it possesses a unit 1A for the

multiplication. An element a ∈ A is then called invertible if there is a b ∈ A such
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1.1. C∗-ALGEBRAS AND THEIR SPECTRA

that ab = ba = 1A and we write b = a−1. The set of invertible in A is denoted by

Inv(A) := {a ∈ A | there is b ∈ A s.t. ba = ab = 1A}.

Definition 1.1.2. The spectrum of an element a in a unital algebra A is the subset

of complex numbers defined as

sp(a) := {λ ∈ C | (λ1A − a) /∈ Inv(A)} . (1.2)

In order to study the internal structure of Banach algebras, one focuses on their

ideals; Let A be an algebra. A subalgebra I ⊂ A is a right (left) ideal if a ∈ A

and b ∈ I then ab ∈ I (ba ∈ I). We call I ⊂ A an algebraic ideal if it is both a

right and a left ideal. We also have the usual notions of trivial ideals (I = 0, A) and

ideals generated by a set J ⊂ A (smallest ideal containing J). A proper (algebraic)

ideal is one which is not equal to A (but may be zero) and a maximal (algberaic)

ideal is a proper (algberaic) ideal not contained in any other proper (algebraic) ideal.

The ideals associated to characters are of particular importance.

Definition 1.1.3. Let A be a Banach algebra. A character on A is a nonzero

algebra homomorphism ϕ : A! C. Let

Ω(A) := {ϕ : A! C | ϕ a character on A} . (1.3)

We call Ω(A) the character space of A, also known as the spectrum of A.

1.1.2 *-algebras

For λ a complex number, we will denote by λ its conjugate.

Definition 1.1.4. Let A be an algebra. An involution on the algebra A is a map

∗ : A! A, x 7! x∗, satisfying the following properties:

1) (x+ y)∗ = x∗ + y∗, ∀x, y ∈ A,
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1.1. C∗-ALGEBRAS AND THEIR SPECTRA

2) (λx)∗ = λx∗, ∀λ ∈ C, x ∈ A,

3) (xy)∗ = y∗x∗, ∀x, y ∈ A,

4) (x∗)∗ = x, ∀x ∈ A.

An algebra A equipped with an involution is called an involutive algebra or simply

a ∗-algebra. Given an element a in a ∗-algebra A, we call a∗ the adjoint of a.

An element x in ∗-algebra A satisfying x = x∗ is called a selfadjoint element.

In addition, a subalgebra B of A is called a selfadjoint subalgebra, whenever it is

invariant under ∗; that is, x∗ ∈ B, for every x ∈ B.

If A is a Banach algebra, then we call I ⊂ A an ideal if it is a norm-closed algebraic

ideal. In this case, A/I can be given the quotient norm

‖a+ I‖ = inf
b∈I
‖a+ b‖, a ∈ A (1.4)

which make A/I into a Banach algebra. Then if A is in addition involutive, then

the ∗ operation descend to A/I making it a Banach ∗-algebra.

1.1.3 C∗-algebras

Definition 1.1.5. An abstract C∗-algebra is a Banach ∗-algebra (A, ‖ ·‖) satisfying

the C∗-condition:

‖a∗a‖ = ‖a‖2 for every a ∈ A. (1.5)

We call a norm satisfying the C∗-condition a C∗-norm.

It follows immediately from the definition that every C∗-algebra is a Banach

∗-algebra but the converse need not hold. The seemingly simple requirement of

the C∗-condition is in fact imposing nice structural properties the we don’t see in

arbitrary Banach algebra.

Definition 1.1.6. Let A be a ∗-algebra. Let p : A! [0,∞) be a map. We say that

p is a C∗-seminorm if for all x, y ∈ A:

1) p(xy) ≤ p(x)p(y),
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1.1. C∗-ALGEBRAS AND THEIR SPECTRA

2) p(x∗) = p(x),

3) p(x∗x) = p(x)2.

Starting from a ∗-algebra A, it is however possible to produce a C∗-algebra,

provided that A is equipped with suitable C∗-seminorms. Indeed, for x ∈ A, we can

define:

‖x‖ := sup{p(x) : p is a C∗-seminorm on A}. (1.6)

It is possible that ‖x‖ is infinite for some x ∈ A. Therefore, we have to assume that

‖x‖ <∞ for every x ∈ A. Moreover, the set

I := {x ∈ A : ‖x‖ = 0} (1.7)

is a two-sided ideal of A. The seminorm ‖ · ‖ descends to a C∗-norm on A/I. The

completion of A/I with respect to this C∗-norm is called the enveloping C∗-algebra

of A and denoted by C∗(A).

Definition 1.1.7. A *-homomorphism between two C∗-algebras A and B is an

algebra homomorphism ϕ : A ! B that involution preserving, i.e. ϕ(a∗) = ϕ(a)∗

for every a ∈ A. If A and B are unital, then ϕ is a unital ∗-homomorphism if

ϕ(1A) = 1B.

We are now ready to introduce two archetypal example of unital C∗-algebras.

Example 1.1.1. 1) Let X be a compact Hausdorff topological space. Consider

the space of functions:

C(X) := {f : X ! C | f is continuous} (1.8)

equipped with pointwise operations. Then C(X) is a C∗-algebra with involu-

tion given by f(x)∗ = f(x) and the supremum norm.

2) Let H be a separable Hilbert space of dimension n with 1 ≤ n ≤ ∞. We

consider the algebra L(H) of linear operators T : H ! H. We equip L(H)
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with the operator norm:

‖T‖ = sup
x∈H,‖x‖=1

‖Tx‖. (1.9)

The algebra of bounded operators, denoted by B(H), is in fact a C∗-algebras

for the operator norm and with the involution is given by the adjoint T ∗ of

an operator T . In the case n <∞, notice that the space B(H) is nothing else

but the algebra of complex matrices Mn(C).

Such C∗-algebras given as examples, are called concrete C∗-algebra. It is a strik-

ing fact in the theory that every abstract C∗-algebras can be realized as a C∗-

subalgebra of a concrete C∗-algebra of one of the two previous types. In the case

where A is a commutative C∗-algebra, this fact follows from the Gel’fand represen-

tation.

Let A be a unital C∗-algebra. Take a ∈ A and define â : A∗ ! C by â(ϕ) = ϕ(a).

Then â ∈ C(Ω(A)), equipped with the weak-∗ topology (the weak-∗ topology is the

coarsest topology on A∗, making every â, a ∈ A continuous).

Theorem 1.1.1 (Gel’fand-Naimark). Let A be a commutative C∗-algebra with unit

and let X = Ω(A) be its spectrum. The Gel’fand transform

â : x 3 A 7! (ϕ 7! a(ϕ)) ∈ C(X) (1.10)

is an isomorphism of A onto the C∗-algebra C(X) of continuous complex function

over X.

Remark 1.1.1. The Gel’fand transform is one instance of the duality of space; that

is, a compact Hausdorff space X can either be seen as a topological space as it’s

stand or as the spectrum of a unital commutative C∗-algebra.

Theorem 1.1.2. The correspondence between X and C(X) is a categorical equiva-

lence between the category of compact Hausdorff spaces and continuous maps to the

category of unital C∗-algebras and unital ∗-homomorphisms.
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1.1.4 Element of representation theory

Historically, the study of C∗-algebras is motivated by the prototypical example of

closed ∗-algebras of operators on Hilbert space coming from quantum mechanics. It

is then natural to ask if a abstract C∗-algebra can be realized as operators acting

on Hilbert space. Such a realization is called a representation of the C∗-algebra.

Definition 1.1.8. Let A be a ∗-algebra. A representation of A is a pair, (π,H),

where H is a Hilbert space and π : A ! B(H) is a ∗-homomorphism. We also say

that π is a representation of A on H.

Definition 1.1.9. A representation, (π,H), of a ∗-algebra A, is nondegenerate if

the only vector ξ in H such that π(a)ξ = 0 for all a in A, is ξ = 0. Otherwise, the

representation is degenerate.

In particular interest are the building blocks given by irreducible representations

i.e. representations that cannot be decomposed into smaller ones.

Definition 1.1.10. A representation of a ∗-algebra is irreducible if the only closed

invariant subspaces are 0 and H. It is reducible otherwise.

Definition 1.1.11. Let (π,H) be a representation of a ∗-algebra A. We say that

a vector ξ in H is cyclic if the linear space π(A)ξ is dense in H. We say that the

representation is cyclic if it has a cyclic vector.

Of course, any representation is only considered up to a unitary equivalence.

Definition 1.1.12. Let A be a ∗-algebra. Two representations of A, (π1, H1) and

(π2, H2), are unitary equivalent if there is a unitary operator u : H1 ! H2 such that

π1(a) = uπ2(a)u∗, for all in a ∈ A. In this case, we write (π1, H1) ∼ (π2, H2) or

π1 ∼ π2.

The fundamental tool to construct representations of an abstract C∗-algebras

are given by the so-called states.

Definition 1.1.13 (State). Let A be a C∗-algebra. A linear function φ on A is

positive if φ(a∗a) ≥ 0, for all a in A. In case that A is unital, the linear functional φ
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is a state if it is positive and, in addition, φ(1) = 1. The set of states of the algebra

A is denoted by S(A).

States can be viewed as noncommutative generalizations of probability measures.

Indeed, in the commutative case, the C∗-algebra is of the form C0(X) for some

locally compact Hausdorff space X and the set S(A) consists of positive Radon

measures on X.

Hence, starting with a state φ, one can produce a representation (πφ, Hφ) as

follow. Define the zero set

Nφ = {a ∈ A | φ(a∗a) = 0} , (1.11)

which turns out to be a closed left ideal in A. Then, define the bilinear form

〈a+Nφ, b+Nφ〉 = φ(b∗a) (1.12)

and gives a well defined inner product on the quotient space A/Nφ. Therefore, we

consider the completion of A/Nφ is a Hilbert space, denoted Hφ.

Additionally, the map

πφ(a)(b+Nφ) = ab+Nφ, (1.13)

for a, b in A extends to define πφ(a) as a bounded linear operator on Hφ.

Definition 1.1.14. Let A be a unital C∗-algebra and let φ be a state on A. The

triple (Hφ, πφ, ξφ) is called the Gel’fand-Naimark-Segal (GNS) representation of φ.

Theorem 1.1.3 (Gel’fand-Naimark-Segal). Let A be a unital C∗-algebra and sup-

pose that π is a representation of A on the Hilbert space H with cyclic vector, ξ, of

norm one. Then

φ(a) = 〈π(a)ξ, ξ〉, (1.14)

for all a in A, defines a state on A. Moreover, the GNS representation of φ is

unitary equivalent to π in the sense that there is a unitary operator u : H ! Hφ

satisfying uπ(a)u∗ = πφ(a), for all a in A and uξ = ξφ.
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Therefore, the GNS construction allows one to associate a representation of an

abstract C∗-algebra A to a state in S(A) and vice-versa.

Now, let us notice that the set of states S(A) is a convex subset in the dual A∗.

Let X be a convex set in a vector space V . A point x ∈ X is called an extreme

point if, whenever x = ty + (1 − t)z for some t ∈ (0, 1), we have x = y = z. The

subset of extreme points is denote by Ext(X). In addition, if S is any subset in

V , then the smallest convex set containing S is called the convex hull of S and is

denoted co(S). The closed convex hull of S, denoted co(S), is the closure of of the

convex hull and the smallest closed and convex set containing S.

Theorem 1.1.4 (Krein-Millman).

1) (Existence) Every non-empty convex subset X of a Hausdorff locally convex

topological vector space has an extreme point; that is the set Ext(X) is not

empty.

2) Suppose X is a Hausdorff locally convex topological vector space and K is a

compact and convex subset of X. Then K is equal to the closed convex hull of

its extreme points:

K = co(Ext(K)).

Now, if we recall the Banach-Alaoglu theorem; that is, the unit ball in A∗ is

weak-∗ compact, then it implies, by inclusion, that S(A) is also compact. Hence,

using the Krein-Millman theorem, the state space S(A) has extreme points.

Definition 1.1.15. The extreme points of the state of space are called pure states,

and the set of pure states of A is denoted by P(A) and satisfies:

S(A) = co(P(A)).

One can then refine the GNS construction and exhibit the relation between

irreducible representations and pure states.
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Theorem 1.1.5. Let φ be a state on the unital C∗-algebra A. The GNS representa-

tion (πφ, Hφ) is irreducible if and only if φ is not a non-trivial convex combination

of two other states. That is, if there are states φ0 and φ1 and 0 < t < 1 such that

φ = tφ0 + (1− t)φ1, then φ0 = φ1 = φ.

In other words, we have the following correspondence:

{Pure states φ} ! {Irreducible representations (φ,Hφ)} .

1.1.5 Spectrum and primitive spectrum

We have seen that for a commutative C∗-algebra, the space of characters is the

analogue of the topological space X; this is visible through the Gel’fand-Naimark

theorem. For noncommutative C∗-algebras, there is more than one candidate for

the analogue of the notion of space. We shall introduce some of them. We first

define the primitive spectrum.

Definition 1.1.16 (Primitive spectrum). The primitive spectrum Prim(A) is the

space of kernels of irreducible ∗-representations equipped with the hull-kernel (Ja-

cobson) topology.

Definition 1.1.17 (Hull-kernel (Jacobson) topology). Let A be a C∗-algebra and

Prim(A) its primitive spectrum with power set 2Prim(A). One define the Jacobson’s

closure operator as follows, for any W ∈ 2Prim(A)

Cl(W ) :=

{
I ∈ Prim(A) :

⋂
J∈W

J ⊆ I

}
(1.15)

The closure operator Cl satisfies the Kuratowski axioms [51, pp.69-70] and there-

fore it defines a topology on Prim(A) by means of its closed sets. In addition,

Prim(A) can be given the structure of a partially ordered set, by means of inclu-

sions of ideals. A topology on the set Prim(A) can be induced by the partial order,

using the so-called Alexandrov topology.
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Proposition 1.1.1. Let W a subset of Prim(A) and I ∈ Prim(A). Then the

following claims are true.

i) The subset W is closed if and only if I ∈ W and I ⊆ J then J ∈ W .

ii) The space Prim(A) is a T0-space.

iii) The point {I} is closed in Prim(A) iff I is maximal among primitive ideals.

Let us now introduce the spectrum of a C∗-algebra.

Definition 1.1.18 (Spectrum). The spectrum of a C∗-algebra is the set of all unitary

equivalence classes of irreducible ∗-representations. It is denoted by Spec(A). One

can also encounter the term of structure space, designated by Â, do refer to the

spectrum.

Furthermore, there is a canonical surjection

Spec(A)! Prim(A), π 7! ker(π) (1.16)

The inverse image under thus map of the Jacobson topology on Prim(A) is a topol-

ogy for Spec(A). We have the following topological properties of the spectrum.

Proposition 1.1.2. Let A be a C∗-algebra. The following conditions are equivalent:

i) Spec(A) is a T0-space.

ii) Two irreducible representations of Spec(A) with the kernel are equivalent.

iii) The canonical map Spec(A)! Prim(A) is a homeomorphism.

1.1.6 AF-algebras

There is a special type of C∗-algebras that will focus our attention in this work.

An approximately finite-dimensional C∗-algebra, or simply AF-algebra, that is the

inductive limit of an increasing sequence of finite-dimensional C∗-algebras, all with

the same unit. These algebras allow to produce a large number of examples of C∗-

algebras for which the spectrum and the primitive spectrum coincides as topological

spaces.
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Definition 1.1.19 (AF-algebra). A C∗-algebra A is said to be approximately finite

dimensional (AF) if there exists an increasing sequence

A = lim
!
· · ·! Ai

αi−! Ai+1 ! · · · (1.17)

where each Ai is a finite-dimensional C∗-algebra and the connecting maps αi are

unital ∗-homomorphisms. The inductive system specifying an AF-algebras is not

unique; one can always drop to a subsequence. Suppressing the connecting maps, A

can be written as A = ∪nAn.

In addition, AF-algebras are interesting because the centra of AF-algebras ex-

haust all separable abelian C∗-algebras with unit. In other words, any separable

abelian C∗-algebra is center of a C∗-algebra that is the inductive limit of an increas-

ing sequence of finite dimensional C∗-algebras.

Lemma 1.1.1 ([31]). Let A = ∪nAn be an AF-algebra. If x ∈ Z(A), there exists a

sequence {xn}n such that xn ∈ Z(An) and xn ! x. Conversely, if xn ∈ Z(An) and

xn ! x, then x ∈ Z(A).

Proof. Let U(An) be the group of unitaries in An and dµn is a normalized Haar

measure on U(An), one may define En : A! A by:

En(x) =

∫
U(An)

uxu∗dµn(u). (1.18)

Let an ∈ U(An), then using the invariance of dµn one has

∫
U(An)

anuxu
∗dµn(u) =

∫
U(An)

vxv∗andµn(v). (1.19)

Since An is generated by its unitary elements, En is then a projection of norm 1

form A onto Acn (= the relative commutant of An in A). In particular, En maps An

onto Z(An).

(⇒) Let x ∈ Z(A) and consider a sequence {yn} such that yn ∈ An and yn ! x.

Define xn = En(yn). Since x ∈ Acn for all n, En(x) = x. Thus,

‖x− xn‖ = ‖x− En(yn)‖ = ‖En(x− y)‖ ≤ ‖x− yn‖. (1.20)
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Hence xn ! x.

(⇐) For all n > m, one has that Z(An) ⊆ Acn; thus, the given x commutes with

∪nAn and thus, with A.

Theorem 1.1.6 ([31]). Let A be an Abelian separable C∗-algebra with unit. Then

there exists an approximately finite dimensional C∗-algebra A having A as center.

It is in that sense that the space of continuous functions C(X) over a topological

Hausdorff space X can be approximated by finite dimensional C∗-algebra i.e. matrix

algebras.

1.1.7 Compact operators

Definition 1.1.20. An operator T on a hilbert space H is called compact if T takes

the closed unit ball in H to a relatively compact subset of H.

The definition of a compact operator implies automatically that it is a bounded

operator. The set of compact operators on H is denoted by K(H).

An equivalent definition of compactness is that the image under T of any bounded

sequence in H has a convergent subsequence.

One can also characterize compact operators through the description of their

eigenvalues. An operator T : H ! H on an infinite-dimensional Hilbert space H is

said to be compact if it can be written in the form

T =
∞∑
n=1

µn(T )〈fn, ·〉gn, (1.21)

where {f1, f2, . . . } and {g1, g2, . . . } are orthonormal sets (not necessarily complete),

and µ1, µ2, . . . is a sequence of positive numbers with limit zero, called the singular

values of the operator. The singular values can accumulate only at zero.

Proposition 1.1.3. Suppose the T ∈ B(H) is normal and compact.

(a) Every λ ∈ σ(T )− {0} is an eigenvalue.

(b) If λ 6= 0, then the eigenspace Eλ = {x ∈ H : Tx = λx} is finite dimensional.
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(c) σ(T ) is at most countable and has no nonzero accumulation points.

Hence, one can deduce a spectral theorem for normal and compact operator from

functional analysis calculus.

There is a third definition of compact operators through operators of finite rank.

Definition 1.1.21. A bounded operator T on H is called a finite rank operator if

it has finite-dimensional range T (H). The collection of finite-rank operators on H

is denoted by Bf (H).

Then the set of compact operators can be defined as the norm closure of Bf (H).

Corollary 1.1.1. The collection K(H) of compact operators on H is a (norm closed

two-sided) ideal in B(H). In particular, K(H) is a C∗-algebra.

1.1.8 The Behncke-Leptin Construction

In this section we are going to review the Behncke-Leptin construction that associate

a C∗-algebra to a given poset P . The goal is to find a suitable C∗-algebra A such that

its primitive spectrum Prim(A) equipped with the hull-kernel topology is exactly

the poset P with its order topology. This question has been first solved by Behncke

and Leptin who give a complete classification of all separable C∗-algebras with finite

spectrum. Later, Elliott in [69, pp.35-39] extended this classification usingK-theory,

to all separable C∗-algebras with a decreasing chains condition on their spectrum. It

turns out that the association between a poset P and the spectrum of a C∗-algebra

is unique up to a class of equivalence of N-valued map d over P . The map d is called

a defector and measures intuitively the degree of freedom in dimension between two

separable C∗-algebras which have the same spectrum but are non-isomorphic.

This review will follow Behncke-Leptin’s paper [16] — a detailed treatment of the

construction in the finite case can be found in the work of Ercolessi et al. [60] —

starting from a C∗-algebra over a finite forest F , then over a finite poset P , before

extending to a countable case.
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C*-algebra associated to a finite forest

Definition 1.1.22 (Forest). A partial ordered set (F,≤) is a forest if it additionally

satisfies for every x, y, z ∈ F :

x ≤ y and y ≤ z ⇒ x ≤ y or y ≤ x.

In what will follow, every partially ordered set will be thought as a topological

space equipped with the Alexandrov topology (see remark ??) induced by its partial

order.

Definition 1.1.23 (Defector). A defector d associated to the poset P is an N-valued

function on P such that d(x) > 0 for each maximal element of P . Two defectors d

and d′ are said to be equivalent if there exists an automorphism ϕ of P such that

d′ = d ◦ ϕ and denoted by d ∼ d′.

For x ∈ F we denote by Fx the closure of the point x i.e. the partially ordered

set {y ∈ F | y ≥ x}. The restriction of the defector d to a set Fx is denoted dx.

To construct the C∗- algebra A(F, d) associated to F subjected to the defect d, we

proceed as follows :

1) Define the separable Hilbert space H(F, d) over the forest F and attached to

each point x ∈ F a subspace H(x) ⊆ H(F, d).

2) Define a subset of operators R(x) acting on H(x) and extended by zero to the

whole space H(F, d).

3) Build the C∗-algebra A associated to the forest F as the algebra generated by

the R(x) when x run over F .

Proposition 1.1.4. Denote by `2(Z) the Hilbert space of square-summable sequences.

To each point x ∈ F , we associate the Hilbert space H(x) defined as the product:

H(x) = H−(x)⊗H+(x) (1.22)

with H−(x) =
⊗

xi<x
`2xi(Z) and H+(x) = H(Fx, dx) and where `2x(Z) ' `2(Z) for

each x ∈ F .
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Proof. F is a forest.

We are now ready to define the C∗-algebra A(F, d), which have F as a structure

space. Let us define R(x) the algebra of operators acting on the Hilbert space H(x)

by

R(x) = 1H−(x) ⊗K(H+(x)), (1.23)

where 1H− is the identity algebra acting on the subspace H−(x) and K(H+) is the

algebra of compact operators on the Hilbert subspace H+(x). We then extend R(x)

to an algebra of operators over the whole Hilbert space H(F, d) by requiring that

R(x) ·H(x)⊥ = 0. By construction, we have the following properties

R(x) ·R(y) ⊂ R(x) if x ≤ y and R(x) ·R(y) = 0 if x 6≶ y. (1.24)

Finally A(F, d) is the algebra of operators generated by the R(x) when x runs over

F i.e.

A(F, d) :=
⊕
x∈F

R(x). (1.25)

Theorem 1.1.7 (Behncke-Leptin [16]). Let F be a finite forest equipped with a

defector map, and A(F, d) be the C∗-algebra acting on the Hilbert space H(F, d) as

defined previously. Then the following are true:

(i) if E is a closed set of F with complement the open set U , then I(E) :=

⊕x∈UR(x) is a closed two-sided ideal of A(F, d), A(E) := ⊕x∈ER(x) is a closed

subalgebra of A(F, d) and

A(F, d) = I(E)⊕ A(E).

(ii) Every two-sided ideal is of the form I(E) for some closed set E ⊂ F and I(E)

is primitive if E = {x}. In particular Â(F, d) ' F .

In order ton unify the notation, we will denote by A(U) the closed to sided ideal

I(E) associated to a closed set E with complement the open set U .
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Proposition 1.1.5. Let E1 and E2 be closed sets of F with complement the open

sets U1 and U2. Then we have the following identities:

(i) A(U1 ∪ U2) =
∑

x∈U1∪U2
⊕R(x);

(ii) A(U1 ∩ U2) = A(U1) ∩ A(U2) =
∑

x∈U1∩U2
⊕R(x);

(iii) A(E1 ∩ E2) = A(E1) ∩ A(E2) =
∑

x∈E1∩E2
⊕R(x).

Proof. Identity (i) follows by definition, since the complement (E1 ∩E2)
c is exactly

the union (U1 ∪ U2).

Identities (ii) and (iii) follow from the fact that by construction

∑
x∈X

R(x) ∩
∑
y∈Y

R(y) = {0}

unless X ∩ Y 6= ∅. We start with identity (ii), the first result in Theorem 1.1.7

together with the preceding claim allows us to write

I(E1) ∩ I(E2) =
∑
x∈U1

⊕R(x) ∩
∑
y∈U2

⊕R(y),

=
∑

z∈U1∩U2

⊕R(z)⊕

( ∑
x∈U1−U2

⊕R(x) ∩
∑

y∈U2−U1

⊕R(y)

)
,

=
∑

z∈U1∩U2

⊕R(z),

= I(E1 ∪ E2) =: A(U1 ∩ U2).

The proof of identity (iii) follows the same steps.

We immediately deduce the generalization to arbitrary unions and finite number

of intersections.

Corollary 1.1.2. Let S, respectively V , be an arbitrary collection of open sets,

respectively finite collection, in the forest F then the following holds:

A

(⋃
U∈S

U

)
=
∑
U∈S

A(U), A

(⋂
U∈F

U

)
=
⋂
U∈F

A(U)
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Proof. This follows from Proposition 1.1.5.

C*-algebra associated to a finite poset

The case of a finite poset P can be treated now. This is done by noticing that P can

be covered by a forest P together with a surjection ϕ : P ! P . Then the problem

of finding a C∗-algebra over a poset P can be deduced from the one over a forest.

Definition 1.1.24 (Rope). A rope r of P is a (not necessarily maximal) chain in

P connecting a minimal element of P with another element of P , which we will call

the upper endpoint of r

Definition 1.1.25 (Covering forest). We call P the set of ropes of P ordered by

inclusion. We let ϕ : P ! P the surjection map that assigns to each rope r ∈ P its

end point ϕ(r) ∈ P . We call the pair (P , ϕ) the covering forest of P .

Proposition 1.1.6. Let (P , ϕ) be the covering forest of a poset P . Then the fol-

lowing hold

(i) P can be written as a disjoint union of forests.

(ii) If r, s ∈ P are in the inverse image ϕ−1(x) of some x ∈ P , then the subforests

P r and P s are isomorphic.

Proof. Follows by construction...

The defector map defined on P can be pulled back to a defector map d̄ :=

d ◦ ϕ on P . Then, since P is a forest, we can realised it as the structure space of

the C∗-algebra A(P , d̄) acting on H(P , d̄). The C∗-algebra A(P, d) associated to

the poset P is then identified as a subalgebra of A(P , d̄). Starting from the first

property in proposition 1.1.6 we can compute the Hilbert space H(P , d̄) using the

previous construction for a forest. The space H(P, d) will be then built out of it.

We first define the space H(x) for an element x ∈ P . Using the second property in

proposition 1.1.6, for any r, s ∈ ϕ−1(x) we have

H+(r) := H(Pr, dr) = H(Ps, ds) =: H+(s), (1.26)
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we then identifyH+(x) asH+(r) for some r ∈ ϕ−1(x). Then adapting the factorizing

property of proposition 1.22, we define the Hilbert space H(x) as

H(x) =
⊕

r∈ϕ−1(x)

H−(r)⊗H+(x). (1.27)

Finally, if we denote by S the finite set of all minimal points of P , then we define

the global Hilbert space H(P, d) associated to P by

H(P, d) :=
⊕
x∈S

H(x) (1.28)

We can now turn back to the construction of the C∗-algebra A(P, d) by noticing

again that

K(H(Pr, dr)) = K(H(Ps, ds)) =: K(H+(x)) (1.29)

for any ropes r and s with the same endpoints x ∈ P . Therefore, the generating

algebra R(r) and R(s) of A(P , d̄) are given by

R(r) = 1H−(r) ⊗K(H+(x)) and R(s) = 1H−(s) ⊗K(H+(x))

For each point x ∈ P we define the algebra R(x)

R(x) =
⊕

r∈ϕ−1(x)

1H−(r) ⊗K(H+(x)) (1.30)

and the algebra A(P, d) is generated by the subalgebra R(x) for x running in all of

P :

A(P, d) :=
⊕
x∈P

R(x). (1.31)

Theorem 1.1.8 (Behncke-Leptin [16]). The algebra A(P, d) satisfies conditions (i)

and (ii) of theorem 1.1.7 with F replaced by P .

Generalization to a countable space

The Behncke-Leptin construction admits a straightforward generalization to the

case of countable poset P . Even though this construction is done without a defector
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map d, it follows the same general steps of the finite case. Consider I to be the

system of all non-trivial N-valued functions on P , which have their support on

finite subchains of P . For x ∈ P , one define I(x) = {α ∈ I : α(x) > 0}. Then one

may write I(x) = I−(x) × I+(x) with I−(x), respectively I+(x), be the set of all

restrictions of elements in I(x) to {y : y < x} respectively {y : y ≥ x}. Therefore, if

we let H(x) = `2(I(x)) then the previous decomposition of I(x) induces the splitting

H(x) = H−(x) ⊗ H+(x), with H±(x) = `2(I±(x)). Therefore, one may define the

algebra R(x) = 1H− ⊗K(H+) acting on the whole space H. For any subset Q ⊂ P

we associate the algebra

A(Q) = 〈R(x), x ∈ Q〉 . (1.32)

Again similarly to the finite case the algebra R(x) satisfy property (1.24).

Proposition 1.1.7 (Behncke-Bös [16, 11]). Let Q ⊂ P be a finite subset, then the

following are true:

(i) A(Q) =
⊕

x∈QR(x),

(ii) Prim(A(Q)) ' Q,

(iii) A(P ) = lim
!
A(Q).

We say that an open set Q ⊂ P is a p-open set if for any x, y ∈ Q there exists

a z ∈ Q such that z ≤ x, y. Moreover, for an ideal J ∈ A we define P (J) =

{x ∈ P : R(x) ⊂ J}.

Proposition 1.1.8 (Behncke-Leptin [16]). Every ideal J of A satisfies J = A(P (J)).

Therefore, the map J ! P (J) defines a bijective order-preserving map of the set of

all ideals of A onto the system of all open sets of P . Moreover, primitive ideals are

mapped on to p-open sets.

1.2 Differential Geometry

In this section, we recall some fundamental machineries of differential geometry;

mainly vector bundles, principal bundles and connections.
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1.2.1 Vector bundles and Principal bundles

We start with the definition of vector bundle.

Definition 1.2.1 (Vector bundle). LetM be a manifold and k be R or C. A k-vector

bundle of rank n over M is a pair (E, π) where E is a manifold and π : E ! M is

a surjective submersion, such that there is a cover U = {Uα}α∈A of M satisfying

1) The cover U trivializes E, that is, for every α ∈ A there exists a diffeomorphism

Ψα : π−1(Uα)! Uα × kn such that the digram

π−1(Uα) Uα × kn

Uα

ψα

π
π

commutes.

2) For all α ∈ A and p ∈ Uα, π−1(p) is a k-vector space and the map

ψα|π−1(p) : π−1(p)! {p} × kn (1.33)

is an isomorphism of vector spaces.

The pair (Uα, ψα) is called a local trivialization. Vector bundles are equivalently

characterized by transition maps between two local trivializations. For α, β ∈ A, let

Uαβ = Uα ∩ Uβ. The maps

g̃αβ = ψβ ◦ ψ−1α : Uαβ × kn ! Uαβ × kn (1.34)

satisfy g̃αβ(p, v) = (p, gαβ(p)v), where gαβ(p) ∈ GLn(k). The corresponding maps

gαβ : Uαβ ! GLn(k) (1.35)

are called the gluing maps. These maps satisfy the following conditions, for all
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α, β, γ ∈ A and

gαα(p) = idn, ∀p ∈ Uα, (1.36)

gβα(p) = gαβ(p)−1, ∀p ∈ Uα, (1.37)

gβγ(p)gαβ(p) = gαγ(p), ∀p ∈ Uαβγ. (1.38)

Proposition 1.2.1. Given a cover U = {Uα}α of a manifold M and a family of

smooth maps gαβ : Uαβ ! GLn(k) satisfying (1.36), (1.37) and (1.38), there exists

a unique (up to isomorphism) vector bundle π : E ! M with trivializing cover U

and gluing maps gαβ.

Furthermore, the usual operator on vector spaces, such as duality, direct sum,

tensor product, exterior product, etc... extends to operations on vector bundles

through the gluing maps.

Example 1.2.1. Let E = (U, gEαβ) and F = (U, gFαβ) be two vector bundles over the

same trivializing cover. Then we define the following bundles:

i) The dual bundle E∗ by

E∗ = (U, (g∗αβ)−1) (1.39)

ii) The direct sum E ⊕ F by

E ⊕ F = (U, gEαβ ⊕ gFαβ) (1.40)

iii) The tensor product E ⊗ F by

E ⊗ F = (U, gEαβ ⊗ gFαβ) (1.41)

iv) The symmetric and exterior powers SymkE and
∧k E by

SymkE = (U, Symkgαβ)
k∧
E = (U,∧kgαβ) (1.42)
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v) The determinant line bundle det(E) by

det(E) =

rk(E)∧
E. (1.43)

We now introduce principal bundle. Briefly these are fiber bundles where the

fibers are Lie groups.

Definition 1.2.2 (Principal bundle). Let G be a Lie group and M be a manifold.

A principal G-bundle is a triple (P, π,M) such that

1) π : P !M is a smooth submersion.

2) There is a free and transitive right action P×G! P such that π is G-invariant

that is, π(pg) = π(p).

3) There exists a trivialization cover U that is, a cover of M such that for every

α ∈ A there exists a diffeomorphism Ψα : π−1(Uα) ! Uα × kn such that the

digram

π−1(Uα) Uα ×G

Uα

ψα

π
π

commutes and Ψα(pg) = Ψα(p)g.

The archetype of a principal bundle is given by the example of the frame bundle.

For any real vector space V , let Fr(V ) be the set of all ordered bases in V . Suppose

that V has dimension n. We represent an ordered basis by e = (e1, . . . , en). Let

π : E ! M be a rank n vector bundle. Then, the frame bundle Fr(E) of E is the

smooth manifold obtained as:

Fr(E) = tx∈MFr(Ex). (1.44)

There is a natural projection map π : Fr(E) ! M that maps Fr(Ex) to {x}. One

can define a right GLn(k)-action on Fr(E) as follows. Let {Uα}α be a trivialization
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cover for E. On a trivialization chart ψα : π−1(Uα) ! Uα × kn, the right action is

given by:

e · g = ψ−1α
(
g−1ψα(e1), . . . , g

−1ψα(en)
)
. (1.45)

This gives Fr(E) the structure of a principal GLn(k)-bundle.

In some sense, vector bundles and principal bundles are two sides of the same

coin. On one hand if E = (U, gαβ) is a vector bundle, then we see that its frame

bundle is a principal Gln(k)-bundle P = (U, gαβ). On the other hand, one can

construct a vector bundle from the data of a principal bundle.

Definition 1.2.3 (Associated vector bundle). Given a principal G-bundle P =

(U, gαβ), and a representation (ρ, V ) in End(V ), we define the associated vector

bundle P ×ρ V by

E = (U, ρ(gαβ)). (1.46)

1.2.2 Connections

Heuristically, a connection on a fiber bundle is a tool that allows to move in a

consistent way from one fiber in the bundle to the other. The concept of connections

exists over both vector bundles and principal bundles.

Definition 1.2.4 (Connection on vector bundle). Let π : E !M . Then a connec-

tion on E is a linear map

∇ : Γ (E)! Γ (T ∗M ⊗ E) (1.47)

such that, for f ∈ C∞(M) and σ ∈ Γ (E), the Leibniz rule

∇(fσ) = df ⊗ σ + f∇σ. (1.48)

Example 1.2.2. On the trivial bundleM×kn we have a connection given by the de

Rham differential (f1, . . . , fn) 7! (df1, . . . , dfn). This connection is called the trivial

connection.
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Proposition 1.2.2. If it is not empty, the space of connections AE is an affine

space modeled on the vector space Ω1(End(E)).

In particular, every connection on the trivial bundle M × kn is of the form

∇ = d+A, where A ∈ Ω1(End(kn)). In a basis of kn, one writes A(ej) = Aijei, then

∇(f1, . . . , fn) = (df1, . . . , dfn) + (Ai1f, . . . , A
i
nfi). (1.49)

Thus one can think A as a 1-form with values in matrices of matrices of 1-form.

Moreover, if one consider a local trivialization Ψα : E|Uα ! Uα × kn. Then

a connection ∇ on E induces a connection on Uα × kn, hence an element Aα ∈

Ω1(Uα,End(kn)) and one has:

(∇σ)α = dσα + Aασα. (1.50)

This is called the connection 1-form of ∇ in Uα. There is a relation between two

1-forms Aα and Aβ of ∇.

One can also define a connection on a principal bundle. There is in addition a

strong relation between connections on vector bundles and connections on principal

bundles.

Definition 1.2.5. Let P = (U, gαβ) be a principal bundle with structure group

G ⊂ GLn(k), i.e. G is a matrix group. Then a connection on P is equivalent to a

collection of 1-forms Aα ∈ Ω1(M, g) such that

Aβ = gαβAαg
−1
αβ − dgαβg

−1
αβ . (1.51)

Proposition 1.2.3. A connection ∇ on a vector bundle E induces a connection Ω

on the bundle of frames Fr(E) and vice versa.

Hence, the crucial idea here is that one can study connections on vector bundles

by studying connections on principal bundles.
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1.3 Spin Geometry

We are now ready to define the notion of Spin structure on a Riemannian manifold

(M, g) which is the natural setting of the Dirac operator.

1.3.1 Clifford algebras

Definition

Let (V, q) be an n-dimensional vector space endowed with a quadratic from q and

provided with an orthonormal basis {ei}ni=1. We denote by η the bilinear form

induced by polarizing q.

Definition 1.3.1. A Clifford algebra is an associative algebra Cl(V, q) over the field

R with generators 1, e1, . . . , en satisfying the relations

e2i = −1, eiej + ejei = 0 for i 6= j. (1.52)

We shall also denote it by Cl(V ) or by Cl(n), dropping the quadratic form q to

simplify the notation.

It follows from the given definition that V ⊂ Cl(V, q) and

uv + vu = −2η(u, v), u, v ∈ V. (1.53)

As a vector space, Cl(V, q) has dimension 2n and can be provided with the basis

given by 1 and elements of the form

eI := ei1 · ei2 · · · · · eik (1.54)

where I = {i1, i2, . . . , ik} is a strictly increasing subset of indices with |I| := k

elements taken from the set {1, 2, . . . , n}. In particular, any element x ∈ Cl(V ) can

be written in the form

x =
∑
I

xIeI (1.55)
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where we add to the collection {I} of sets of indices the subset I = 0 and put e0 := 1.

Denote by Clk(V ) the subset Cl(V ) consisting of elements of degree k which

are linear combinations of basis elements eI with |I| = k. We introduce also the

following subsets of Cl(V ):

Clev(V ) :=
⊕
k even

Clk(V ), Clod(V ) :=
⊕
k odd

Clk(V ). (1.56)

Then Clev(V ) will be unital subalgebra in Cl(V ) and

Cl(V ) = Clev(V )⊕ Clod(V ) (1.57)

which provided Cl(V ) with the structure of a superalgebra. In fact the Clifford

algebra Cl(V ) does not depend on the choice of orthonormal basis {ei} and can be

in fact defined form the following universal property.

Definition 1.3.2. The Clifford algebra Cl(V, q) is a unique associative R-algebra

with unit which contains the quadratic space V and has the following property: for

any associative R-algebra A with unit 1A and any linear map f : V ! A, satisfying

the condition

f(v) · f(v) = −q(v)1A, (1.58)

there exists a unique extension of f to an algebra homomorphism f̃ : Cl(V, q)! A

such that the following diagram:

V Cl(V, q)

A

ϕ

i

f̃

is commutative.

One can extend the previous definition to complex vector space provided with a

non-degenerate bilinear form.

We introduce also the complexified Clifford algebra Clc(V ) an n-dimensional real

vector space V by setting

Clc(V ) := Cl(V )⊗R C. (1.59)
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This construction is particularly useful to determine the Clifford representations.

We denote by Cl×(V ) the group of invertible elements of the Clifford algebra

Cl(V ). It is a Lie group which contains V − {0}.

Definition 1.3.3. The Clifford group Γ (V ) is the subgroup of multiplicative group

Cl×(V ) generated by the elements v ∈ V − {0}.

Since every element of the group Γ (V ) generates a non-degenerate linear trans-

form of the space V so we have a homomorphism

π : Γ (V )! Gl(V ). (1.60)

This homomorphism takes values in the orthogonal group O(V ) and can be included

into the exact sequence of group homomorphisms of the form

1! R× ! Γ (V )
π
−! O(V )! 1. (1.61)

Spinor Groups

We can now define the Pin and Spin group as subgroup of the invertible elements

in the Clifford algebras.

Definition 1.3.4. The group Pin(V ) is defined as the subgroup of the Clifford

group Γ (V ) generated by the unit vectors from V , i.e. by vectors v ∈ V with

q(v) = 1.

As in the case of the Clifford group, we have a homomorphism

π : Pin(V )! O(V ) (1.62)

which is included into the exact sequence of group homomorphisms

1! Z2 ! Pin(V )
π
−! O(V )! 1. (1.63)
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Definition 1.3.5. The group Spin(V ) is the identity connected component of the

group Pin(V ). It can be also defined as

Spin(V ) = Pin(V ) ∩ Clev(V ). (1.64)

As in the case of the Clifford group, there is an exact sequence of group homomor-

phisms

1! Z2 ! Spin(V )
π
−! SO(V )! 1. (1.65)

For n > 2, the group Spin(n) is a simply connected covering group of the group

SO(V ).

Spinor representations

Definition 1.3.6. Let (V, q) be a quadratic k-vector space, where k is R or C. A

Clifford representation is a homomorphism

c : Cl(V )! EndC(S) (1.66)

from the Clifford algebra Cl(V ) into the algebra of linear operators acting in a

complex vector space S called the Clifford module over Cl(V ) or the spinor space

for the algebra Cl(V ). We shall assume that S is provided with an Hermitian inner

product.

The standard definitions and properties from the representation theory of asso-

ciative algebras apply also to Clifford representations.

The action of the representation c on the space S is often denoted by

c(x)s := x · s (1.67)

for x ∈ Cl(V ), s ∈ S, and called the Clifford multiplication.

It turns out that the complex Clifford algebra Clc(n) is either a matrix algebra

(for n even) or two copies of a matrix algebra (for n odd).
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Proposition 1.3.1. Let n ∈ N. Then we have

Clc(n) '

 M2k(C)⊕M2k(C) n = 2k + 1 odd

M2k(C) n = 2k even
(1.68)

Hence, there is exactly one irreducible representation of Clc(n) for n even, and

two irreducible representations for n odd. The irreducible representations of Clc(n)

are known as the complex spinors and denoted by (c,∆n).

Given the spinor representations of the complex Clifford algebra, we can now

easily define the Spin representations of the spin groups.

Definition 1.3.7 (Complex spin representation). Let Spin(n) ⊂ Cl(n) ⊂ Clc(n).

Then the complex spin representation of Spin(n) is the restriction of the complex

spin representation of Clc(n). We denote the complex spin representation by ∆n.

Proposition 1.3.2. When n is even, the representation ∆n is irreducible. When n

is odd, the representation ∆n = ∆+
n ⊕∆−n splits into the direct sum of two irreducible

representations.

Spin Structures

Let (M, g) be an oriented n-dimensional Riemannian manifold. Then, we can define

the bundle SO(M) of oriented orthonormal frames of TM : the fiber over x ∈ M

is the collection of all orientation-preserving isometries. This is a principal SO(n)-

bundle and we have

TM ' SO(M)× ιRn (1.69)

where ι : SO(n) ! Gln(k) denotes the inclusion of representations. Conversely, an

SO(n)-structure on TM i.e. a principal SO(n)-bundle P such that TM ' P ×ιRn,

defines an orientation and a Riemannian metric on M , by declaring the fiber over x

to consist of oriented orthonormal frames. Now, recall that we have the short exact

sequence

1! Z2 ! Spin(n)
π
−! SO(n)! 1. (1.70)
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Definition 1.3.8. A spin structure on M is a principal Spin(n) bundle P together

with an isomorphism

TM ' P ×π Rn (1.71)

The existence of a spin structure P implies the existence of an SO(n)-structure

π(P ) on TM , hence gives M the structure of an oriented Riemannian manifold.

Conversely, given an oriented Riemannian manifold M with tangent bundle TM =

(U, gαβ), a spin structure is a collection of lifts g̃αβ such that the following diagram

commutes:

Spin(n)

Uαβ SO(n)

π

g̃αβ

g̃αβ

and that satisfy the gluing relations for a principal Spin(n)-bundle:

g̃αα = 1,

g̃αβ = (g̃βα)−1 ,

g̃αγ = g̃βγ g̃αβ.

The only non-trivial question is whether one can find lift satisfying the cocyle con-

dition. The existent of such structure is then intimately tied to algebraic topology

properties. One can use Čech cohomology machinery to investigate existence, how-

ever this falls out of the scope of this thesis work, one can refer to [107] for more

details on this topic.

Example 1.3.1. We should now give some examples and non-examples of spin

manifolds.

1 A genus g Riemann surface admits 22g inequivalent spin structures.

2 If H2(M,Z2) vanishes then, M is spin. For example, Sn is spin for all n 6= 2.

(Note that S2 is also spin, but for different reasons).

3 All even -dimensional complex projective spaces CP 2n are not spin.

4 All odd-dimensional complex projective spaces CP 2n+1 are spin.
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5 All compact, orientable manifolds of dimension 3 or less are spin.

1.3.2 Clifford Modules and Dirac Operators

Let (M, g) be an n-dimensional Riemannian manifold with a spin structure P .

Definition 1.3.9. The spinor bundle Sn associated to P is the associated bundle

to the Spin(n)-bundle P via the complex spin representation:

Sn = P ×c ∆n (1.72)

Now, we define a bundle of Clifford algebras over M acting on the spinor bundle.

Definition 1.3.10. The Clifford bundle is the vector bundle over M with typical

fiber the Clifford algebra Cl(M)x := Cl(T ∗xM, gx).

In order to see how the Clifford bundle acts on the spinor bundle, one can also

define the Clifford bundle as an associate bundle.

Definition 1.3.11. The Clifford bundle is a bundle associated with the bundle of

oriented orthonormal frames:

Cl(M) = SO(M)×ρ Cl(n) (1.73)

where ρ : SO(n) ! Aut(Cln) is an embedding of SO(n) which acts then by auto-

morphisms.

Proposition 1.3.3. The Clifford multiplication Rn × ∆n ! ∆n, (v, s) ! c(v)s,

extends to a map of sections

c : Γ (T ∗M)× Sn ! Sn (θ, ψ)! c(θ)ψ. (1.74)

Definition 1.3.12 (Spin connection). Let ∇ be a connection on T ∗M with the

1-forms Aα ∈ Ω1(Uα, so(n)). The connection ∇̃ on the vector bundle Sn defined

by the 1-forms Bα = c ◦ ρ−1∗ (Aα) ∈ Ω1(Uα,End(∆n)) is called the spin connection

associated to ∇.
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We have now all the ingredients to define Dirac operators. Let (M, g) be a Rie-

mannian manifold with spin structure P . This structure induces a bundle of spinors

Sn. The lift of the Levi-Civita connection ∇g to the spin bundle is a connection ∇̃g

on Sn.

Definition 1.3.13. The Dirac operator D : Γ (Sn) ! Γ (Sn) associated to P is

given by the composition

Γ (Sn)
∇̃g
−! Γ (T ∗M ⊗ Sn)

c
−! Γ (Sn) (1.75)

In a local orthonormal frame, the Dirac operator is given by D =
∑

i c(ei)∇̃ei . In

particular, if M = Rn with the euclidean metric, we have D = c(ei)
∂
∂xi

(the spinor

bundle and spin connection are trivial) and hence

D2f = c(ei)
∂

∂xi

(
c(ej)

∂

∂xj

)
= −

∑ ∂2

∂(xi)2
f. (1.76)

Remark 1.3.1. There is relation between the exterior derivative df and the Dirac

operator given by the commutator with f ∈ C∞(M):

[D, f ] = c(df). (1.77)

If dimM = 2k is even, the bundle Sn = S+
n ⊕ S−n and we have

D+ := D|S+
n

: S+
n ! S−n

D− := D|S−n : S−n ! S+
n .

1.4 Noncommutative Geometry

We present a brief description of the main ideas of noncommutative differential

geometry. We put the emphasis on the notion of spectral triples as the central idea

in the field and one of the main tools used in this thesis.
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1.4.1 Infinitesimals and the Dixmier Trace

Let us recall that if T is a compact (not necessarily self-adjoint) operator on a

Hilbert space H, then there exists a decreasing sequence {µn(T )} of non-negative

real numbers and an orthonormal basis {en} for (kerT )⊥ such that for all h ∈ H

Th =
∞∑
n=1

µn(T )〈h, en〉en. (1.78)

In the noncommutative geometry formalism, compact operators play the role of

infinitesimals. The size of an infinitesimal T ∈ K(H) is measured by the decay of

the sequence of its singular values {µn(T )} with respect to n.

Definition 1.4.1 (Infinitesimals). Let α be a non-negative real number. An in-

finitesimal of order α is a compact operator T ∈ K(H) such that

µn(T ) = O(n−α) as n!∞.

Moreover, that this definition is sensible is confirmed by the following facts:

a) if ai is an infinitesimal of order αi, for i = 1, 2, then the product a1a2 is an

infinitesimal of order α1 + α2.

b) if a is an infinitesimal of order α, and b is any bounded operator, then ab and

ba are infinitesimals of order α: one can think of the heuristic infinitesimal

f(x)dx, where f(x) is a function and dx is an infinitesimal of order 1.

c) One can define a noncommutative integral such that order 1 infinitesimals can

be integrated, and higher order infinitesimals have a null integral.

We discuss briefly on this noncommutative integral which relies on the Dixmier

trace. Heuristically, the usual trace of an infinitesimal of order 1 is at most loga-

rithmically divergent. The Dixmier trace is a tool that extracts the coefficient of

the logarithmic divergence, even though the partial sums 1
lnN

∑N−1
n=0 µn(a) are not

necessarily convergent.
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The space L1,∞(H) is the space of compact linear operators T on H such that

the norm

‖T‖1,∞ = sup
N

∑N
i=1 µi(T )

log(N)
(1.79)

is finite. Then, let

aN =

∑N
i=1 µi(T )

logN
. (1.80)

The Dixmier trace Trω(T ) of T is defined for positive operators T of L1,∞(H) to be

Trω(T ) = lim
ω
aN (1.81)

where limω is a scale-invariant positive extension of the usual limit, to all bounded

sequences. Therefore, the Dixmier trace of an operator depends, a priori, on the

choice of extension ω. When this is not the case i.e. when the value of Dixmier

trace is independent of ω, then the operator is called measurable.

One of the fundamental results on the Dixmier trace is obtained on a manifold

M , where Connes showed that Wodzicki’s noncommutative residue (we refer to [37]

for a definition) of a pseudodifferential operator on a manifoldM of order − dim(M)

is equal to its Dixmier trace.

1.4.2 Spectral triples

Definition 1.4.2 (Spectral triple). A spectral triple is the data (A,H, D) where:

(i) A is a real or complex ∗-algebra;

(ii) H is a Hilbert space and a left-representation (π,H) of A in B(H);

(iii) D is a Dirac operator, which is a self-adjoint operator on H.

We require in addition that the Dirac operator satisfies the following conditions

a) The resolvent (D − λ)−1, λ /∈ R, is a compact operator on H.

b) [D, a] ∈ B(H), for any a ∈ A.
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If in addition, H is equipped with a Z2-grading i.e. there exists a unitary self-adjoint

operator γ ∈ B(H) such that

1) [γ, π(a)] = 0 for all a ∈ A,

2) γ anticommutes with D,

then the spectral triple is said to be even. Otherwise, it is said to be odd. In the case

whereH is finite dimensional, then the triple (A,H, D) is called a discrete spectral triple.

1.4.3 Distance and integration on a spectral triple

Assume that A is a C∗-algebra. Then, a spectral triple (A,H, D) as defined above,

also induces a distance on the space of states S(A) defined by:

d(φ, ψ) := sup
a∈A
{|φ(a)− ψ(a)| : ‖ [D, a] ‖ ≤ 1} , ∀φ, ψ ∈ S(A). (1.82)

To complete the general picture, one needs an analogue of measure theory. For this

purpose, one needs first to define the additional notion of dimension of a spectral

triple.

Definition 1.4.3. A spectral triple (A,H, D) is said to be of dimension n > 0 if

|D|−1 is an infinitesimal of order n−1 or, equivalently, |D|−n is an infinitesimal of

order 1.

Having a spectral triple of dimension n, one can define the integral of any a ∈ A

using the Dixmier trace of the Dirac operator as follows:

−
∫
a :=

1

Λ
Trωa|D|−n. (1.83)

where Λ is a constant determined by the behaviour of the characteristic values of

|D|−n, namely one asks that µj ≤ Λj−1 as j !∞.

1.4.4 The canonical triple over a manifold

In order to understand the spectral triple philosophy, it is enlightening to study the

canonical one on an n-dimensional Riemannian spin manifold (M, g). Indeed, one
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can show that part of the geometric information contained in the Riemannian data

(M, g) can be instead described by the triple (A,H, D) defined as follows.

1. A = F(M) is the algebra of complex valued smooth functions on M .

2. H = L2(M,S) is the Hilbert space of square integrable sections of the irre-

ducible spinor bundle over M with rank equal to 2[n/2]. The scalar product in

L2(M,S) is obtained for the measure associated to the metric g and is given

by

(ψ, φ) :=

∫
M

ψ(x)φ(x)dµ(g). (1.84)

3. D is the Dirac operator associated to the Levi-Civita connection ω of the

metric g.

If the dimension n of M is even, the spectral triple is even by taking for grading

operator the volume form,

γ = in/2e1 · · · en (1.85)

which anticommutes with the Dirac operator,

γD +Dγ = 0. (1.86)

Furthermore, the factor in/2 ensures that,

γ2 = 1, γ∗ = γ. (1.87)

Proposition 1.4.1. Let (A,H, D) be the canonical triple over the manifold M as

defined above. Then:

a) The space M is the structure space of the algebra A of continuous functions

on M , which is the norm closure of A.

b) The geodesic distance between any two points on M is given by

d(p, q) = sup
f∈A
{|f(p)− f(q)| : ‖ [D, f ] ‖ ≤ 1} , ∀p, q ∈M. (1.88)

54



1.4. NONCOMMUTATIVE GEOMETRY

c) The Riemann integration on M is given by

∫
M

fdµ(g) = c(n)Trω(f |D|−n), ∀f ∈ A, (1.89)

where the coefficients c(n) depends on the Gamma function and is given by

c(n) = 2n−[n/2]−1πn/2nΓ
(n

2

)
. (1.90)

1.4.5 A two point space example

Consider the space of two points Y = {1, 2}. The space Y is identified with the

spectrum of the algebra A = C ⊕ C and any element a ∈ A is a couple of complex

numbers (a1, a2) with ai = a(i) for i = 1, 2. Aeven spectral triple (A,H,D, γ) can be

defined on Y as follows. Consider a finite dimensional Hilbert spaceH decomposable

as a direct sum H = H1 ⊕H2, defining a representation of A as diagonal matrices

A 3 a 7!

 a11H1 0

0 a21H2

 ∈ B(H) (1.91)

One then identifies any element of A with its matrix representation.

The operator D is defined as a 2-by-2 off-diagonal block matrix:

D =

 0 M∗

M 0

 (1.92)

where M : H1 ! H2 is some linear operator. The parity element γ is given by:

γ =

 1H1 0

0 1H2

 (1.93)

Taking a ∈ A, one defines the derivation da using the commutator with D:

da =
i

~
[D, a] = (a2 − a1)

 0 M∗

−M 0

 (1.94)
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If one takes H1 = H2 and M the identity element, then in turns, the norm of da

is given by ‖da‖ = ~−1|a2 − a1|. Therefore, the commutative distance between the

two point of Y is given by

d(1, 2) = sup
a∈A
{|a2 − a1| : ‖da‖ ≤ 1} = ~. (1.95)
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Chapter 2

Noncommutative geometry on

triangulations

2.1 Preliminaries

Unless stated otherwise, we will consider M to be a smooth compact connected

manifold M of dimension d.

2.1.1 Triangulation and posets

Let K be an abstract simplicial complex with elements σ and |K| its geometric

realization. The dimension of a simplex σ ∈ |K|, denoted dim(σ), is the dimension

of the smallest affine space containing σ. The set K can be written as a union of

subsets K(n), where σn ∈ K(n) is a simplex of dimension n. The subset K(0), also

denoted V , is the set of vertices; the subset K(1), also denoted E, is the set of edges.

A manifold M admits a triangulation T (K) if there exists a simplicial complex K

and homeomorphism ϕ : |K| ! M between M and the geometric realization |K|.

We recall the following theorem due to Whitney on the existence of a triangulation.

Theorem 2.1.1 ( [127, pp.124-135] ). Every k-smooth manifold M admits a trian-

gulation, for k ≥ 1.

To every simplicial complex K, one can associate a partially ordered set (poset)

P (K) which is defined to be the poset of nonempty faces ordered by inclusion. We
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will denote by ≤ the partial order on P (K). The preorder ≤ induces a topology

P (K) called the Alexandrov topology and generated by the bases of open sets B :=

{Ux := {y ∈ X : y ≤ x} : x ∈ X}. For instance, Figure 2.2 show the poset associate

to a triangulation of the circle S1.

Conversely, to every poset X, one can associate an abstract simplicial complex

K(X), where the simplices are nonempty chains in X.

A map f : X ! Y between posets is continuous if and only if it is order preserving

with respect to the orders associated with the order topologies on X and Y . The

map f induces a simplicial mapK(f) : K(X)! K(Y ); vice-versa to every simplicial

map f : K ! L, one can associate a continuous map P (f) : P (K)! P (L) between

posets.

One can reverse the order ≤ on a poset X and define the space Xop. These spaces

have the same underlying set. Open sets in X correspond to closed sets in Xop

and vice-versa. Moreover, a continuous map f : X ! Y induces a continuous map

f op : Xop ! Y op and vice-versa.

Finally, the space K(P (K)) is called the barycentric subdivision of the simplicial

complex K and is denoted K ′. In addition, K ′ is a simplicial complex and there

exists a continuous embedding i : K ′ ! K. It identifies K ′ as a subspace of K.

Furthermore, the map i also induces a continuous embedding on the posets:

P (i) : P (K ′)! P (K),

where the elements of P (K ′) are nonempty chains of P (K). If the complex K

is in a metric space, then one can define the diameter diam(σ) of a simplex σ;

the largest of these is the mesh of K. We can then inductively form the n-th

barycentric subdivision Kn = (Kn−1)
′; the sequence (Kn) can be constructed such

that mesh(Kn)! 0. We will denote by hn the mesh length of Kn.

In the rest of this work, we will consider the space Xn = P (Kn)op where the elements

are the simplices of Kn and the ordering is by reversed inclusion. The poset Xn is

equipped with the Alexandrov topology induced by the inclusion order. Starting

58



2.1. PRELIMINARIES

from a triangulation T (K) of M and a homeomorphism

ϕ : |K|!M,

we construct a sequence of posets (Xn) associated to the successive barycentric

subdivisions (Kn) of K. The maps φn,m : Xm ! Xn for m ≥ n sending an element

from Xm to its carrier in Kn form a sequence {Xn,N, φn,m}:

X0 X1 X2 X3 · · ·φ12 φ23 φ34 φ45

1

2

3

4

1

2

3

4

1 2 3 4

12 13 23 34

123

12 23

13

123

34

K P (K) K(P (K))

Figure 2.1: Simplicial complex, poset and barycentric subdivision.

2.1.2 The inverse limit construction

We have the system {Xn,N, φn,m} where the maps φn,m satisfy by construction the

coherence properties, for ≤ n ≤ m:

φl,n ◦ φn,m = φl,m, φn,n = id. (2.1)

Therefore, the system {Xn,N, φn,m} defines an inverse system of topological spaces.

We define its inverse limit

X∞ := lim
 
Xi (2.2)
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which is a subset of the product space
∏

i∈IXi and we topologize it with the subspace

topology. An element x ∈ X∞ is then a coherent sequence i.e a sequence:

x = (x1, x2, · · · , xi, · · · xj, · · · ) ∈
∏

i∈I
Xi, xi = φi,j(xj) ∀i ≤ j. (2.3)

Equivalently, recalling the definition of Xn from a simplicial complex Kn, one can

see an element of X∞ as a coherent sequence of nested simplices. The inverse limit

X∞ also comes equipped with natural projection maps φi : X∞ ! Xi which pick

out the i-th coordinate for every i ∈ N.

The space X∞ is a poset; the partial order on the sets Xn give a partial order ≤

on the set X∞, where y ≤ x provided that yn ≤ xn for every n ∈ N. Moreover,

using the homeomorphism between M and |K|, we see that there is a natural map

pn : M ! Xn for each n, since every point in K is contained in the interior of

exactly one face of the n-th barycentric subdivision of K. We have the following

commuting diagram:

M

Xn−1 Xn

pn−1 pn

φn−1,n

In addition, using the correspondence between points in Xn and faces of simplices

in Kn, we can denote the simplex corresponding to xn ∈ Xn by σn(x). We then

immediately have that for every n ≥ 0:

p−1n (Ux) = st(σn(x)),

where st is the open star map. This implies that the maps pn are continuous. We

can then define a continuous map

p : M ! X∞, p(a) = (p0(a), p1(a), · · · ). (2.4)

The next claim allows us to create a map from X∞ to M which acts as an inverse

to p.

Lemma 2.1.1. Given x = (x0, x1, · · · ) ∈ X∞, pick an ∈ p−1n (xn) for each n ≥ 0.
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Then the sequence (an) converges to a ∈M and the map

G : X∞ !M, x 7! ax

is well-defined and continuous.

Proof. The points an ∈ Kn lie in nested simplices of increasingly fine barycentric

subdivisions ofK. Any sequence obtained this way converges to the same point since

they are obtained by intersection of nested closed sets with vanishing diameters. The

proof of continuity of G can be found in [118, Prop. 2.4.16].

Lemma 2.1.2. Let x ∈ X∞ such that G(x) = ax, then p(ax) ≥ x.

Proof. Recall that the order in X∞ is given by: x ≤ y in X∞ if and only if xn ≤ yn

in Xn for every n.

Now suppose that p(ax) ≥ x is not true, then there exists n such that p(an) ≥ xn

is not true. This means that p(an) is not contained in the simplex corresponding to

xn ∈ Xn. Thus, it contradicts the fact that an ∈ p−1n (xn).

Lemma 2.1.3. The set p(M) is precisely the subspace M of all maximal elements

in X∞.

Proof. Let y be a maximal element in X∞. Then by Lemma 2.1.2, p(ay) ≥ y and

therefore p(ay) = y. Conversely, if there exists a ∈ M and y ∈ X∞ such that

y ≥ p(a), then by definition, yn ≥ pn(a) for every n. Now, let G(pn(a)) = an and

G(y) = yn for every n. Because yn ≥ pn(a), we have that yn ∈ p−1n (pn(a)) for

every n. Hence, the sequences (an) and (yn) have the same limit ay = a. Thus,

p(ay) = p(a) and p(a) ≥ y again by Lemma 2.1.2. We conclude that p(a) = y.

Proposition 2.1.1. The space M is homeomorphic to the subspace M of all maxi-

mal points of the inverse limit of the system {Xn,N, φn,m}.

Proof. We need to prove that G : p(M)!M is a homeomorphism. By construction,

we have that G ◦ p = id, then, G is a bijection. By Lemma 2.1.1, G is continuous.

Since p(M) is equipped with the subspace topology, an open set U pf p(M) can be

written as U = V ∩ p(M) where V is an open set in X∞. Now G(U) = p−1(V ),
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thus G(U) is open. Hence, G is a continuous and open bijective map and thus a

homeomorphism.

x1 x2 x3 xN−2 xN−1 xN

y1 y2 y3 yN−2 yN−1 yN

Figure 2.2: Poset associated to a triangulation of S1.

2.1.3 C*-algebras and their spectra

We conclude this section by introducing some of the fundamental concepts on C∗-

algebras that will be useful in the rest of this thesis dissertation; more complete

details can be found in the literature [51, 24, 99].

A C∗- algebra A is a Banach algebra over C together with an involution x 7! x∗

such that:

(xy)∗ = y∗x∗ and ‖x∗x‖ = ‖x‖2 for x, y ∈ A. (2.5)

The two archetypes of C∗-algebras are given by the space of continuous complex-

valued functions that vanish at infinity (Cb(X), ‖ · ‖∞) over a locally compact Haus-

dorff space X — in the commutative setting — and the space of bounded operators

(B(H), ‖ · ‖op) over a Hilbert space H — in the noncommutative case.

A central tool in the study of C∗-algebras is through their representations.

Definition 2.1.1 (Representations). Let A be a ∗-algebra. A representation of A is

a pair (π,H) where H is a Hilbert space and π : A! B(H) is a ∗-homomorphism.

We also say that π is a representation of A on H.

Another crucial tool to study C∗-algebras, and related to their representations,

is the primitive spectrum.
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Definition 2.1.2 (Primitive spectrum). The primitive spectrum Prim(A) is the

space of kernels of irreducible ∗-representations equipped with the hull-kernel (Ja-

cobson) topology.

The primitive spectrum becomes central to describe the internal algebraic struc-

ture of A. It can be turned into a topological space using the hull-kernel (Jacobson)

topology. Let W ∈ 2Prim(A) an element of the power set, then the closure operator

is given by

Cl(W ) :=
{
I ∈ Prim(A) :

⋂
ker(π) ⊆ I

}
.

A related and equally important notion, is the spectrum Spec(A) of a C∗-algebra

i.e. the set of non-zero unitary equivalence classes of irreducible ∗-representations.

There is an immediate surjection map

Spec(A)! Prim(A), (H, π) 7! kerπ, (2.6)

which endows Spec(A) with the pull-back of the Jacobson topology.

Remark 2.1.1. When the primitive spectrum Prim(A) is a T0-space, then the map

(2.6) is a homeomorphism. This will always be the case in this work, therefore we

will indistinguishably refer to the primitive spectrum or to the spectrum.

In the commutative case, the spectrum of A plays the role of a space. Indeed,

any element a ∈ A can be interpreted as a function over the space of characters

through the Gel’fand map:

a 3 A 7! (χ 7! â(χ)) (χ ∈ Spec(A)). (2.7)

If we let X = Spec(A), then the Gel’fand transform is an isomorphism of A onto

the C∗-algebra C(X) of continuous complex functions over X.

2.2 C*-algebras over a triangulation

In this section, we show how to associate a C∗-algebra An to the space Xn defined

in the previous section. The construction follows the works of Behncke and Leptin
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[13, 14, 15, 11]. In order to give a more comprehensive presentation, we state the

procedure as a sequence of axioms in the subsection 2.2.1. For more details, we refer

to [60].

In the rest of this work, A will designate a C∗-algebra (eventually infinite dimen-

sional) and H a representation of A. The letters A and H will be used in the

commutative case.

2.2.1 C*-algebras over a topological space

We let X be a topological space. A C∗-algebra over X is a pair (A,ψ) consisting of

a C∗-algebra A and a continuous surjection

ψ : Prim(A)! X.

Let OX be the set of open subsets of X, partially ordered by inclusion. For a C∗-

algebra A, we let I(A) be the set of all closed ∗-ideals in A partially ordered by

inclusion. There is an isomorphism (see [98]) between I(A) and the set of open

subsets OPrim(A) in Prim(A). We will always identify OPrim(A) and I(A) through

the isomorphism:

OPrim(A) ' I(A) U 7!
⋂

π∈Prim(A)\U

π. (2.8)

Then for (A,ψ) a C∗-algebra over X, we get a map

ψ∗ : OX ! OPrim(A) ' I(A) U 7! {π ∈ Prim(A)|ψ(π) ∈ U} ' A(U).

We will denote by A(U) ∈ I(A) the ideal associated to the open subset U . We can

now identify the open sets in X with closed ∗-ideals of A, and points in X with

irreducible representations of A.

64



2.2. C*-ALGEBRAS OVER A TRIANGULATION

The Behncke-Leptin construction

The Behncke-Leptin construction allows us to associate a C∗-algebra (A,ψ) over a

partially ordered space X such that ψ = id is the identity map. Hence, the spaces

Prim(A) and X can be identified.

The axioms of the Behncke-Leptin construction go as follows:

1) Associate a separable Hilbert space H(X) to the space X and attach to every

point x ∈ X a subspace H(x) ⊆ H(X) that decomposes into:

H(x) = H−(x)⊗H+(x). (2.9)

where H−(x) ' `2(Z).

2) Let M be the set of maximal points in X. Then for every x ∈M, one has

H(x) = H−(x)⊗ C ' H−(x). (2.10)

2’) If m is the set of minimal points in X, then for every x ∈ m, one has

H(x) = C⊗H+(x) ' H+(x). (2.11)

3) Associate to each point x ∈ X an operator algebra A(x) acting on H(x)

(extended by zero to the whole space H(X)) such that

A(x) = 1H−(x) ⊗K(H+(x)). (2.12)

where K(H+(x)) is the set of compact operators over H+(x).

4) Build the C∗-algebra A(X) associated to the space X as the algebra generated

by the subalgebras A(x) when x runs over X:

A(X) =
⊕
x∈X

A(x) acting on H(X) =
⊕
x∈X

H(x). (2.13)
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As mentioned already, using the isomorphism

ψ : X ! Spec(A), ψ(x) = πx (2.14)

one can identify a point x ∈ X with an irreducible representation (Hx, πx):

πx : A(X)! B(Hx), a 7! πx(a). (2.15)

The irreducible representation Hx ⊂ H(x) is obtained as a subspace of H(x). We

define the following total space:

HX =
⊕
x∈X

Hx. (2.16)

An element a ∈ A then uniquely defines a map on X:

â : X ! A, â(x) := πx(a) =
∑
i∈Ix

λi(x)1⊗ ki(x) (2.17)

where λi(x) ∈ C and ki(x) is a compact operator. In particular, if we identify

the Hilbert space H−(x) with `2(Z), then we see that λ(x)1 is nothing else than a

multiplication operator:

Tλ(x)(u) = λ(x) · u. (2.18)

for u ∈ `2(Z). This leads us to the fifth axiom.

5) For every x ∈M, the representation (Hx, πx) is one-dimensional:

πx : A(X)! C, a 7! πx(a) = λ(x). (2.19)

Example 2.2.1. Let σ be a 2-simplex and consider X to be the poset associated to

σ with the opposite order. Then, Figure 2.3 shows a generic element ax ∈ A(x) for

every vertex x of X. The full algebra A(X) is obtained as a direct sum of A(x).
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λ(x)1

µ(y1)1⊗ k(y1) µ(y2)1⊗ k(y2) µ(y3)1⊗ k(y3)

k(z1) k(z2) k(z3)

Figure 2.3: C∗-algebra associated to a poset.

Commutative subalgebras

Let (A, id) be the C∗-algebra associated to a finite connected poset X through

the Behncke-Leptin construction. Among the subalgebras of A, those of particular

interest are commutative ones. The centre of A will be denoted by Z(A). We know

by construction that A is generated by the algebras

A(x) = 1H−(x) ⊗K(H+(x))

for x running X. Moreover, we recall that the algebra of compact operators K(H)

over an infinite dimensional Hilbert space H has a trivial centre. We deduce that,

for a given x ∈ X, A(x) has a trivial centre.

Proposition 2.2.1. The centre Z(A) of A is trivial.

Proof. This is a direct consequence of the fact that the centre of K(H) is trivial and

the definition of the generating subalgebras A(x) in the Behncke-Leptin construc-

tion.

We will also consider the commutative subalgebra A generated by the projectors

on H(x) when x ∈M is a maximal point:

A = ⊕x∈M1H(x). (2.20)
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2.2.2 C*-algebra over a simplicial complex

We go back now to a simplicial complex K and its associated poset P (K)op that we

will denote X (seen as a topological space). Using the Behncke-Leptin construction,

we can associate a C∗-algebra (A(X), id) over X such that Prim(A) is identified

with X.

Now, let K and K ′ be simplicial complex such that K ′ is a barycentric subdivision

of K. We denote by X and X ′ the associated posets. We then have a continuous

surjection :

φ : X ′ ! X.

Consider in addition that (A(X), id), respectively (A(X ′), id′), is a C∗-algebra over

X, respectively X ′. We would like to show that for the given map φ, there exists a

pullback map φ∗ such that the following diagram commutes:

A(X) A(X ′)

X X ′

φ∗

id id′

φ

i.e. such that the following proposition is satisfied:

πx(a) = πy(φ
∗(a)), ∀x ∈ X, ∀y ∈ φ−1(x) : dim(σ′y) = dim(σx). (2.21)

Here, σx and σ′y are the simplex associated to y and x in the identification of X

and X ′ with K and K ′. We are also using the isomorphism (2.14) to identify a

point x ∈ X with an irreducible representation (Hx, πx) ∈ Spec(A); then πx(a) is

an operator acting on Hy and πy(φ∗(a)) an operator on H ′y. We are assuming here

that Hx and H ′y can be identified as Hilbert spaces; the identification is constructed

in Equation (2.48).

Proposition 2.2.2. A continuous surjection φ : X ′ ! X between posets induces a

unital ∗-homomorphism φ∗ : A(X)! A(X ′) satisfying (2.21).

Proof. We recall that the algebra A(X) is generated by the subalgebras A(x) defined

by (2.12) for x running in X. Then, it is enough to define φ∗ on the algebras A(x)
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and extend the map by linearity.

Therefore, if we start with the following decomposition:

A(Xi) = ⊕x∈XiA(x), a =
∑
x∈X

ax, i=1,2 (2.22)

with X1 = X and X2 = X ′, we define φ∗ such that:

φ∗(a) =
∑
y∈X′

ay, (2.23)

where

ay =

 aφ(y) if dim(σy) = dim(σφ(y)),

0 otherwise.
(2.24)

Thus, if we let x ∈ X and consider the set:

Φ−1(x) = {y ∈ φ−1(x) : dim(σ′y) = dim(σx)}. (2.25)

then, we have defined φ∗ such that it satisfies 2.21 i.e. for any a ∈ A(X):

πy(φ
∗(a)) = πx(a), ∀y ∈ Φ−1(x). (2.26)

Furthermore, φ∗ is a ∗-homomorphism by construction. In addition, the identity

element on A(X) is given by

1A(X) =
∑
x∈M

1H(x) (2.27)

and since φ(M′) = M, then φ∗(1A(X)) = 1A(X′) i.e. φ∗ is unital.

2.2.3 The direct limit construction

We now recall the definition of a direct limit of C∗-algebras. Consider a direct

sequence (An, ψn) of separable C∗-algebras with *-homomorphism ψn : An ! An+1.

The product
∏

nAn equipped with the pointwise addition, multiplication, scalar
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multiplication and involution is a C∗-algebra [102]. We denote by A′ the following

set

A′ =

{
a = (an) ∈

∏
n

An : ∃N ∈ N, an+1 = ψn(an) ∀n ≥ N

}
. (2.28)

Since (ψn) are contractions, then (‖an‖)n converges. One can then check that the

map

p : A′ ! R+, a 7! p(a) := lim
n!∞

‖an‖, (2.29)

is a C∗-seminorm on A′. The direct (inductive) limit of the sequence (An, ψn)n is

then defined as the enveloping C∗-algebra of (A′, p). It is important to notice that

the direct limit is not unique, in the sense that it highly depends on the choices of

maps ψn. We now state the following proposition that characterizes the inductive

limit A in terms of the algebras An.

Proposition 2.2.3 ([99]). Let (An, ψn)n be an inductive sequence in the category

of C∗-algebras. Then there exists an inductive limit (A,ψn,∞) which satisfies the

following:

(i) A =
⋃
n∈N ψn,∞(An);

(ii) For any n ∈ N and a ∈ An, ‖ψn,∞(an)‖ = limp!∞ ‖ψn,p(a)‖.

(ii) For any n ∈ N, a ∈ kerψn,∞ if and only if limp!∞ ‖ψn,p(a)‖ = 0.

We consider now the inverse system {Xn,N, φm,n} defined in Section 2.1.2. To

each poset Xn, we associate a C∗-algebra (An, idn) through the Behncke-Leptin

construction. We have then the following identification:

Spec(An) ' Xn ∀n ∈ N.

Moreover, using Proposition 2.2.2, the map φn,n+1 : Xn+1 ! Xn induces a pullback

map φ∗n,n+1 : A(Xn)! A(Xn+1) for all n ∈ N. We then have the following diagram

in Figure 2.4.

Proposition 2.2.4. The system {An,N, φ∗m,n} forms a direct system.
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A1 A2 A3 · · · A∞

X1 X2 X3 · · · X∞

id1

φ∗12

id2

φ∗23

id3 id

φ12 φ23

Figure 2.4: Direct system of C∗-algebras

Proof. We start by recalling that the maps φm,n satisfy the coherence properties:

φl,m ◦ φm,n = φl,n, l ≤ m ≤ n, φn,n = idn ∀n ∈ N.

From this, it follows that for any l ≤ m ≤ n, the following equalities hold:

(Φl,m ◦ Φm,n)−1 := {y ∈ (φl,m ◦ φm,n)−1(x) : dim(σ′y) = dim(σx)},

= {y ∈ φ−1m,n ◦ φ−1l,m(x) : dim(σ′y) = dim(σx)},

= Φ−1m,n ◦ Φ−1l,m,

on one hand; and on the other hand

(Φl,m ◦ Φm,n)−1 = {y ∈ φ−1l,n(x) : dim(σ′y) = dim(σx)},

= Φ−1l,n .

This implies by construction that the pullback maps φ∗m,n also satisfy the coherence

properties:

φ∗m,n ◦ φ∗l,m = φ∗l,n, l ≤ m ≤ n, φ∗n,n = idn ∀n ∈ N. (2.30)

and thus {An,N, φ∗m,n} forms a direct system.

We can now write the direct limit as

A∞ := lim
!

(An, φ
∗
n,n+1)n∈N. (2.31)

Let Z(A∞) be the center of A∞; consider the spaceMZA being the space of maximal
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ideals in Z(A∞) equipped with the hull-kernel topology. From the Gel’fand-Naimark

theorem [24, Thm 2.2.4 p.60], we deduce immediately that Z(A∞) is ∗-isomorphic

to the space of continuous functions C(MZA,C). Therefore, to prove that Z(A∞)

is isomorphic to the space of functions C(M,C) over the manifold M , we only need

to prove that the spaces M and MZA are homeomorphic. In fact, we can prove a

stronger result:

Theorem 2.2.1. The spectrum Spec(A∞) equipped with the hull-kernel topology is

homeomorphic to the space X∞ and

lim
 
Spec(Ai) ' Spec(lim

!
Ai). (2.32)

Before proving this result, we recall the definition of a state and the interplay

with representations. A state ϕ is a positive linear functional with ϕ(1) = ‖ϕ‖ = 1.

We denote by S(A) the space of states over the C∗-algebra A equipped with the

weak∗ topology. In addition, the set S(A) is convex; an extreme point of S(A) is

called a pure state and the set of pure states is denoted by P (A). We will denote

the set of extreme points of a convex set C by ext(C).

The GNS construction (see for instance [24, pp.114-115]) gives a one-to-one corre-

spondence between positive linear functionals ϕ and (cyclic) representations (Hϕ, πϕ, ξϕ).

Now let x ∈ X∞, then identifying Xi with Spec(Ai), the corresponding repre-

sentation πx defines a coherent sequence

πx = (π1, π2, · · · ) ∈
∏
i∈N

Spec(Ai), such that πm = φm,n(πn), ∀m ≤ n.

Moreover, according to the GNS construction, we can associate a pure state ϕ to any

irreducible representation π. Therefore, we have the following coherent sequence of

pure states:

ϕx = (ϕ1, ϕ2, · · · ) ∈
∏
i∈N

S(Ai), (2.33)
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such that,

ϕm = φn,m(ϕn), (2.34)

φl,m = φl,n ◦ φn,m, if l ≤ m ≤ n . (2.35)

Hence, the inverse system of posets {Xn,N, φm,n} induces an inverse system of states

{S(An),N, φm,n}.

Lemma 2.2.1. The inverse limit system {S(An),N, φm,n} is homeomorphic to S(A∞).

Proof. For x ∈ X∞, the map ϕx defines a bounded linear functional on the algebraic

inductive limit A′ and uniquely extend over A∞ such that ‖ϕx‖ = 1. Hence, ϕx ∈

S(A∞).

Conversely, any state φ ∈ S(A∞) define a state ϕn ∈ S(An) defined as follows

ϕn := ϕ ◦ φ∗n,∞(a) (2.36)

for any n ∈ N. In addition, the sequence (ϕn) is a coherent sequence satisfying

(2.34) and (2.35). Thus, there is a bijection between lim S(Ai) and S(A∞).

Finally, the weak∗-topology on S(A∞) is equivalent to the subspace topology

on lim S(Ai) induced by the product topology on
∏

i∈N S(Ai). This gives us the

expected homeomorphism.

Lemma 2.2.2. The inverse limit system {P (An),N, φm,n} is homeomorphic to P (A∞).

Proof. We start by recalling that the inverse limit of convex spaces is convex (this

follows from the fact that an arbitrary Cartesian product of convex sets is convex).

Therefore, the set lim S(Ai) is convex. In addition, the set of extreme points of

S(Ai) is exactly the set of pure states P (Ai). Using a classical result in convex

analysis [77, Thm.3 p.502], the set of extreme points in the product is given by:

ext

(∏
i∈N

S(Ai)

)
=
∏
i∈N

P (Ai) (2.37)
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Hence, the pure states of lim S(Ai) are given by the coherent sequences in
∏

i∈N S(Ai)

i.e. lim P (Ai). Similarly, the set of pure states on A∞ is denoted by P (A∞). Con-

sequently, using Lemma (2.2.1) we deduce that

ext
(

lim
 
S(Ai)

)
= ext (S(A∞)) = P (A∞). (2.38)

Finally, we recall that a sequence of states (ϕn) on A∞ converges to a state ϕ in the

usual weak topology if and only if the coordinate sequence (ϕin) on Ai converges for

every i ∈ N. Therefore, the space P (A∞) is homeomorphic to the closed subspace

of all systems satisfying (2.34) in the product space
∏

i∈N P (Ai) i.e

lim
 
P (Ai) ' P (A∞). (2.39)

Proof of Theorem 2.32. Let π ∈ Spec(A∞), then by the GNS construction, we can

associate to it a pure state ϕ ∈ P (A∞). Using Lemma 2.2.2, ϕ in turn correspond to

a sequence of pure states (ϕi) in lim P (Ai). Again by Lemma 2.2.2 and the GNS

construction, we associate to (ϕi) a coherent sequence in X∞.

Reciprocally, a coherent sequence of irreducible representations in X∞ correspond

to an element in lim P (Ai) through the GNS construction.

Therefore, we can identify X∞ with Spec(A∞) as posets. The homeomorphism

follows from the fact that the order topology on X∞ is equivalent to the hull-kernel

topology using the isomorphism (2.8).

Corollary 2.2.1. The sets M and MZA are homeomorphic.

Proof. This follows again from the isomorphism (2.8) where the maximal points in

X∞ correspond to maximal ideals in Spec(A∞). Then M and MZA are homeomor-

phic with the subspace topology.

We have then proven that the C∗-algebra A∞ contains the algebra of continuous

functions C(M,C) as its centre. In fact, one can go further in the characterization

of the inductive limit using the following result.
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Theorem 2.2.2 (Dauns-Hofmann [53, p.272],[61]). Let A be a unital C∗-algebra

with centre Z(A). Let MZA be the space of maximal ideals of the center Z(A)

equipped with the hull-kernel topology. Then A is isometrically ∗-isomorphic to the

C∗-algebra of all continuous sections Γ (MZA, A) of the C∗-bundle (A, Ψ,MZA) over

MZA. The fibre (stalk) above x ∈ MZA is given by the quotient Ax ' A /xA , the

isometric ∗-isomorphism is Gel’fand’s representation a 7! â: A ! Γ (MZA, A)

a 7! x 7! â(x) = a+ xA

with ‖â‖ = supx∈MZA
‖â(x)‖.

According to the Dauns-Hofmann theorem, the algebra A∞ is isomorphic to

the C∗-algebra of continuous sections Γ (M,A∞) of a C∗-bundle (A, Ψ,M) over the

manifold M . From the Behncke-Leptin construction, we get the following general

form for a section at a point x ∈M .

â(x) =
∑
i∈Ix

λi(x)⊗ ki(x) + xA∞ (2.40)

where Ix is a finite indexing set. We see that the central elements are then given by

functions x 7! λ(x) on M .

We go back now to the commutative subalgebra A defined in Equation (2.20)

and show how it can be used to approximate C(M). In the rest of this work, we

will identify C(M) with the centre Z(A∞) and denote by An the commutative sub-

algebra in A(Xn).

Proposition 2.2.5. The space of continuous functions C(M) is approximated by

the system of commutative subalgebras (An, φ
∗
n,∞) in the following sense:

C(M) =
⋃
n∈N

φ∗n,∞(An) ∩ C(M). (2.41)
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Proof. First, let us recall that, by Axiom 5), an element an ∈ An is determined a

map ân : Xn ! An such

ân(x) =
∑
i∈Ix

λi(x)1H(x). (2.42)

When restricted to the set of maximal points Mn, an acts as a scalar:

πx(an) = λx (2.43)

where λx ∈ C. Then, using the map φn,∞, we notice that an defines a piecewise-linear

function on M :

φ∗n,∞(an) = an ◦ φn,∞ : M ! C, an ◦ φn,∞(y) = λφn,∞(y). (2.44)

Therefore, any continuous function g ∈ C(M) can be uniformly approximated arbi-

trarily closely by a function of the form an ◦ φn,∞, for some sufficiently large n.

Finally, using the smooth structure, we can define the subalgebras

Zk(A∞) := Ck(M) (2.45)

of k-differentiable functions. In the rest of this work, we will focus on the subalgebra

Z∞(A∞) and its approximation given by the equality:

Z∞(A∞) =
⋃
n∈N

φ∗n,∞(An) ∩ Z∞(A∞). (2.46)

Direct limit of representations

Similarly, we associate a representation space H(Xn) (defined in Equation (2.16))

to every space Xn. Moreover, a continuous surjection φ : X ′ ! X between posets

induces a isometry ψ : H(X) ! H(X ′) between representations. The construction

of ψ follows mutatis mutandis the same steps that the one of φ∗; therefore, we will

keep the same notations and directly state the results. We define ψ : H(X)! H(X ′)

as follows :

H(X) = ⊕x∈XH(x), ψ (⊕x∈Xξx) = ⊕y∈X′ξy (2.47)
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where,

ξy =

 ξφ(y) if dim(σy) = dim(σφ(y)),

0 otherwise.
(2.48)

Therefore, the inverse system of posets {Xn,N, φm,n} induces a direct system of

Hilbert spaces {Hn,N, ψm,n}, where Hn denotes the Hilbert space H(Xn).

Proposition 2.2.6. The system {Hn,N, ψm,n} forms a direct system.

Hence, we can construct the direct limit of representations (Hn, ψn) as a subspace

of the direct sum:

⊕
n∈N

Hn =

{
(hn)n∈N : hn ∈ Hn,

∞∑
n=1

‖hn‖2Hn <∞

}
(2.49)

equipped with an inner product 〈., .〉 given by:

〈g, h〉 =
∞∑
n=1

〈gn, hn〉Hn . (2.50)

The algebraic direct limit is defined as

H ′ =

{
(hn)n∈N ∈

⊕
n∈N

Hn : ψn,n+1(hn) = hn+1

}
. (2.51)

The resulting Hilbert space is obtained from the closure of H ′ and will be denoted

by

H∞ := lim
!

(Hn, ψn)n∈N. (2.52)

The direct system {Hn,N, ψm,n} induces a direct system on the irreducible rep-

resentations {Hn,N, ψm,n}; we denote the limit H∞. We have then the following

characterization of this limit space.

Theorem 2.2.3. The Hilbert space L2(M) of square integrable functions over the

manifold M is a subspace of H∞:

H∞ = L2(M)⊕Hω. (2.53)

Proof. Using Axiom 5 in the Behncke-Leptin construction, for any n ∈ N, we have
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the following decomposition:

Hn =
⊕
x∈Mn

Hn
x ⊕

⊕
x∈Mc

n

Hn
x ' C|Mn| ⊕

⊕
x∈Mc

n

Hn
x . (2.54)

Now, let us recall that the commutative subalgebra An given by

An = ⊕x∈Mn1H(x), a =
∑
x∈Mn

λ(x)1H(x) (2.55)

is completely determined by the representation (C|Mn|,⊕x∈Mnπx):

⊕x∈Mn πx : An ! C|Mn|, a 7! (λ(x1), λ(x2), · · · , λ(x|Mn|)). (2.56)

Through this isomorphism of vector spaces, we can identify
⊕

x∈Mn
Hn
x with the

image of An and denote it by Ân:

Hn = Ân ⊕
⊕
x∈Mc

n

Hn
x . (2.57)

Moreover, because φn,n+1(Mn+1) = Mn then by definition of ψn,n+1, we have:

ψn,n+1(Hn) = φ∗n,n+1(Ân)⊕
⊕
x∈Mc

n

ψn,n+1(Hn
x) (2.58)

for every n ∈ N. Therefore, we have for every n ∈ N:

ψn,∞(Hn) = φ∗n,∞(Ân)⊕
⊕
x∈Mc

n

ψn,n+1(Hn
x). (2.59)

Hence the direct limit H∞ decomposes as the direct sum H ⊕Hω, where Hω is an

infinite dimensional Hilbert space and

H = ⊕nφ∗n,∞(Ân) = {a ∈ C(M), ‖a‖H∞ <∞} ≡ L2(M). (2.60)
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Cubulation: example of a lattice

We now conclude this section with the specific case of a C∗-algebra over a lattice Λ

seen as a cubulation of Rd. The lattice Λ can be written as a direct product of a

line lattice L. Hence, we can the algebra A(Λ) relate them to the tensor product of

algebras A(L) over L. First, we need to recall the following result on the structure

space of tensor product of C∗-algebras.

Proposition 2.2.7 (Wulfsohn [130]). Let A and B be separable C∗-algebras and

A⊗B their C∗-tensor product. The mapping

α : Prim(A)× Prim(B)! Prim(A⊗B), α(a, b) = a⊗B + A⊗ b

is a homeomorphism.

This result immediately gives us that tensor C∗-algebras can be seen as C∗-

algebras over Cartesian product of posets.

Corollary 2.2.2. Let X and Y be topological spaces. If (A,ψA) and (B,ψB) are

separable C∗-algebra over X (respectively over Y ), then the pair (A ⊗ B,ψA × ψB)

is a separable C∗-algebra over X × Y with the product topology.

Let Λ be the d-dimensional, we can write it as the direct product of d line lattices:

Λ = L× · · · × L.

Let (A(L), ψL) be a C∗-algebra over L. Then using 2.2.7 and 2.2.2 we can associate

the C∗-algebra over Λ:

A(Λ) = A(L)⊗ · · · ⊗ A(L), ψΛ = ΠψL. (2.61)

Similarly to the previous section, we construct a sequence of refined lattice (Λn, πn)

and construct the direct limits of C∗-algebras (A(Λn), π∗n) with their representations

(Hn, ψn). We can then directly state the following result, which a special case when

M = Rd.
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Corollary 2.2.3. The centre of the limit C∗-algebra A∞, Z(A∞) is isometrically
∗-isomorphic to C(Rn) acting on L2(Rn) as a subspace of H∞.

2.3 Geometry over a triangulation

The last piece remaining to be defined, in order to complete this triptych, is the

differential geometry. This will be done using the machinery of noncommutative

differential geometry, as explained in the introduction.

2.3.1 Finite spectral triple

Let (A(X), id) be a C∗-algebra over a poset X induced by a triangulation of a

compact Riemannian manifold (M, g) of dimension d.

We will denote by M the set of maximal points in X and by A the commutative

subalgebra of A defined by Equation (2.20). We then immediately notice that

h =
⊕
x∈M

C, π =
⊕
x∈M

πx. (2.62)

defines a faithful representation of A.

Consider now the pair (h, h∗) where h and h∗ have both dimension m. Define the

even dimensional representation of A

H(X) := h⊕ h∗, ρ = π ⊕ π∗ (2.63)

where the adjoint representation is given by π∗(a) = −πt(a) for any a ∈ A. The

triple (A,H, ρ) embeds the commutative algebra A into the Cartan subalgebra h of

the Lie algebra gl(2m,C).

The space of bounded operators B(H) can be identified with M2m(C). We define

the parity element γ ∈M2m(C) such that

γ =

 1m 0

0 −1m

 (2.64)
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where the eigenspace decomposition correspond to the splitting (2.63). This in turns

defines a Z2-grading on M2m(C). The space M2m can be accordingly written as a

direct sum

M2m = M+
2m ⊕M−

2m (2.65)

of even and odd elements, where a ∈M2m is even if it commutes with γ and odd if

it anticommutes. In fact, even elements will correspond to block diagonal elements

and odd elements to off-diagonal with respect to the representation space H. Under

this grading, the algebra A is represented as the subspace of diagonal matrices, i.e.

A
ρ
−! h ↪−!M+

2m(C). (2.66)

Remark 2.3.1. The data (A,H, π) can also be localized to an open set U ⊂ X.

Consider the restriction functor rUX (see [98]) and define the restriction A(U) :=

(rUXA) of A to the open set U . Similarly, A(U) defines a restriction of A to U . Let

MU the subset of M of maximal points in U . Again, we have that

HU =
⊕
x∈MU

C, π|U =
⊕
x∈MU

πx,

is a representation of A(U).

Definition 2.3.1 (Spectral triple). A spectral triple is the data (A,H, D) where:

(i) A is a real or complex ∗-algebra;

(ii) H is a Hilbert space and a left-representation (π,H) of A in B(H);

(iii) D is a Dirac operator, which is a self-adjoint operator on H.

If in addition, H is equipped with a Z2-grading i.e. there exists a unitary self-adjoint

operator γ ∈ B(H) such that

1) [γ, π(a)] = 0 for all a ∈ A,

2) γ anticommutes with D,

then the spectral triple is said to be even. Otherwise, it is said to be odd. In the case

whereH is finite dimensional, then the triple (A,H, D) is called a discrete spectral triple.
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We consider the finite dimensional algebra (A,H) a Dirac operator D chosen as

an odd element of M2m(C) of the form

D =
i

~

 0 D−

D+ 0

 (2.67)

where D+, D− ∈ M2m(R) and satisfy D− = −(D+)∗. We then form the finite

spectral triple (A,H, D); this triple is even with the grading induced by γ.

Using this structure, we can then define a graded derivation da for a ∈M2m(C)

through a graded commutator,

da = − [D, a] := Da− εaaD (2.68)

where εa = 1 if a is even and εa = −1 if a is odd. Using the representation

ρ, it also induces a derivation on A. Furthermore, notice that the derivative d

coincides (modulo the grading) with the adjoint operator adD. We can then study

the differential structure on A by identifying M2m(C) as the Lie algebra gl2m(C)

with Cartan subalgebra h. For convenience, we then equip h with the inner product:

〈h, h′〉 := Tr(h∗h′). (2.69)

We can then identify h with its dual h∗ i.e. the set of linear functionals acting on

h. Now, recall that a nonzero element α ∈ h is a root of gln(C) relative to h if there

exists a nonzero x ∈ gln(C) such that

[x, h] = α(h)x, (2.70)

for all h ∈ h. In particular, the standard matrix basis elements eij satisfies heij =

λieij and eijh = λjeij for all h ∈ h. Thus,

[h, eij] = (λj − λi)h, (2.71)

showing that eij are simultaneous eigenvectors for adh. Now let a ∈ A be described
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as an element of h through the representation ρ:

ρ(a) =



λ1
. . .

λm

λ1
. . .

λm


. (2.72)

Following the definition, we can write the operator D as a linear combination of

elements eij:

D =
∑
i<j

ωij êij (2.73)

where êij = eij − eji. Then the derivation d acts on an element a ∈ A as

da =
∑
i<j

ωijαij(a)êij (2.74)

where the roots are given by αij(a) = λj − λi.

Graded differential algebras

It is possible to construct over M+
2m a N-graded differential algebra Ω∗D = Ω∗D(M+

2m)

based on formula (2.68). Define Ω0
D = M+

2m and let

Ω1
D = dΩ0

D ⊂M−
2m (2.75)

be theM+
2m-module generated by the image of Ω0

D inM−
2m under d. Then for each p,

we let Im d2 be the submodule of dΩp−1
D consisting of those elements which contain

a factor which is the image of d2 and define

Ωp
D = dΩp−1

D / Im d2. (2.76)
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Therefore since Ωp
D ·Ω

q
D ⊂ Ωp+q

D the complex Ω∗D define as

Ω∗D =
⊕
p≥0

Ωp
D (2.77)

is a differential graded algebra. The Ωp
D need not vanish for large values of p. In

addition, it follows by construction that the Ωp
D are generated by the da as follows

Ωp
D =

{
a0da1 · · · dan, ai ∈M+

2m(C) ∀i
}
. (2.78)

However, we would like to restrict to elements in A seen as a subset of M+
2m through

the representation ρ. We then define Ω∗D(A) in the exact same. In particular, we

have

Ω1
D(A) = {a0da1, ai ∈ A, i = 1, 2} . (2.79)

We define an inner product on B(H) given by

(A,B)B(H) = Tr(B∗A), (2.80)

and inducing a Hilbert space structure on Ωk
D(A) for any k.

Laplace operator

Following the definitions, we see that the differential da is not an element of A in

general, but is in B(H) nonetheless. Let p be the orthogonal projection operator on

ρ(A) with respect to this inner product:

B(H) = ρ(A)⊕ ρ(A)⊥. (2.81)

We can now introduce the adjoint operator δ : B(H) ! ρ(A) of the differential d

using Riesz representation theorem

(b, da)B(H) = (a′, a)ρ(A) (2.82)

and we set δb := a′.
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Proposition 2.3.1. The adjoint map δ to the derivation d : A! B(H) is given by

δ : B(H)! A, δ(b) = p[D, b].

Proof. Using the fact that D is hermitian, we first have

(b, da)B(H) = (b, [D, a])B(H) = ([D, b], a)B(H). (2.83)

Then, since a ∈ ρ(A) and p∗ = p, it follows that:

([D, b], a)B(H) = ([D, b], pa)B(H) = (p[D, b], a)ρ(A). (2.84)

It is then straightforward to define a Laplace operator on A.

Definition 2.3.2. (Laplacian) The Laplace operator ∆ is given by:

∆ : A! A, ∆(a) := −δda = −p [D, [D, b]] ,

where p is the orthogonal projection on A.

We can now state and prove a Hodge-like decomposition on Ω∗D(A).

Proposition 2.3.2 (Hodge-de Rham decomposition). The Laplacian ∆ on ΩD(A)

satisfies the following properties:

i) ∆ ≥ 0 in the Hilbert space (ΩD(A), (·, ·)),

ii) ∆α = 0 if and only if dα = 0,

iii) A = δΩD(A) ⊕ ker(∆) is an orthogonal decomposition of ΩD(A) with respect

to (·, ·).

In addition, we will call harmonic these elements α ∈ ker(∆).

Proof. Let a ∈ A, then, (∆(a), a) = ‖da‖2 which proves i). The inclusion ker(∆) ⊆

ker(d) follows from i); the inclusion ker(d) ⊆ ker(∆) is immediate from the definition
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of ∆. This proves ii). Finally, since δ is the adjoint to d, we have the following

decomposition in finite dimension

A = ker(d)⊕ δΩD(A); (2.85)

thus, iii) follows from ii).

2.3.2 Dirac operator associated to a graph

So far, we have worked with a generic Dirac operator D, the only restriction being

that D has to be hermitian and odd according to the grading. Nevertheless, one can

exhibit a deeper connection between the space X (or equivalently the spectrum of

A) and the Dirac operator. We first need to restrict the space of admissible Dirac

operators.

Definition 2.3.3 (Admissible Dirac operators). Let D ∈ M2m(C) be an odd and

hermitian matrix and let ωij be the coefficients of the block D−. We say that D is

an admissible Dirac operator associate to X if it satisfies the additional condition:

a) vertices i and j do not share an edge⇔ ωij = 0, ∀i, j ∈M,

b) the eigenvalues µn satisfy the asymptotic µn(D) = O(h−1).

We denote by D(X) the set of all admissible Dirac operators and by DR(X) the set

of real admissible Dirac operators.

Example 2.3.1. The prototypical example is given by the combinatorial Dirac

operator, for which:

ωij :=

 1 if i ∼ j,

0 otherwise.

Proposition 2.3.3. The graded algebra ΩD(M+
2m(C)) is invariant under the change

D 7! D′ in D(X) i.e.

ΩD(M+
2m(C)) = ΩD′(M

+
2m(C))

for any D,D′ ∈ D(X).
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Proof. The algebra Ωp(A) is generated by elements of the form a0da1 · · · dan, with

ai ∈ A for all 0 ≤ i ≤ n. Now, we recall that for an element a ∈ A,

da =
∑
i<j

αij(a)êij. (2.86)

Therefore, Ωp(A) is generated by basis elements {êij} where an element êij is a

generator if and only if vertices i a j share an edge.

2.3.3 A first example: the lattice

We now come back to the example of a C∗-algebra over a line lattice L denoted by

A(L) before moving to the case of a d-dimensional lattice Λ. For the line lattice, we

let the Dirac operator D to be an odd element of M2m(C) of the form:

D =
i

~

 0 D−

D+ 0

 (2.87)

with (D+)∗ = −D− and where D− is given by

D− =



0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... . . . 1

0 · · · · · · · · · 0


. (2.88)

Proposition 2.3.4. For every element da ∈ Ω1
D(A), the spectrum σ(da) of the

operator da is given by:

σ(da) =

{
±1

~
(λj+1 − λj) : 1 ≤ j ≤ m− 1

}
∪ {0}

Moreover, we have the commutativity relation

[da, db] = 0, ∀a, b ∈ A. (2.89)
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Proof. Using Equation (2.74), we can write the commutator da as

da =
m−1∑
j=1

αjj+m+1(a)êjj+m+1 (2.90)

with the roots:

αjj+m+1(a) =
1

~
(λj+1 − λj), j ∈ {1, · · · ,m− 1}. (2.91)

Then, we notice that the operator da∗da is a diagonal operator with diagonal entries

given by:

βjj =
1

h2
(λj+1 − λj)2 = βj+m+1j+m+1, (2.92)

for j ∈ {1, · · · ,m − 1} and βm,m = βm+1,m+1 = 0. Thus, the eigenvalues of da

are obtained as the square roots of the previous diagonal coefficients. Finally, the

commutativity follows again from the fact that dadb is a diagonal operator.

Following the result on the spectrum of da, we can deduce a result on the states.

In the finite dimensional case where A = M2m(C), a density matrix ω i.e. an operator

with a graded trace Trs(ω) = 1 defines a state. over A. Then, we can introduce the

expectation map a 7!< a >ω with respect to ω such that

< a >ω= Trs(ωa). (2.93)

Proposition 2.3.5. There exists a density matrix ω with eigenvalues {µk}2mk , such

that the expectation value is given by

< da >ω= Trs(ωda) =
i

~

2m∑
k=1

µk(λk+1 − λk).

for any element da ∈ Ω1
D(A).

Proof. By Proposition 2.3.4, we know that the algebra generated by da for a running

in A is commutative. Then, it admits a common spectral decomposition. Therefore,
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one can choose ω = db, for some element b ∈ A such that the graded trace Trs(db) =

1, which conclude the proof.

Remark 2.3.2. The last proposition is of importance in the approximation of dif-

ferential operators. Indeed, it is well known that any finite difference formula for the

first derivative can be written as a convex combination of the two-points approxima-

tion. It follows that the perspective is shifted in this context; instead of looking at

the pointwise discretization of a derivative, one can study the density matrix ω. It is

our hope that this change of paradigm, together with the machinery of C∗-algebra,

allows us to produce new results in discretization of differential operators.

Direct limits of spectral triples

We can now complete the construction in the case of the lattice. Recall that we have

defined a direct system of C∗-algebras (An, φ
∗
m,n) over an inverse system (Ln, φm,n) of

lattices. We can now associate a Dirac operatorDn to each algebra An. We will work

on the infinite collection {An : n ∈ N} of commutative subalgebras C∗-algebras. In

this case, we have identified each of the An with the Cartan subalgebras hi inside

the finite dimensional algebras Bn = M2mn(C) where mn ! ∞ when n ! ∞. We

can then construct the product

Bω =
∏
n∈N

Bn = {(an) : ‖an‖ = sup ‖an‖ <∞}. (2.94)

Let a be an element in C∞(R), then there exists a sequence (ai) such that

a = (a0, a1, · · · , an, · · · ) ∈
∏
n∈N

An. (2.95)

We define a spectral triple on Bω by introducing the Dirac operator D as the se-

quence

D = (D0, D1, · · · , Dn, · · · ) ∈
∏
n∈N

M−
2mn(C). (2.96)
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This in turns induces a spectral triple on
∏

n∈N An along with the commutator:

[D, a] = ([D0, a0], [D1, a1], · · · , [Dn, an], · · · ) ∈
∏
n∈N

M−
2mn(C). (2.97)

We can then characterize the operator [D, a] and relate it to the classical differential

on C∞(M).

Lemma 2.3.1. The spectrum σBω(x) of an element x = (· · · , xn, · · · ) ∈ Bω is given

by

σBω(x) = ∪nσBn(xn).

Proof. b = (· · · , bn, · · · ) ∈ Bω is invertible if and only if each bn is invertible and

{‖bn‖−1 : n ∈ N} is bounded. Thus, σBn(xn) ⊂ σBω(x) for all n ∈ N, Therefore, we

have the first inclusion S := ∪nσBn(xn) ⊆ σBω(x). Reciprocally, if λ ∈ C\S, then

xn − λ1 is invertible in Bn for each n and ‖(xn − λ1)−1‖ ≤ d(λ, S), where d(λ, S) is

the distance from λ to S, therefore

(x− λ1)−1 = (· · · , (xn − λ1)−1, · · · ) ∈ Bω. (2.98)

Then, for an element a ∈
∏

n∈N An, the spectrum σBω([D, a]) of the operator

[D, a] is given by:

σBω([D, a]) = ∪nσBn([Dn, an]). (2.99)

We restrict now to an element a ∈
∏

n∈N An ∩ C∞(R); using Proposition 2.3.4, we

have:

σBn([Dn, an]) =

(
· · · ,

axnj+1
− axnj
hn

, · · ·
)

=
(
· · · , `(a)(xnj ), · · ·

)
(2.100)

where, axnj = a(y), for some y such that φn,∞(y) = xnj . Then, the map φn,n+1 :

Mn+1 !Mn between maximal sets induces a map, denoted by: φ̃n,n+1 : σBn+1([Dn+1, an+1])!

σBn([Dn, an]) such that:

φ̃n,n+1(`(a)(xnj )) = `(a)(φn,n+1(x
n
j )). (2.101)
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Then σBω([D, a]) can be identified with the inverse limit given by the inverse sys-

tem (σBn([Dn, an]),N, φ̃n,n+1). Recalling that the manifold M is obtained from the

maximal points in X∞, we deduce that:

σBω([D, a]) =

{
da

dx

∣∣∣∣
x

}
x∈R

. (2.102)

Therefore, if we denote by dca the de Rham differential of a on R, then we have the

following result.

Proposition 2.3.6. (Spectral convergence) There exists a finite measure µ and a

unitary operator

U : L2(R)! L2(R, dµ) (2.103)

such that,

U [D, a]U−1φ =
da

dx
φ, ∀φ ∈ L2(R), (2.104)

Moreover, the norm of [D, a] is given by ‖ [D, a] ‖ = ‖dca‖∞.

Proof. This result is an immediate consequence of the spectral theorem on self-

adjoint bounded operator (Multiplication operator type) [44, pp.36-37] and the

spectrum characterization (2.102).

The d-dimensional lattice

We start by recalling that the C∗-algebra A(Λ) is given by the tensor product,

A(Λ) = A(L)⊗ · · · ⊗ A(L), (2.105)

where A(L) is the algebra associated to the line lattice. Similarly, we consider the

sequence of commutative subalgebras

An(Λ) = An(L)⊗ · · · ⊗ An(L), (2.106)

for every n ∈ N, that we embed it in the tensor product of matrix algebras

Bn = M2mn(C)⊗ · · · ⊗M2mn(C). (2.107)
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Again, we adjoin a Dirac operator on each algebra Bn given by:

Dn =
d∑

k=1

1⊗ · · · ⊗D(k)
n ⊗ · · · ⊗ 1 (2.108)

with the commutator on an element b defined as:

[Dn, b] =
d∑

k=1

b1 ⊗ · · · ⊗ [D(k)
n , bk]⊗ · · · ⊗ bd. (2.109)

This gives a spectral triple structure on Bω by extending the commutator in the

same way as Equation (3.38).

Proposition 2.3.7. (Spectral convergence) There exists a finite measure µ and a

unitary operator

U : ⊗di=1L
2(R)! ⊗di=1L

2(R, dµ),

such that

U [D, a]U−1φ =
d∑

k=1

a1φ1 ⊗ · · · ⊗
∂ak
∂xk

φk ⊗ · · · ⊗ adφd,

for all φ = φ1 ⊗ · · ·φk ⊗ · · · ⊗ φd in ⊗di=1L
2(R).

Proof. Again, we use the fact that the spectrum [D
(k)
n , ak] is given by

σBω([D(k), ak]) =

{
∂ak
∂xk

∣∣∣∣
xk

}
xk∈R

, (2.110)

for very k ∈ {1, . . . , d}; then using the unitary operator given by

U = U1 ⊗ · · · ⊗ Uk ⊗ · · · ⊗ Ud, (2.111)

where for every k ∈ {1, . . . , d}, Uk is the (same) unitary operator given by Proposi-

tion 3.

92



2.3. GEOMETRY OVER A TRIANGULATION

2.3.4 Beyond the combinatorial Dirac operator: the metric

question

Throughout this work the metric of the manifold was assumed but not used explic-

itly. The construction so far and convergence results were algebraic. We now provide

another canonical example to highlight some subtleties and provide a starting point

for the second part of this work regarding convergence of the metric.

A second example: the torus Td

We now turn our attention to the case of the d-dimensional torus Td; we do not

specify the metric yet. This example has two purposes, firstly show how the matrix

D depends on the topology of the space X and secondly exhibit certain subtleties

with respect to the eigenvalues of the commutator. Indeed on the latter, one has to

be able to actually compute them and moreover, these eigenvalues should reflect (in

the limit) the metric g on the manifold M .

We start with the case of the circle S1, since the general case of the torus in

an arbitrary dimension d is obtained by direct product (similarly to the approach

used above for the lattice in Rd). Hence, we are looking for the Dirac operator D

associated to a graph obtained from a triangulation of S1. The block matrix D−

may be directly read from Figure 2.2 and is given by:

D− =



0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... . . . 1

1 · · · · · · · · · 0


. (2.112)

where we notice the non-zero coefficients on the down-left corner. We then compute

the eigenvalues of the operator da. Indeed, for every element da ∈ Ω1
D(A), the

spectrum σ(da) of the operator da is given by:

σ(da) =

{
±1

~
(λj+1 − λj) : 1 ≤ j ≤ m− 1

}
∪
{
±1

~
(λm − λ1)

}
. (2.113)
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Taking the limit h ! 0, we deduce that there exists a finite measure on S1 and a

unitary operator u acting on L2(S1) such that

(u[D, a]u∗)φ =
da

dθ
φ, ∀φ ∈ L2(S1). (2.114)

We may now use this result to work out the general case for the d-dimensional torus

Td.

There exists a unitary operator u acting on L2(Td) such that

(u[D, a]u∗)φ =
d∑

k=1

a1φ1 ⊗ · · · ⊗
∂ak
∂ϕk

φk ⊗ · · · ⊗ adφd,

for all φ = φ1 ⊗ · · ·φk ⊗ · · · ⊗ φd in ⊗di=1L
2(S1) ' L2(Td).

It is somewhat obvious that up to some topological changes in the Dirac operator,

the results obtained for the d-dimensional torus are very similar to those obtained

for the lattice in Rd. However, seen as Riemannian manifolds, one may expect the

approximation of Rd with its standard metric on one hand, and of the torus (Td, g)

with a metric g on the other hand, to reflect the intrinsic geometrical differences

between those two manifolds. With this observation in mind, we now highlight some

of the required work to be able to have a convergence result that is both algebraic

and geometric.

Discussion

As already mentioned, we recall that the above results do not depend on the metric g

on the torus. Indeed, one could either look at the flat torus with the metric inherited

from a quotient of Rd+1 or the metric induced from the ambient space in which it

is embedded. However, as it is currently defined, there is no use of the metric in D;
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hence one could, for instance on S1, redefine the matrix D− using the ansatz

D− = ρ(θ)



0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... . . . 1

1 · · · · · · · · · 0


. (2.115)

where ρ is a function depending on the metric. In order to make the discussion more

concrete, we consider the 2-dimensional torus T2 with the usual parameterization,

Ψ(θ, φ) = 〈(R + r cosφ) cos θ, (R + r cosφ) sin θ, r sinφ) . (2.116)

Then, the inverse of the metric is given (in matrix form) by

gij = (gij)
−1 =

 1
R+r cosφ

0

0 1
r2

 . (2.117)

Therefore, we could define the Dirac operator in that specific case, following Equa-

tion (2.108), by:

D = g11 (D1 ⊗ 1) + g22 (1⊗D2) . (2.118)

Nevertheless, this construction is only, in general, a local description i.e. it is valid

for a manifold that has an atlas consisting of only one chart (U,ϕ) . In fact, one could

adopt an extrinsic point of view of the Dirac operator: given a local chart (U,ϕ),

with a local metric g|U , one could consider a lattice-like approximation of U and

define a Dirac operator D|U following the same construction from Equations (2.115)

and (2.118). However, given an atlas containing two coordinate charts (U,ϕU) and

(V, ϕV ) with associated lattices, say λU and λV and Dirac operators DU and DV , it

is unclear how to glue (i.e. transition) them to obtain a lattice ΛU∪V with a Dirac

operator DU∪V that restricts to DU on ΛU , respectively DV on ΛV .

Now, one may adopt an intrinsic point of view instead, where the matrix D is

defined globally starting from a graph. However, this time we see that the coeffi-
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cients, say ωij, of the Dirac operator must depend on the intrinsic geometry of the

manifold i.e. the coefficients ωij are not simply 0 or 1 but are computed from a

priori knowledge of the metric g.

From the perspective of the above observations regarding the metric, and the

non-triviality of the manifold (which atlas may comprise more than one chart), is the

eigenvalues of a compatible Dirac operator. Indeed, in the examples treated above,

the correspondence between D and the graph associated to the triangulation gives

a commutator for wish the eigenvalues are easy to compute. However, performing

the same task in all generality may be difficult. Moreover, there is no evidence

that given a sequence of commutators, this sequence will converge to the exterior

derivative.

It is now clear that the fundamental question of the choice of coefficients ωij and

their relations with the intrinsic properties of the manifold must be tackled in order

to see the desired geometry emerge from a sequence of discrete approximations.

Summary and perspectives So far, we have defined a spectral triple (A,H,D)

on a given triangulation X. It is crucial to note at this point that we may rely solely

on the spectral triple as it encodes the space X . Indeed, we have shown in Section

2.2 that the algebra A plays the role of functions on X and is enough to recover

smooth functions in the limit. Moreover, we have built a correspondence between

the given triangulation X and a Dirac operator D: the non-zero coefficients of D are

determined by the connectivity between vertices of the graph. Hence, the sparsity

pattern of D encodes to some extent the topology of X. The bracket [D, a] can be

then represented as a bounded operator acting on the Hilbert space H.

However, the above discussion has shown that this was not enough to repre-

sent the metric of the manifold. Thus, we ask now the question of how to set the

coefficients ωij of D so that at the limit (in the sense of (3.38)) the sequence con-

verges. Such a convergence by setting the coefficients ωij of D while preserving

the sparsity pattern of D is precisely the notion of compatible discretization (or

structure-preservation) we are pursuing.
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Chapter 3

Statistical fluctuations of

infinitesimal spaces

3.1 Dirac operators in the algebraic setting

In this section, we introduce two of the main algebraic tools that we are going to

use in this study: the Clifford algebras and the universal enveloping Lie algebra.

We then define and study Dirac operators on finite spectral triples in terms of root

vectors of a Lie algebra g.

3.1.1 Noncommutative Geometry on Infinitesimal spaces

In the research paper [117], we show that a discrete topological space X can be

identified to the spectrum Spec(A) of a C∗-algebra A. Starting with a Rieman-

nian manifold (M, g), we construct an inverse system of triangulations, (Kn) which

become sufficiently fine for large n. Using the Behncke-Leptin construction, we as-

sociate to each Kn a C∗-algebra An such that the triangulation Kn is identified with

the spectrum Spec(An). We then form an inductive system (An) with limit A∞.

Theorem 1. The spectrum Spec(A∞) equipped with the hull-kernel topology is home-

omorphic to the space X∞ and

lim
 
Spec(Ai) ' Spec(lim

!
Ai). (3.1)
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We then show that the centre of A∞ is isomorphic to the space of continuous

function C(M). In this sense, any element g ∈ C(M) can be uniformly approximated

arbitrarily closely by elements an in the central subalgebras An.

Theorem 2. The space of continuous function C(M) is approximated by the system

of commutative subalgebras (An, φ
∗
n,∞) in the following sense:

C(M) =
⋃
n∈N

φ∗n,∞(An) ∩ C(M). (3.2)

In addition, the sequence of representations (Hn) is also considered as a direct

system with limit H∞ containing the space of square integrable functions L2(M).

Finally, we define the spectral triples (A, h, Dn), where Dn is a so-called Dirac op-

erator. We show that under certain conditions, the sequence (Dn) converges to the

multiplication operator by the de Rham differential dca.

Theorem 3. (Spectral convergence) There exists a finite measure µ and a unitary

operator

U : L2(R)! L2(R, dµ) (3.3)

such that,

U [D, a]U−1φ =
da

dx
φ, ∀φ ∈ L2(R), (3.4)

Moreover, the norm of the commutator is given by ‖ [D, a] ‖ = ‖dca‖∞.

Thus, we have built a correspondence between a given triangulation X and a

Dirac operator D: the non-zero coefficients of D are determined by the connectiv-

ity between vertices of the graph. We showed that this is however not enough to

represent the metric of the manifold. Thus, we ask now the question on how to set

the coefficients ωij of D so that at the limit (in the sense of (3.38)) the sequence

converges.

3.1.2 Clifford algebras

Let V be a finite dimensional vector space over a commutative field K of character-

istic zero endowed with a quadratic form q. Let T (V ) be the tensor algebra over V .
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Consider the ideal Iq in T (V ) generated by all elements of the form v⊗ v+ q(v) for

v ∈ V . Then the quotient algebra

Cl(V, q) = T (V )/Iq. (3.5)

is the Clifford algebra associated to the quadratic space (V, q).

Moreover, we can choose any orthonormal basis Zi of V with respect to q as a set

of generators of Cl(V ). We then have the relations,

ZiZj = −ZjZi, i 6= j, Z2
i = −1. (3.6)

Then the following set

Zi1Zi2 · · ·Zik 1 ≤< i1 < i2 < · · · < ik ≤ n = dimV (3.7)

spans Cl(V ). In addition, given a q-orthonormal basis Zi of V , the mapping

1 7! 1, Zi1 · · ·Zik 7! Zi1 ∧ · · · ∧ Zik (3.8)

yields an isomorphism of vector spaces Cl(V, q) '
∧
V .

3.1.3 Dirac operators in the Clifford algebra setting

Let k = R,C and let g be a Lie algebra over k. We start by recalling the definition

of the universal enveloping algebra.

Definition 3.1.1. The universal enveloping algebra of g is a map ϕ : g ! U(g),

where U(g) us a unital associative algebra, satisfying the following properties:

1) ϕ is a Lie algebra homomorphism, i.e. ϕ is k-linear and

ϕ ([X, Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X). (3.9)

2) If A is any associative algebra with a unit and α : g ! A is any Lie algebra

homomorphism, there is a unique homomorphism of associative algebras β :
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U(g)! A such that the diagram

g U(g)

A

ϕ

α
β

is commutative, i.e. there is an isomorphism

HomLie(g, LA) ' HomAss(U(g), A) (3.10)

We will now give a definition of Dirac operators on finite spectral triples in terms

of root vectors of a Lie algebra g. Then, using the canonical embedding g ↪! Cl(g)

into the Clifford algebra, we define a Laplace-type operator.

Consider the algebra A = gl2N(C) of complex matrices with its standard Lie

algebra structure. In [117], we have introduced the finite dimensional spectral triple

(A, h, D) given by:

• A is a Cartan subalgebra of Lie subalgebra g of A,

• h = C2N ,

• γ =

 1N 0

0 −1N

.

The chirality element γ induces a decomposition of the representation space h into

the eigenspaces h± corresponding to the eigenvalues 1 and −1 such that h = h+⊕h−.

Incidentally, one has the decomposition of the algebra A as follows:

gl2N = gl+2N ⊕ gl−2N . (3.11)

Notice then that the pair (gl+2N , gl
−
2N) forms a Cartan pair. Any endomorphism

a ∈ End(h) defines an endomorphism ρa ∈ gl+2N given by

ρa =

 a 0

0 −aT

 ∈ sp(2N,C) ∩ gl+2N . (3.12)
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We consider the compact real case with the embedding

sp(N) = sp(2N,C) ∩ u(2N) ↪! so(4N). (3.13)

If a is a diagonal element of End(h+), the map a 7! ρa identifies a with an element

of the maximal commutative subalgebra t of so(4N):

t =




A1 0 0

0
. . . 0

0 0 An

 , Aj =

 0 aj

−aj 0


 (3.14)

Consider the Cartan subalgebra A = t + it of so(4N,C). The root vectors are

4N × 4N block matrices having 2× 2-matrix Cs, s ∈ {1, . . . , 4}

X =

 0 Cs

−Ct
s 0

 (3.15)

in the position (i, j) with i < j and where

C1 =

 1 i

i −1

 , C2 =

 1 −i

−i −1

 , C3 =

 1 −i

i 1

 , C4 =

 1 −i

i −1

 .

associated to the linear functional in H∗ given by i(ai + aj), −i(ai + aj), i(ai − aj)

and i(aj − ai).

We will denote by g the Lie algebra so4N . We then consider the unital associative

algebra M2(C)⊗ gl2N and the homomorphism:

ϕ : g!M2(C)⊗ gl2N , ϕ(X) =
∑

1≤i,j≤2N

Xij ⊗ Eij, (3.16)

where Eij is the standard basis in gl2N and Xij are the 2×2-submatrix of X = (xrs)

obtained by keeping i+ 1 ≤ r ≤ i+ 2 and j + 1 ≤ s ≤ j + 2. In addition, ϕ is a Lie

algebra homomorphism with ϕ([X, Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X).

Then, using the universal property of U(g), the map ϕ extends into the homomor-

phism ϕ̂ : U(g) ! M2(C) ⊗ gl2N . Furthermore, taking the canonical embedding
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h : gl2N ! U(gl2N), we get by composing the Lie algebra homomorphism

h ◦ ϕ̂ : U(g)!M2(C)⊗ U(gl2N). (3.17)

Let {Zij} be an orthonormal basis of root vectors in g, associated to the root −i(aj+

ak), we define the operator W by

W =
∑
i,j

ωWij Zij (3.18)

as an element of U(g), where ωWij are real coefficients.

Definition 3.1.2. Given an operator W as in (3.18), a Dirac operator DW is an

element of M2(C)⊗ U(gl2N) defined by:

DW =
i

~
Re(W ), (3.19)

where ~ > 0 is a real parameter.

Remark 3.1.1. In the previous definition, DW depends on the choice of elementW

and in fact, more specifically on the choices of basis elements Zij. Another definition,

independent on the choice of basis elements, of Dirac operators on Lie algebras can

be found in [97]

Lemma 3.1.1. Let C2 = X+iY be the root vector associated to the root −i(ai+aj).

Fix an element W as in (3.18). Then, for any a ∈ A, the exterior derivative can be

written as:

[DW , a] =
i

~
∑
i,j

ωWij αij(a)Y ⊗ Eij, (3.20)

an element of M2(C)⊗ U(gl2N) and with αij = ai − aj.

Proof. From the definition of DW and the definition of root vectors, we get that:

[DW , a] =
i

2~
∑
i,j

ωWij (ai − aj)Zij −
i

2~
∑
i,j

ωWij (ai − aj)Z∗ij. (3.21)

Then, using the map h◦ϕ̂, given by (3.16) and (3.17), we can identify a basis element
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Zij with an element in M2(C)⊗ U(g) of the form C2 ⊗ Eij. Hence, we have that:

[DW , a] =
i

2~
∑
i,j

ωWij (ai − aj)C2 ⊗ Eij −
i

2~
∑
i,j

ωWij (ai − aj)C∗2 ⊗ Et
ij. (3.22)

Simplifying this expression using the fact that Et
ij = Eji, we get:

[DW , a] =
i

~
∑
ij

ωWij αij(a)Y ⊗ Eij. (3.23)

with αij(a) = ai − aj.

Furthermore, we recall that there exists a canonical Lie algebra homomorphism

ψ : gl2N ! Cl(gl2N) which extends into the map on the universal enveloping Lie

algebra:

ψ̂ : U(gl2N)! Cl(gl2N). (3.24)

We use this map to define a Laplace operator.

Definition 3.1.3 (Laplacian). Fix an element W . We then define the Laplace

operator ∆ on A using the non-graded commutator. For any a ∈ A

∆(a) :=
1

2
ψ̂([DW , [DW , a]]). (3.25)

Proposition 3.1.1. For any a ∈ A, the Laplace operator is given by

∆(a) = −Ωg(a)⊗ 1 (3.26)

where Ωg = 1
~2
∑

i,j ω
2
ijJ ⊗ αij is an element of End(A,M2(C)).

Proof. Let DW be a Dirac operator, then the bi-commutator of the Laplacian gives::

[DW , [DW , a]] = DW [DW , a]− [DW , a]DW . (3.27)
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Thus, using Lemma 3.1.1, we obtain

[DW , [DW , a]] =
2

~2
∑
ij

ω2
ijαij(a)J ⊗ E2

ij +
1

~2
∑

(ij) 6=(kl)

ωijωklαkl(a)J ⊗ [Eij, Ekl]+

(3.28)

with the bracket [A,B]+ = AB +BA and where the matrix J is given by:

J =

 0 −1

1 0

 .

Finally, applying the map ψ̂, the second term of the left-hand-side in Equation (3.28)

vanishes and we get:

∆(a) = − 1

~2
∑
i,j

ω2
ijαij(a)J ⊗ 1.

We have kept the definition of the Dirac operator DW in (3.19) very general,

however we recall that the operator we are interested in are the compatible ones

with respect to a graph X. In other words, the value ωij is non-zero if ij is an edge

in X.

Now, let us recall how the space X is obtained from a manifold M ; more details

can be found in [117]. One starts with a triangulation of M and then consider the

dual of the triangulation that we will call X. In fact, in [117] we used a slightly

different terminology and considered the triangulation as a poset, then looked at

the opposite poset with reversed order.

Since we are working with a graph X obtained from a dual triangulation, every

vertex i has exactly d + 1 neighbours, i.e. only d + 1 of the ωij are non-zero for

a fixed i. Hence, if we fix a vertex i0, the definition of the commutator with DW

becomes:

([DW , a])i0 =
i

~

d+1∑
j=1

ωWi0kjαi0kj(a)Y ⊗ Ei0kj , (3.29)

Here, we relabel the index j without lost of generalities and to keep this indexing
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simple. We will also drop the W index for the same reasons and get:

([D, a])i0 =
i

~

d+1∑
j=1

ωi0jαi0j(a)Y ⊗ Ei0j, (3.30)

Finally, let us recall the (true) Dirac operator on a manifold is given in local coor-

dinates on a normal neighbourhood centred at a point p:

Dp =
d∑
j=1

ej
∂

∂xj

∣∣∣∣
p

(3.31)

where {ej | j = 1, . . . , d} is an orthonormal local frame embedded in the Clifford

algebra Cl(Rd) using the natural embedding Rd ⊂ Cl(Rd).

Nevertheless, the Dirac operator as expressed in (3.30) is not an element of a

Clifford algebra. Moreover, the dimensions do not match. Indeed, because of the

structure of the triangulation, there are d+ 1 independent vectors in the expression

(3.30), instead of d as the dimension of the manifold M . Since we are trying to

approximate the true Dirac operator in (3.31), we need to re-write Equation (3.30)

in terms of Clifford elements in dimension d. To do so, let us denote by Vi0 , the

vector space defined by:

Vi0 := span {Y ⊗ Ei0,1, · · · , Y ⊗ Ei0,d+1} . (3.32)

Then, consider the isomorphism:

τ : Vi0
'
−! Rd+1 τ(Y ⊗ Ei0,j) = êj, ∀1 ≤ j ≤ d+ 1 (3.33)

where {êj}d+1
j=1 is the canonical basis on Rd+1 with respect to the standard inner

product. Moreover, defines the projection p on the subspace spanned by {êj}dj=1

and identified with Rd. Finally, if let the embedding ρ : Rd ! Cl(Rd), we can

compose these maps and define:

Ψ := ρ ◦ p ◦ τ : Vi0 ! Cl(Rd), Ψ
(
[D, a]i0

)
=
i

~

d∑
j=1

ωi0jαi0j(a)ej (3.34)

105



3.1. DIRAC OPERATORS IN THE ALGEBRAIC SETTING

which allows us to express the commutator in terms of Clifford elements ej. We

notice, nevertheless, that this construction is not canonical and depends on the

choice of isomorphism τ .

3.1.4 Perron-Frobenius bound on [D, a]

To conclude this section, and before being able to show a convergence result to the

Dirac operator D, we would like to prove a preliminary result on the commutator

[D, a] and its boundedness at the limit when ~ ! 0. This result follows from the

correspondence between D and the graph associated, using the Perron-Frobenius

theorem. We only need to consider the operator D as a compatible operator in

some matrix space, without relying on the Clifford algebra setting

We consider an infinite collection {An : n ∈ N} of commutative C∗-algebras. In

this case, we have identified each of the An with the Cartan subalgebras hi inside

the finite dimensional algebras Bn = so2mn(C) where mn ! ∞ when n ! ∞. We

can then construct the product:

Bω =
∏
n∈N

Bn = {(an) : ‖an‖ = sup ‖an‖ <∞}. (3.35)

Let a be an element in C∞(M), then there exists a coherent sequence (ai) such that

a = (a0, a1, · · · , an, · · · ) ∈
∏
n∈N

An. (3.36)

We define a spectral triple on Bω by introducing the limit Dirac operator D as the

sequence

D = (D0, D1, · · · , Dn, · · · ) ∈
∏
n∈N

gl−2mn(C), (3.37)

where each Di is a Dirac operator associated to a poset Xop
i in the sense of [117].

This in turns induces a spectral triple on
∏

n∈N An along with the commutator:

dDa := [D, a] = ([D0, a0], [D1, a1], · · · , [Dn, an], · · · ) ∈
∏
n∈N

gl−2mn(C). (3.38)
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In order to show that [D, a] is a bounded operator, we use Perron-Frobenius theorem,

which we start by recalling.

Theorem 3.1.1 (Perron-Frobenius). Let A = (aij) be an n × n positive matrix:

aij > 0 for 1 ≤ i, j ≤ n. Then there exists a positive real number r, called the

Perron-Frobenius eigenvalue, such that r is an eigenvalue of A. Moreover, if the

spectral radius ρ(A) is equal to r.

The Perron-Frobenius eigenvalue satisfies the inequalities:

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij.

Proposition 3.1.2. For any a ∈ A, the spectral radius ρ(dDa) of dDa is bounded

by

ρ(dDa) ≤ ‖ddRa‖∞. (3.39)

Proof. We consider the sequence of Dirac operators (Dα)α∈N associated to D.

Let ε > 0 and α ∈ N and define the operator d̃Dαa such that

(d̃Da)ij =

 |(dDαa)ij| if (dDαa)ij 6= 0

ε otherwise
(3.40)

The matrix d̃Dαa is positive by construction. In addition, we have the upper-bound:

‖ (dDαa)k ‖2F ≤ ‖(d̃Dαa)k‖2F . (3.41)

Hence, using Theorem 3.1.1, we deduce that

ρ(dDαa)2 = lim
k∞
‖(dDαa)k‖

2
k
F ≤ lim

k∞
‖(d̃Dαa)k‖

2
k
F

= ρ(d̃Dαa)2

. max
1≤i≤n

∑
j

|(dDαa)ij|2 +Nε2.

The value ofN is the number of nonzero coefficient in (dDαa)ij and thus only depends
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on the number of adjacency vertex in Xop
α which by definition equal to d+ 1, where

d is the dimension.

Hence there exists a positive constant CM , which depends on the maximal length of

geodesics (M is compact) but is independent of α, such that

ρ(dDαa)2 ≤ CM‖ddRa‖2∞ + (d+ 1)ε2. (3.42)

The last inequality holds for an arbitrary ε > 0 and α ∈ N. The result follows then

by taking ε to 0.

Corollary 3.1.1. For each a ∈ A, the operator [D, a] is a bounded operator.

Remark 3.1.2. It is clear that in the following framework, not only the Dirac

operator D define a differential structure, but it also plays the role of a transition

matrix. This last point will be made clearer in the following section.

3.2 Green’s function and integral operators

In this section, we are going to introduce the Green’s function of a suitable second-

order Cauchy problem. From it, we exhibit a probability distribution that will

be used in Section 3.4 in the definition of the Dirac operator. Furthermore, we will

extend this probability distribution defined in Rd to a manifold using the exponential

map and prove some technical lemmas.

3.2.1 Hamilton-Jacobi equation with vanishing viscosity

For reasons that will be detailed in this section, we are interested in the following

Hamilton-Jacobi equation with vanishing viscosity over the Euclidean space Rd:

∂tu = s · ∇u+ ϕ(t)∆u

u(x, 0) = u0(x)
(3.43)
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where s is a unit vector in Rd, u0 is a smooth initial condition and ϕ ∈ C(R+)

satisfying:

ϕ(t) = Ot!0+(t). (3.44)

The fundamental solution of Equation (3.43) is obtained by taking the initial con-

dition to be the Dirac distribution δ(y − x) for y ∈ Rd fixed. The normalized

fundamental solution denoted by G is given by:

Gt(x, y) =
1

(4πΦ(t))
d
2

exp

(
−|y − x+ st|2

4Φ(t)

)
dx, with Φ(t) =

∫ t

0

ϕ(s)ds.

(3.45)

Hence, the general solution can be obtained by convolution:

u(y, t) = (u0 ∗G) (y, t) (3.46)

then we have the following lemma.

Lemma 3.2.1. Let u be the solution of Equation(3.43) with initial condition u0 ∈

C∞(Rd), then it satisfies the initial condition:

∂tu|t=0 = s · ∇u0. (3.47)

Proof. First, let us notice that the family {Gt}t>0 is an approximation of the identity:

∀f ∈ C∞(Rd), lim
t!0
‖f − f ∗Gt‖∞. (3.48)

In addition, since the differential operator in Equation (3.43) has constant coeffi-

cients in the y variable, we have:

∂tu = (s · ∇+ ϕ∆)u0 ∗G (3.49)

from which we get by taking the limit when t goes to 0:

∂tu(y, 0) = s · ∇u0(y). (3.50)
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Therefore, we can define the probability measure dν given by

dµy,t(x) = Gt(x, y)dx (3.51)

with respect to the Lebesgue measure on Rd. Hence, we define the distribution:

Tµy,t(ϕ)(y, t) =

∫
Rd
ϕ(x)dµy,t(x), (3.52)

that will focus our attention in the next section.

Lemma 3.2.2 (Reduction to a ball). Consider an open ball Bδ ⊂ Rn of radius

delta > 0 such that p ∈ Bδ. For any function f ∈ L∞(Bδ) and a smooth extension

f of f in L∞(Rd) , we have, as t! 0:∣∣∣∣∫
Bδ

Gt(x, y)f(x)dx−
∫
Rd
Gt(x, y)f(x)dx

∣∣∣∣ = o(td) (3.53)

Proof. Without lost of generality, we may take y = 0; after a change of variable

u = x

2
√
Φ(t)

, we see that:

∣∣∣∣∫
Bδ

Gt(x, y)f(x)dx−
∫
Rd
Gt(x, y)f(x)dx

∣∣∣∣ ≤ ‖f‖∞Φ(t)
d
2

π
d
2

e
− t2

4
√
Φ(t)

∫
Bcδt

e−
δ
4
|u|dx

with δt = δ
2Φ(t)

and where Φ(t) decreases as t tends to zero.

Thus, we may equivalently consider the distribution Tµ restricted on a ball Bδ.

3.2.2 Some remarks families of one-parameter operators

The previous construction of the Green function of the Cauchy problem (3.43) can

be reformulated in the more general setting of families of one-parameter operators

and the so-called Fokker-Planck equation [25]. The construction goes as follows.
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Let L2(M) considered as a Banach space for the Lebesgue measure ν. Let then

U be an open subset of M ×R+. We denote by D(U) the set of test functions on U

and its topological dual D ′(U) the space of distribution. A family of one-parameter

operators {Pt}t≥0 is a family of linear operators on L2(M) defined by:

P0 = id, (Ptf)(x) =

∫
M

f(y)pt(x, y)dν(y) (3.54)

such that pt(x, y) is a ν × ν-measurable function on M ×M . Now let us define the

new measure µt,x, for t ≥ 0 and x ∈M , by

µx,t(A) =

∫
A

pt(x, y)dν(y), (3.55)

for any ν-measurable subset A. Assume that µt,x is a probability measure for every

(x, t) ∈M × R+. In addition, we assume that Pt admits a derivative ∂t. Then, one

can associate to any operator Pt a distribution; let ϕ ∈ D(U) and define

Tµx,t(f) =

∫
M

f(y)dµx,t(y) (3.56)

as a map on D ′(U). In the special case where

lim
t!0+

∂kµ̂x,t(0)

t
= 0, ∀k ≥ 3, (3.57)

then µx,t satisfy the parabolic equation

∂µx,t
∂t

∣∣∣∣
t=0

= LA,b(µx,0) (3.58)

in the weak sense, called the Fokker-Planck equation. The operator LA,b is given by

LA,bf = tr(AD2f) + 〈b,∇f〉 , f ∈ C∞c (M) (3.59)

and where A = (aij) is a mapping on M with values in the space of nonnegative

symmetric linear operator on Rd and b = (bi) is a vector field on M . In the special

case of Equation (3.43), we have A = 1 and b = s.
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Following this idea, it is interesting to consider semigroup machinery as another

approach to the problem of approximation of the Dirac operator. In this section,

we consider L2(ν) as the Hilbert space H.

Definition 3.2.1 (Semigroup). A one-parameter unitary group is a map t ! Pt

from R+ to L(H) such that

P0 = 1 Pt+s = PtPs, (3.60)

and t! Pt is continuous in the strong topology, i.e. Ut
s
−! Ut0 when t! t0.

Given a semigroup Pt in L2, define the generator L of the semigroup by

L (f) := lim
t!0

f − Ptf
t

, (3.61)

where the limit is understood in the L2-norm. The domain dom(L ) of the generator

L is the space of functions f ∈ H for which the above limit exists. By the Hille-

Yosida theorem, dom(L ) is dense in L2. Moreover, Pt can be recovered from L as

follows:

Pt = exp(−tL ). (3.62)

understood in the sense of spectral theory.

We then consider the operator L = −i d
dx

on H with dom(L ) = {f ∈ L2(R) : ξf̂ ∈

L2(R)}. Recall that L is unitary equivalent to the left-multiplication operator Mξ

using the Fourier transform

FLF−1 = ξf̂ . (3.63)

Then the associated semigroup Ut, so-called momentum operator, is given by the

left-multiplication operator in Fourier basis: FUtF−1f̂ = ξf̂ . Therefore,

Utf(x) = F−1(eitξf̂)(x) =

∫
R
ei(x+t)ξf̂ = f(x+ t). (3.64)

We can then use Ut in the definition of the Dirac operator D. This is what we have

done to some extend (although not presented in the following framework) in our

previous paper [117].
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3.3 Integral operators on manifolds

In this section, we extend the previous results to the case where M is a smooth

manifold of dimension d. Since we are interested in the Dirac operator over spin

manifolds, these results are crucial for the rest of the present work.

3.3.1 Wrapped distributions

Let us recall that on a well-suited open neighbourhood of a spin manifold M , the

Dirac operator can be written as in Equation (3.31). In the previous section, we

have exhibited a probability distribution:

Tµy,t(f)(y, t) =

∫
Rd
ϕ(x)Gt(x, y)dx (3.65)

that we are going to use to approximate the partial derivatives appearing in the

expression of the Dirac using the relation:

∂t|t=0f = ∂if (3.66)

satisfied by the function f obtained using the Green function G. In order to do so,

we will need to extend the distribution Tµ defined on Rd to a compact manifold M .

This will be done using wrapped distributions.

Given the Lebesgue measure on TxM (in this section the tangent space TxM is

identified with Rd), the Riemannian volume form volg on M and a diffeomorphism

φ : M ⊃ V ! U , one can define a density h on M (whose support is included in

V ⊂M) to a density on U ⊂ TxM . This is done by using φ as a push-forward map.

The construction goes as follows: given a volume form ω written in coordinates as

ωg = h(x)volg (3.67)

Then, the integration on V of this volume form is given by:

∫
V

ωg :=

∫
U

h(φ(x))| det(dxφ)|dx1 · · · dxn (3.68)

113



3.3. INTEGRAL OPERATORS ON MANIFOLDS

where the integral is written using φ as a coordinate chart.

Among choices of φ an interesting candidate is the exponential map at point

p ∈M , expp : TpM !M , due to its algebraic and geometric properties.

Proposition 3.3.1. Let (M, g) be a Riemannian manifold. Fore every point p ∈M ,

there is an open subset W ⊆M , with p ∈ W and a number ε > 0, so that:

expq : B(0, ε) ⊆ TqM ! Uq = exp(B(0, ε)) ⊆M (3.69)

is a diffeomorphism for every q ∈ W , with W ⊆ Uq.

Definition 3.3.1 (Normal neighbourhood). Let (M, g) be a Riemannian manifold.

For any q ∈ M , an open neighbourhood of q of the form Uq = expq(B(0, ε)) where

expq is a diffeomorphism from the open ball B(0, ε) onto Uq, is called a normal

neighbourhood.

Definition 3.3.2 (Injectivity radius). Let (M, g) be a Riemannian manifold. For

every point p ∈M , the injectivity radius of M at p, denoted δ(p), is the least upper

bound of the numbers r > 0, such that expp is a diffeomorphism on the open ball

B(0, r) ⊆ TpM . The injectivity radius, δ(M) of M is defined as:

δ(M) := inf
p∈M

δ(p). (3.70)

In what will follow, we will simply denote by δ the injectivity radius of M ; we

will also restrict to manifolds with strictly positive injectivity radius. Let p ∈ M ,

we then consider the exponential map expp : B(0, δ)! expp(B(0, δ)). We associate

to the density defined in Equation (3.51), the volume form

ω0,t =
1

(4πΦ(t))
d
2

exp

(
−
| exp−1p (x) + st|2

4Φ(t)

)
volg = Gt(exp−1p (x), 0)volg (3.71)

We use the inverse of the exponential map to pushforward the Green function from

the tangent space TpM at p (identified with Rd) to the manifold M . Integration on
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the domain of injectivity given by the injectivity radius, we obtain

∫
expp(Bδ)

fω0,t =

∫
Bδ

f ◦ expp(x)G0,t(x) det(dx expp)dx (3.72)

If we denote by {e1, . . . , ed} a local orthogonal frame in TM , then by taking s =

ei(p), we have proven the following lemma.

Lemma 3.3.1. Consider the tangent vector ei(p) ∈ TpM for i ∈ {1, . . . , d} and let

s = ei(p). Then, the following holds:

∫
expp(Bδ)

fω0,t =
1

(4πΦ(t))
d
2

∫
Bδ

f̃(x) exp

(
−|x+ ei(p)t|2

4Φ(t)

)
det(dx expp)dx (3.73)

where expp is the exponential map on the Riemannian manifold (M, g) and the

function f̃(x) = f(expp(x)).

More generally, we can define the following map on the whole manifold M :

Θ : M ! C0(R+), p 7!

{
t 7! Tω0,t(f) =

∫
expp(Bδ)

fω0,t

}
t>0

.

This map associates to any normal neighbourhood a function of the variable t. We

are going to show that each family of operators satisfies Equation (3.66).

Definition 3.3.3 (Jacobi field [52]). Let p ∈ M and γ : [0, a] ! M be a geodesic

with γ(0) = p, γ′(0) = v. Let w ∈ Tv(TpM) with |w| = 1. A Jacobi field J along γ

given by

J(t) = (d expp)tv(tw). (3.74)

Lemma 3.3.2. Let J be a Jacobi field. We have the following Taylor expansion

about t = 0:

〈w, J(t)〉 = t+ r(t), (3.75)

where limt!0
r(t)
t2

= 0.

Proof. From the definition of J and the properties of the exponential map, we have

that J(0) = (d0 expp)(0) = 0 and J ′(0) = w. Hence, the first two coefficients of the
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Taylor expansion are

〈w, J(0)〉 = 0,

〈w, J ′(0)〉 = 1.

As J is a Jacobi field we have J ′′(0) = −R(γ′, J(0))γ′(0) = 0, where R is the

curvature tensor. This yields,

〈w, J ′′(0)〉 = 0, (3.76)

which concludes the proof.

Lemma 3.3.3. Define the smooth map:

G : TpM ! R, y 7! det
(
dy expp

)
, (3.77)

then, it satisfies ∇(G)(0) = 0.

Proof. In order to compute ∇(G)(0), we first use Jacobi’s identity

d

dt
det
(
dty expp

)∣∣∣∣
t=0

= det(d0 expp)tr
(
d0 exp−1p

d

dt

∣∣∣∣
t=0

dty expp

)
(3.78)

which simplifies into

d

dt
det
(
dty expp

)∣∣∣∣
t=0

= tr
(
d

dt

∣∣∣∣
t=0

dty expp

)
. (3.79)

Using the definition of a Jacobi field and linearity of tr, we have that

tr
(
d

dt

∣∣∣∣
t=0

dty expp

)
=

d∑
i=1

〈
vi,

(
d

dt

∣∣∣∣
t=0

dty expp

)
vi

〉
,

=
d

dt

∣∣∣∣
t=0

d∑
i=1

〈
vi, dty expp(vi)

〉
,

=
d

dt

∣∣∣∣
t=0

d∑
i=1

1

t
〈vi, Ji(t)〉 .
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Now using the Taylor expansion obtained in Lemma (3.3.2), we get:

〈vi, Ji(t)〉 = t+ r(t) (3.80)

where r(t) = o(t2), we conclude that:

tr
(
d

dt

∣∣∣∣
t=0

dty expp

)
= 0. (3.81)

Theorem 3.3.1. The following limit holds at p ∈M

∂

∂t

(∫
expp(Bδ)

fω0,t

)∣∣∣∣∣
t=0

= ei(f)(p). (3.82)

Proof. The result follows from the property of the Green function given in Lemma

3.2.1 and the reduction to an open ball obtained in Lemma . Then, using the

integration equality given in Lemma 3.3.1 on the open ball Bδ and the isomorphism

T0(Tp(M)) ' Tp(M), we have:

∂

∂t

(∫
expp(Bδ)

fω0,t

)∣∣∣∣∣
t=0

= ei
(
expp∗(f) det

(
d expp

))
(0).

Finally, to conclude we use Lemma 3.3.3 and deduce that:

∂

∂t

(∫
expp(Bδ)

fω0,t

)∣∣∣∣∣
t=0

= ei(f)(p). (3.83)

3.4 Statistical fluctuations of differential structures

We are now ready to state and prove Theorem 3.4.1. We keep the same notations

as the previous sections: M is a compact Riemannian manifold of dimension d; we

consider a point p ∈M and a normal neighbourhood Up associated to it; we denote
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by {e1, . . . , ed} a local orthogonal frame in TM . We finally define the orthonormal

family of vectors {s1, . . . , sd} such that:

sj = ej(p), ∀j ∈ {1, . . . , d} . (3.84)

3.4.1 The Dirac operator

We start by recalling that the notation DX means: a Dirac operator D associated

to a graph X in the sense of [117, Def. 4.3]. Now, let n be a positive integer

and fix a graph Xn equipped with a Dirac operator DXn and with set of vertices

{x1, . . . xn}. In addition, we are going to consider n copies of the same graph Xn,

each of which is equipped with a Dirac operator DXk and with a set of vertices

denoted by {xk1, . . . xkn}, for 1 ≤ k ≤ n. Then, we have a sequence of Dirac operators

(DX1 , DX2 , · · · , DXn) ∈ gl−2mn(C)n, (3.85)

acting on a sequence of diagonal elements (a1, · · · , an) with each ai ∈ An.

If we denote by (aik)1≤i≤n the coefficients of ak in the block diagonal, then using the

projection maps M ! Xk we can identify these values with evaluations of a smooth

functions, denoted by a (see [117, Prop. 3.5] for more details):

aik = a(xki ), ∀i ∈ {1, . . . , n} (3.86)

for some point xki ∈ M . Fix a point p ∈ M and a neighbourhood Up of p in M .

Then, consider a sequence of points
{
xk1, . . . , x

k
n

}
in Up, for 1 ≤ k ≤ n, such that,

for a chosen index i0 (not depending on k), we have xki0 = p. We then define the

coefficients (ωkij)1≤i,j≤n of DXn as follows:

ωkij(~) =
1

(4πΦ(~))
d
2

exp

(
−|y

k
i + sj~|2

4Φ(~)

)
for 1 ≤ i, j ≤ n and for 1 ≤ k ≤ n,

with yki := exp−1p (xki ).
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Furthermore, for every integer 1 ≤ k ≤ n, we define a family of projection elements

such that ek ∈M2mn(C) and we have the following matrix form:

ekDXke
∗
k =



0
0

∗ ∗ ωki0j ∗ ∗

0
∗

∗

0 ωki0j 0
∗

∗

0



. (3.87)

Remark 3.4.1. The non-zero coefficients correspond to the adjacency points of i0.

Hence, if we recall the expression given by the commutator in Equation (3.20),

we consider the following average of operators over the n copies of Xn:

Ŝ~n
n (a) :=

1

n

n∑
k=1

ek [DXk , ak] e
∗
k =

i

n~n

n∑
k=1

d+1∑
j=1

ωki0j(~n)αi0j(ak)Y ⊗ Ei0j, (3.88)

where αi0j(ak) = a(xkj ) − a(p). Moreover, for the purpose of the proof of the main

theorem, we define a second operator given by:

S~n
j,n : C∞(M)! R, S~n

j,n(a) =
1

n~

n∑
k=1

ωki0j(~n)αi0j(ak). (3.89)

We assume now that the points
{
xk1, . . . , x

k
n

}
are thought as random variables in-

dependent and identically distributed (i.i.d.) from a uniform distribution. Let us

recall the definition of the map Ψ given in Equation (3.34):

Ψ : Vi0 ! Cl(Rd), Ψ
(
[D, a]i0

)
=
i

~

d∑
j=1

ωi0jαi0j(a)ej. (3.90)
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Then, we can prove the following theorem.

Theorem 3.4.1. Let
{
xki0
}n
k=1

be a sequence of i.i.d. sampled points from a uni-

form distribution on a open normal neighbourhood Up of a point p in a compact

Riemannian manifold M of dimension d. Let S̃~n
n be the associated operator given

by:

Ŝ~n
n : C∞(Up)!M2(R)⊗ U(gl2mn), Ŝ~n

n (a) :=
1

n

n∑
k=1

ek
[
Dk
X , ak

]
e∗k. (3.91)

Put ~n = n−α, where α > 0, then for a ∈ C∞(Up), in probability:

lim
n!∞

Ψ ◦ Ŝ~n
n (a) = [D, a] (p).

Proof. We consider the average operator defined by Equation (3.89). It is then

sufficient to prove that for ~n = n−α, where α > 0, and for a ∈ C∞(Up), we have:

lim
n!∞

S~n
j,n(a) = ej(a)(p) ∀1 ≤ j ≤ d.

in probability, and then apply the map ψ̂ defined in (3.24). Recall that ej is given

in Equation (3.84).

The expectation value of the random variable S~n
n (a) is given by:

ES~n
j,n(a)(p) =

1

~n

∫
expp(Bδ)

ω0,~n(a− a(p)), (3.92)

where we assume, without lost of generality, that the volume of M is equal to one.

We recognize then an approximation of the time derivative at 0 in Equation (3.3.1).

Thus, applying Hoeffding’s inequality, we have:

P
[ ∣∣S~n

j,n(a)(p)− ES~n
j,n(a)(p)

∣∣ > ε
]
≤ 2 exp

(
− ε2n

KCd(nα)2

)
. (3.93)

Choosing ~ as a function of n, such that ~(n) = n−α, where α > 0, we have, for any

120



3.4. STATISTICAL FLUCTUATIONS OF DIFFERENTIAL STRUCTURES

real number ε > 0:

lim
n!∞

P
[ ∣∣S~n

j,n(a)(p)− ES~n
j,n(a)(p)

∣∣ > ε
]

= 0. (3.94)

Finally, we prove the statement using Theorem 3.3.1:

lim
n!∞

S~n
j,n(a)(p) = ej(a)(p), (3.95)

along with the definition of the map Ψ in Equation (3.34).

Remark 3.4.2. Every line in the matrix DX corresponds then to a point p and a

normal neighbourhood Up obtained from the image of the exponential map of a ball

of radius δ. Indeed, since M is compact, we have a finite cover {Upi}Ni=1 with centre

{pi}Ni=1 every one of which being associated to a line of DX .

If we consider a sequence of Dirac operators DXn , then what we are doing is in

fact taking refinements of normal neighbourhoods, increasing with the numbers of

vertices in Xn.

3.4.2 Uniform convergence

It is interesting to mention that the previous result can be extended to have a

uniform convergence, following the same steps as [17, Prop. 6.1]. We then state the

result without proof.

Proposition 3.4.1. Let F be an equicontinuous family of functions with a uniform

bound up to the second derivative. Then for each ~ > 0, we have:

lim
n!∞

P
[

sup
a∈F

∣∣∣S~n
n (a)(p)− ES~n

n (a)(p)
∣∣∣ > ε

]
= 0. (3.96)

Theorem 3.4.2. Let F be a family of smooth functions with uniformly bounded

derivatives up to the second order. Let
{
xki0
}n
k=1

be a sequence of i.i.d. sampled

points from a uniform distribution on an open normal neighbourhood Up of a point

p in a compact Riemannian manifold M of dimension d. Let Ŝ~n
n be the associated
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operator given by:

Ŝ~n
n : C∞(Up)!M2(R)⊗ U(gl2mn), Ŝ~n

n (a) :=
1

n

n∑
k=1

ek
[
Dk
X , ak

]
e∗k. (3.97)

Put ~n = n−α, where α > 0, then in probability:

lim
n!∞

sup
a∈F

∣∣∣Ψ ◦ Ŝ~n
n (a)(p)− [D, a] (p)

∣∣∣ = 0. (3.98)

3.4.3 The Laplacian

In this final section, we want to study the convergence result for the Laplacian

defined by Equation (3.25). If we take the second derivative in time in the initial

value problem (3.43), we see that

∂2t u = s · ∇∂tu+ ϕ∆∂tu+ ϕ′∆u (3.99)

from which we see that if ϕ(t) = t then when we take the limit when t goes to zero

and obtain:

∂2t u|t=0 = (s · ∇)2u0 +∆u0. (3.100)

Moreover, if we let G̃(x, t) defined by

G̃(x, t) =
m∑
j=1

λjGj(x, t),
m∑

λj=1

λj = 1 (3.101)

where Gj(x, t) is the Green function of Equation (3.43) with unit vector sj and the

λj are here to ensure that G̃ remains a probability distribution. Then, by linearity

the function

ũ = u0 ∗ G̃ (3.102)

satisfies the equation:

∂2t ũ|t=0 = (s̃ · ∇)2u0 +∆u0, with s̃ =
∑
j

sj. (3.103)
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Hence, if we pick the vectors sj such that s̃ is zero, then we are left with the following

equations:

∂2t ũ|t=0 = ∆u0, and ∂tũ|t=0 = 0, (3.104)

where, the second equation is obtained from Equation (3.43) after taking t to zero.

Therefore, in Rd, we have for any smooth initial condition f , the following limit:

lim
t!0

1

t2

∫
Rd
G̃(x, t)(f(x)− f(0))dx = ∆f(0). (3.105)

In addition, if the dimension d is greater than two, then the reduction to a ball

Lemma 3.3.1 still holds. In the rest of this section, we will assume that d ≥ 2.

Hence, we can extend the distribution G̃ to a manifold as in Section 3.4. The

volume form ω0,t is now given by:

ω0,t =
1

(4πΦ(t))
d
2

d+1∑
j=1

λj exp

(
−
| exp−1p (x) + sjt|2

4Φ(t)

)
volg. (3.106)

We recognize a convex combination of the Green function obtained in the previous

section. Consequently, following the same steps as in Theorem 3.2.1, we see that

this distribution satisfies the equation:

∂2

∂t2

(∫
expp(Bδ)

ω0,tf

)∣∣∣∣∣
t=0

= ∆M(f)(p). (3.107)

Now, the Laplacian ∆Xk obtained from the Dirac operator (3.87) and acting on an

element ak is given by:

∆Xk(ak) =
1

~2
d+1∑
j=1

(ωkij)
2αij(ak)J. (3.108)

Then, we assume that the coefficients ωkij of the Dirac DXk are given by:

ωkij(~) =
1

(4π~2) d4
√
λj exp

(
−|y

k
i + sj~|2

8~2

)
, (3.109)
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where λj are positive numbers to be specified. Therefore, we are lead to study the

convergence of the averaging operator:

Ω~
n(a)(p) =

1

(4π~2) d2n~2

n∑
k=1

d+1∑
j=1

λj exp

(
−|y

k
i + sj~|2

4~2

)
αij(ak). (3.110)

such that, if u =
∑d

i=1 si, then sd+1 = −u/‖u‖ and λj = 1/(d + ‖u‖) for 1 ≤ j ≤ d

and λd+1 = ‖u‖/(d+ ‖u‖). Notice then that
∑d+1

j=1 λj = 1.

Moreover, the expectation value of the random variable Ω~n
n (a) is given by:

EΩ~
n(a)(p) =

∫
expp(Bδ)

ω0,~n (a(x)− a(p)) (3.111)

Theorem 3.4.3. Let F be a family of smooth functions with uniformly bounded

derivatives up to the third order. Let {xi}ni=1 be a sequence of i.i.d. sampled points

from a uniform distribution on an open normal neighbourhood Up of a point p in

a compact Riemannian manifold M of dimension d. Ω~n
n : C∞(Up) ! R be the

associated operator given by:

Ω~n
n (a)(p) =

1

(4πΦ(~))
d
2n~2

n∑
k=1

d+1∑
j=1

λjexp

(
−|y

k
i + sjt|2

4Φ(t)

)
αij(ak).

Put ~n = n−α, where α > 0, then in probability:

lim
n!∞

sup
a∈F

∣∣∣Ω~n
n (a)(p)−∆M(a)(p)

∣∣∣ = 0 (3.112)

3.4.4 Discussion

Going back to the definition of the Dirac operator associated to a graph X with

non-zero coefficients ωij, we recall that the goal was to compute the values ωij in

order to obtain a convergence when considering a sequence of refined triangulations.

We have exhibited the coefficients

ωij(~) =
1

(4πΦ(~))
d
2

exp

(
−|yi + sj~|2

4Φ(~)

)
(3.113)
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obtained from the Green function given in Equation (3.45). Hence, we are able

to prove a convergence result to the Dirac operator on a normal neighbourhood

(Theorem 3.4.2) as well as a convergence of the Laplace operator (Theorem 3.4.3).

However, as far as the Laplacian is concerned, this choice is not unique, in fact one

could take the values of ωij obtained from a normal distribution and such that:

ω2
ij(~) = exp

(
‖xi − xj‖2

4~

)
(3.114)

and still get a convergence result. Nevertheless, keeping in mind that we are also

interested in the convergence of the square root i.e. to the Dirac operator, it is not

clear that such a choice of coefficients would also work.

Moreover, one may also consider classical discretizations of the Laplacian such

as the combinatorial one with the choice:

vertices i and j do not share an edge⇔ ωij = 0, ∀i, j (3.115)

or the cotangent Laplacian with the choice

ω2
ij =


1
2

(cotαij + cot βij) ij is an edge,

−
∑

k∼i ω
2
ik i = j,

0 otherwise.

(3.116)

In these two cases the question of convergence to the Laplacian is unclear [125], let

alone convergence in the square root.

There is therefore an important direction worth investigating: whether a conver-

gent Laplacian constructed from a specific distribution or obtained from a known

discretization implies convergence of its associated Dirac operator.
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Chapter 4

Future directions

We conclude this thesis by outlining a few projects that will be addresses in the

future work of the author.

4.1 A deterministic approach of the Dirac operator

There is an immediate question that arises on the possibility of deriving the con-

vergence results of Chapter 3 from a deterministic approach i.e. where the ωij are

not obtained from random distributions. Indeed, one could characterize the approx-

imation obtained in Theorem 3.4.1 as a Monte-Carlo type of approximation. More

specifically, if one is interested by the integral value of the form

G =

∫
g(x)fX(x)dx (4.1)

where fX is a density distribution, then one consider a sequence of random sample

{x1, x2 . . . , xN} and define the approximation through the sum

ĝN =
1

N

N∑
i=1

g(xi). (4.2)

The convergence to the integral (4.1) is obtained when N ! ∞. Hence, one can

easily see that Theorem 3.4.1 is the aforementioned type of approximation.

Nevertheless, there is another type of integral approximation through a Riemann
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sum. Indeed, one could instead defined the value ĝN by

ĝN =
N∑
i=1

g(xi)fX(xi)µ(Vi). (4.3)

where xi stands for any arbitrary point contained in the set Vi, and µ is a measure

on the underlying set. Then the coefficient ωij of the Dirac matrix could look like

ωij(~) =
1

(4πΦ(~))
d
2

exp

(
−|yi + sj~|2

4Φ(~)

)
µ(Vi). (4.4)

The dependence of the Dirac operator on the metric then appears in the measure µ.

4.2 A unifying framework ?

In the realm of applied mathematics and approximation theory of partial differential

equations, as already mentioned, we conjecture that NDG can serve as a unifying

framework to discretization of PDEs. The past decade has seen a change of paradigm

in the discretization of PDE community where the general philosophy is that discrete

theory can, and indeed, should stand on its own right.

One can mention the pioneer work of Arnold et al. in the finite element exterior

calculus [4]. The finite element exterior calculus (FEEC) is the result of this work

and aims at studying approximations of PDEs that arise from Hilbert complexes.

Another foundational work is the discrete exterior calculus [45]. The authors

Desbrun et al. base their approach on simplicial complexes and its differential

calculus on chains and cochains. In that setting, a differential form is an element in

the dual of the space of chains.

Thus, we would like to investigate the possibility to describe finite element ex-

terior calculus (FEEC) and discrete exterior calculus (DEC) under a unique frame-

work. We are very excited at the prospect of deriving general discretization results

common to what appears to be otherwise distinct approaches.
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