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De Giorgi-Nash-Moser’s regularity theorem
Theorem 1. Let u ∈W 1,2(Ω) be a weak solution of

Lu =

n∑
i,j=1

∂

∂xj

(
ai,j(x)

∂

∂xi
u(x)

)
= 0 (1)

assuming that the measurable and bounded coefficients ai,j satisfies the structural conditions,

λ|ξ|2 ≤
n∑

i,j=1

ai,jξiξj , |ai,j(x)| ≤ Λ, (2)

for all x ∈ Ω, ξ ∈ Rn, with constants 0 < λ < Λ < ∞. Then u is Hölder continuous in Ω. More precisely, for
any ω ⊂⊂ Ω, there exist some α ∈ (0, 1) and a constant C with

|u(x)− u(y)| ≤ C|x− y|α, (3)

for all x, y ∈ ω. α depends on n, Λλ and ω, C in addition on Oscω(u) := supω(u)− infω(u).

Preliminary H1 bound
Proposition 1. Let u ∈W 1,2(Ω) satisfying to the problem (1) on the ball B1 ⊂⊂ Ω, then we have the following
gradient estimate

‖∇u‖L2(B1/2) ≤ C1(n, λ, Λ)‖u‖L2(B1), (4)

where C1 is a constant.

Proof. Choose η a cut-off function such that η = 1 in B1/2,
0 ≤ η ≤ 1 in B1,
η = 0 in Bc1.

(5)

for which ∇η is bounded and ‖∇η‖L∞ depends only on n. We can write the first intermediate estimate∫
B1/2

|∇u|2 ≤
∫
B1

η2|∇u|2 ≤ 1

λ

∫
B1

η2
n∑

i,j=1

ai,j∂iu∂ju.

Then recalling that u satisfies Lu = 0 in B1, we get from integration by parts that∫
B1

η2|∇u|2 ≤ 2

λ

∫
B1

|ηu|
n∑

i,j=1

|ai,j∂iu∂jη| ≤ 2
Λ

λ

∫
B1

|u∇η| · |η∇u|,

from which we can deduce after applying Cauchy-Schwarz inequality that(∫
B1

η2|∇u|2
) 1

2

≤ 2
Λ

λ

(∫
B1

|u∇η|2
) 1

2

≤ 2
Λ

λ
‖∇η‖L∞

(∫
B1

|u|2
) 1

2

.

After squaring the last inequality we obtain the gradient estimate∫
B1/2

|∇u|2 ≤
∫
B1

η2|∇u|2 ≤ 4

(
Λ

λ

)2

‖∇η‖2L∞
(∫

B1

|u|2
)
, (6)

where the constant C is given by C(n, λ, Λ) = 4
(
Λ
λ

)2 ‖∇η‖2L∞ .
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L∞ bound and Moser’s iterations
Definition 1 (Subsolution and supersolution). A function u ∈ W 1,2(Ω) is called a weak subsolution (resp.
supersolution) of L, denoted Lu ≥ 0 (resp. Lu ≤ 0) if for all positive functions φ ∈ H1,2

0 (Ω), we have that∫
Ω

∑
i,j

ai,j∂iu∂jφ ≤ 0, (7)

(resp ≥ 0 for supersolution). All the inequality are assumed to hold except possibly on sets of measure zero.

Theorem 2 (DGNM L∞ bound). Let L satisfy (2) and u ∈W 1,2(Ω) be a positive subsolution of L, i.e. Lu ≥ 0
and u > 0. Then u satisfies

‖u‖L∞(B1/2) ≤ C2(n, λ, Λ)‖u‖L2(B1), (8)

where C2 is a constant.

Lemma 1. Under the hypotheses of theorem 2, and if we let 1/2 ≤ r ≤ r + w ≤ 1 then u satisfies

‖∇u‖L2(Br) ≤ C3(n, λ, Λ)w−1‖u‖L2(Br+w), (9)

where C3 is a constant.

Proof. Again choose a cut-off function η such that η = 1 in Br,
0 ≤ η ≤ 1 in Br+w,
η = 0 in Bcr+w.

(10)

for which ∇η can be made bounded with ‖∇η‖L∞ ≤ 1
w . Then the proof follows the exact same steps as the one

done for proposition 1.

Definition 2 (Sobolev conjugate). If 1 ≤ p < n, the Sobolev conjugate of p is

p∗ :=
np

n− p
. (11)

Note that
1

p∗
=

1

p
− 1

n
, p∗ > p. (12)

Theorem 3 (Gagliardo-Nirenberg-Sobolev inequality). Assume 1 ≤ p < n. There exists a constant C, depend-
ing only on p and n, such that

‖u‖Lp∗ (Rn) ≤ C‖∇u‖Lp(Rn), (13)

for all u ∈ C1
c (Rn).

Lemma 2. Under the hypotheses of theorem 2, and if we let 1/2 ≤ r ≤ r + w ≤ 1, then u satisfies

‖u‖L2∗ (Br) . w−1‖u‖L2(Br+w) (14)

Proof. Let η be a cut-off function satisfying to the following η = 1 in Br,
0 ≤ η ≤ 1 in Br+w,
η = 0 in Bcr+w.

(15)

and for which ∇η is bounded with ‖∇η‖L∞ ≤ 1
2w . Then combining the Gagliardo-Nirenberg-Sobolev inequality,

proposition [1] and lemma [1] applied to ηu, we prove that

‖u‖L2∗ (Br) ≤ ‖ηu‖L2∗ (Br+w/2) . ‖∇(ηu)‖L2(Br+w/2) .
1

2w
‖u‖L2(Br+w/2) + ‖∇u‖L2(Br+w/2) . w−1‖u‖L2(Br+w).

Lemma 3. If β > 1 and u is a positive subsolution of equation (1) i.e. Lu ≥ 0 and u > 0, then uβ is also a
subsolution of equation (1).
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Proof. Using the coercivity of L given in conditions (2) we have that

Luβ =
∑
i,j

∂j(ai,j∂i(u
β)) =

∑
i,j

∂j(ai,jβ∂iuu
β−1) = βuβ−1

∑
i,j

∂j(ai,j∂iu) + β(β − 1)uβ−2
∑
i,j

ai,j∂iu∂ju,

≥ βuβ−1Lu+ λβ(β − 1)uβ−2|∇u|2,

and recalling that u is positive and a subsolution of equation (1) we can conclude that Luβ ≥ 0.

From where applying lemma 2 to uβ leads us to

‖u‖β
L

2βn
n−2 (Br)

= ‖uβ‖
L

2n
n−2 (Br)

. w−1‖uβ‖L2(Br+w) = (Cw)−1‖u‖β
L2β(Br+w)

, (16)

which, if we let s = n
n−2 , gives the following result

Lemma 4. Under the hypotheses of theorem 2, if we let 1/2 ≤ r ≤ r + w ≤ 1 and p ≥ 2, then u satisfies

‖u‖Lsp(Br) ≤ (Cw−1)2/p‖u‖Lp(Br+w). (17)

Let p ∈ R, R > 0, x0 ∈ Ω and take u ∈ Lp(BR(x0)) positive, we define then the function Φ such that

Φ(p,R) :=

(
−
∫
BR(x0)

up

) 1
p

. (18)

Lemma 5.

lim
p→∞

Φ(p,R) = sup
B(x0,R)

u := Φ(∞, R), (19)

lim
p→−∞

Φ(p,R) = inf
B(x0,R)

u := Φ(−∞, R). (20)

Proof. The function Φ(·, R) is monotonically increasing. Indeed, using Hölder’s inequality we have that for any
p < p′ and u ∈ Lp′(Ω)

(
−
∫

Ω

up
) 1
p

≤ 1

|Ω|1/p

(∫
Ω

1
p′
p′−p

) p′−p
pp′

(∫
Ω

up
′
) p
p′p

=

(
−
∫

Ω

up
′
) 1
p′

. (21)

Moreover, by definition of the essential supremum we know that for any ε > 0 there exists δ > 0 such that,

|Aε| :=

∣∣∣∣∣
{
x ∈ B(x0, R) : u(x) ≥ sup

B(x0,R)

u− ε.

}∣∣∣∣∣ > δ (22)

Therefore we can bound Φ below as follow(
−
∫
B(x0,R)

up

) 1
p

≥ 1

|B(x0, R)|1/p

(∫
Aε

up
) 1
p

≥
∣∣∣∣ δ

B(x0, R)

∣∣∣∣ 1p ( sup
B(x0,R)

u− ε), (23)

hence
lim
p→∞

Φ(p,R) ≥ sup
B(x0,R)

u− ε. (24)

Combining the results (21) and (24), we prove (19), and (20) follows immediately by replacing u with u−1.

We are ready now to prove the DeGiorgi-Nash-Moser L∞ bound.

Proof. Consider a sequence of balls such that

B(0, 1/2) ⊂ · · · ⊂ B(0, rk+1) ⊂ B(0, rk) ⊂ · · · ⊂ B(0, r0) = B(0, 1) ⊂⊂ Ω, (25)

i.e. 1/2 ≤ rk ≤ 1 for every k ≥ 0. For instance, one can choose rk = 1
2 + 1

2(k+1) so that rk+1 − rk = O( 1
k2 ).

From here we use Moser’s technique which consist of iterating the result of lemma 4 in order to trap higher Lp
norms,

‖u‖L2(B1) ≥ A0‖u‖L2s(Br1 ) ≥ · · · ≥ A0 · · ·Ak−1‖u‖L2sk (Brk )
, (26)

3



where Ak = (C(rk − rk−1)−1)s
−k

. Nonetheless, we remark that

log(

N∏
k=0

Ak) =

N∑
k=0

s−k log(C(rk − rk−1)), (27)

is the partial sum of a convergent series since

s−k log(C(rk − rk−1)) = O

(
log(k)

sk

)
. (28)

Hence, combining lemma 5 and the previous remark, we can take the limit in both sides of equation (26) and
prove that there exists a constant C such that

‖u‖L∞(B1/2) ≤ C(n, λ, Λ)‖u‖L2(B1). (29)

Moser-Harnack’s inequality
Theorem 4 (Moser-Harnack’s inequality). Let u be a positive weak solution to Lu=0 in a domain Ω of Rn,
and let ω ⊂⊂ Ω. Then

sup
ω
u ≤ c inf

ω
u (30)

with c depending on n, ω, Ω and Λ
λ .

Theorem 5 (Weak Moser-Harnack’s inequality). If the elliptic operator L satisfies the conditions (2), u weak
solution of Lu=0 such that 0 < u < 1 on B1 and∣∣{x ∈ B1/2 : u(x) > 1/10

}∣∣ ≥ 1

10

∣∣B1/2

∣∣, (31)

then,
inf
B1/2

u ≥ γ, (32)

where γ depends on n, and Λ
λ .

Lemma 6. If u ∈W 1,2(Ω) is a weak solution of L and k is some real number, then the function v defined by

v = max(u, k)

is also a weak subsolution to L.

Corollary 1. Let u be a weak solution to Lu=0 on Ω and let r > 0 and x ∈ Ω such that Br(x) ⊂ Ω, then

Osc
Br/2(x)

u ≤ (1− γ) Osc
Br(x)

u. (33)

Proof. The key to this proof rely a scaling argument. Indeed, without lost of generality, since u is bounded, we
can assume that

inf
Br(x)

u = 0, sup
Br(x)

u = 1, r = 1,∣∣{x ∈ B1/2 : u(x) ≥ t
}∣∣ ≥ t∣∣B1/2

∣∣.
Then using the weak Moser-Harnack’s inequality, we readily verify that

Osc
B1/2

u ≤ (1− γ) = (1− γ) Osc
B1

u. (34)

Now we are able to prove the Hölder regularity of weak solution to the problem (1).

Proposition 2. Let u : B1 7→ R satisfy (33). Then,

‖u‖Cα(B1/2) . ‖u‖L∞(B1), (35)

for some α > 0 depending on γ
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Proof. Let x, y ∈ B1/2, we define d = |x − y| and a = 1
2 |x + y|. Then, in order to establish a link u and d, we

can recursively apply the result from corollary 1 to get that

|u(x)− u(y)| ≤ Osc
Bd/2(a)

u ≤ (1− γ) Osc
Bd(a)

u ≤ · · · ≤ (1− γ)k Osc
B

2kd
(a)
u. (36)

We then choose k carefully such that 1
4 < 2kd ≤ 1

2 . Then k = log2( 1
d ) +O(1) and

|u(x)− u(y)| ≤ (1− γ)k Osc
B1/2(a)

u ≤ (1− γ)k Osc
B1(a)

u ≤ 2(1− γ)k‖u‖L∞(B1). (37)

Also by being more precise in the constant in O(1), we see that we can safely say that k ≤ log2( 1
d ) + 2 and so

(1− γ)k ≤ 4(1− γ)log2( 1
d ) = 4d− log2(1−γ). (38)

Hence we conclude by letting α = α(γ) = − log2(1− γ) = γ +O(γ2).

Therefore, the proof of DeGiorgi-Nash-Moser’s theorem boils down to proving the weak Moser-Harnack’s
inequality. We will attack the proof using the same approach than the one for differential Harnack’s inequality
in the case of Laplace operator.

Lemma 7. Let u be a weak solution to Lu = 0 and u > 0 on B1. Then ‖∇ log u‖L2(B1/2) . 1.

Proof. Choose η a cut-off function such that η = 1 in B1/2,
0 ≤ η ≤ 1 in B1,
η = 0 in Bc1.

(39)

Then, using the elliptic condition we have∫
B1/2

|∇ log u|2 ≤
∫
B1

η2|∇ log u|2 =

∫
B1

η2|∇u|2u−2 ≤ 1

λ

∫
B1

n∑
i,j=1

η2ai,j
∂iu

u

∂ju

u
=

1

λ

∫
B1

n∑
i,j=1

η2ai,j∂iu∂ju
−1,

which gives when we integrate by parts that∫
B1/2

|∇ log u|2 ≤ 2
Λ

λ

∫
B1

η|∇η||∇u|u−1 =

∫
B1

η|∇η||∇ log u|.

And again by Cauchy-Schwarz inequality∫
B1

η2|∇ log u|2 .
∫
B1

η2|∇ log u|
∫
B1

|∇η|2, (40)

which let us conclude that ‖∇ log u‖L2(B1/2) . 1.

Let w = − log u and v = w− log(10), the following Poincaré inequality will give us a bound on the L2 norm
of w instead of the actual bound on ∇w.

Lemma 8 (Poincaré inequality). Let H = {v ≤ 0} ∩Br. For all v ∈W 1,1(Br), we have∫
Br

v2
+ ≤

Cr2|Br|
|H|

∫
Br

|∇v+|2. (41)

Proof. Let u = v+, then by the usual Poincaré inequality we have∫
Br

|∇u|2 ≥ C

r2

∫
Br

|u− ū|2 ≥ C

r2

∫
H

|u− ū|2 =
C|H|
r2|Br|

∫
Br

|ū|2. (42)

Moreover we also have by Poincaré inequality that∫
Br

|∇u|2 ≥ C|H|
r2|Br|

∫
Br

|u− ū|2, (43)

and by adding the two previous inequalities we get∫
Br

|∇u|2 ≥ C|H|
2r2|Br|

(∫
Br

|u− ū|2 +

∫
Br

|ū|2
)
≥ C|H|

2r2|Br|

∫
Br

|u|2 (44)
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Lemma 9. Let u be a weak solution to Lu = 0 and u > 0 on B1. Moreover, if u satisfies

|A| :=
∣∣{x ∈ B1/2 : u(x) > 1/10

}∣∣ ≥ 1

10

∣∣B1/2

∣∣, (45)

then, ‖w‖L2(B1/2) . 1.

Proof. The proof is a straight forward application of Poincaré inequality. Indeed we have(∫
B1/2

|w|2
) 1

2

− 1

|B1/2|1/2

∫
B1/2

w ≤

(∫
B1/2

|w − w̄|2
) 1

2

.

(∫
B1/2

|∇w|2
)2

, (46)

and by hypotheses

|A| :=
∣∣{x ∈ B1/2 : w(x) ≤ log(10)

}∣∣ ≥ 1

10

∣∣B1/2

∣∣, (47)

Therefore, (∫
B1/2

|w|2
) 1

2

.

(∫
B1/2

|∇w|2
)2

+
1

|B1/2|1/2

∫
B1/2−A

w +
1

|B1/2|

∫
A

w,

.

(∫
B1/2

|∇w|2
) 1

2

+
1

|B1/2|1/2

∫
B1/2

w+ + 1,

.

(∫
B1/2

|∇w|2
) 1

2

+

(∫
B1/2

w2
+

) 1
2

+ 1,

and using Poincaré’s inequality we prove that(∫
B1/2

|w|2
) 1

2

.

(∫
B1/2

|∇w|2
) 1

2

+ 1. (48)

Hence, we now have a L2 bound on w and we can conclude witth the following lemme

Lemma 10. Let w = − log u, then w is a weak subsolution and satisfy Lw ≥ 0.

Proof. The proof follows with a straight forward computation

−
∑

∂j(aij∂i log u) = −
∑

∂j(aij∂iu
−1) = Lu · u−1 +

∑
aij(∂iu)(∂ju)u−2 ≥ 0. (49)

Since, w = − log u > 0 because u < 1, using previous results we have the upper bound

‖w‖L∞(B1/2) . ‖w‖L2(B1/2) . 1, (50)

and the proof of the weak Harnack inequality follows by exponentiating the previous inequality.
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