De Giorgi-Nash-Moser's theorem

Tageddine Damien
MATH 581 - Partial Differential Equations

April 22, 2019

De Giorgi-Nash-Moser's regularity theorem

Theorem 1. Let $u \in W^{1,2}(\Omega)$ be a weak solution of

$$
\begin{equation*}
L u=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i, j}(x) \frac{\partial}{\partial x_{i}} u(x)\right)=0 \tag{1}
\end{equation*}
$$

assuming that the measurable and bounded coefficients $a_{i, j}$ satisfies the structural conditions,

$$
\begin{equation*}
\lambda|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i, j} \xi_{i} \xi_{j}, \quad\left|a_{i, j}(x)\right| \leq \Lambda, \tag{2}
\end{equation*}
$$

for all $x \in \Omega, \xi \in \mathbb{R}^{n}$, with constants $0<\lambda<\Lambda<\infty$. Then u is Hölder continuous in Ω. More precisely, for any $\omega \subset \subset \Omega$, there exist some $\alpha \in(0,1)$ and a constant C with

$$
\begin{equation*}
|u(x)-u(y)| \leq C|x-y|^{\alpha} \tag{3}
\end{equation*}
$$

for all $x, y \in \omega$. α depends on $n, \frac{\Lambda}{\lambda}$ and ω, C in addition on $\operatorname{Osc}_{\omega}(u):=\sup _{\omega}(u)-\inf _{\omega}(u)$.

Preliminary H^{1} bound

Proposition 1. Let $u \in W^{1,2}(\Omega)$ satisfying to the problem (1) on the ball $B_{1} \subset \subset \Omega$, then we have the following gradient estimate

$$
\begin{equation*}
\|\nabla u\|_{L^{2}\left(B_{1 / 2}\right)} \leq C_{1}(n, \lambda, \Lambda)\|u\|_{L^{2}\left(B_{1}\right)} \tag{4}
\end{equation*}
$$

where C_{1} is a constant.
Proof. Choose η a cut-off function such that

$$
\left\{\begin{array}{llc}
\eta=1 & \text { in } & B_{1 / 2} \tag{5}\\
0 \leq \eta \leq 1 & \text { in } & B_{1} \\
\eta=0 & \text { in } & B_{1}^{c}
\end{array}\right.
$$

for which $\nabla \eta$ is bounded and $\|\nabla \eta\|_{L^{\infty}}$ depends only on n. We can write the first intermediate estimate

$$
\int_{B_{1 / 2}}|\nabla u|^{2} \leq \int_{B_{1}} \eta^{2}|\nabla u|^{2} \leq \frac{1}{\lambda} \int_{B_{1}} \eta^{2} \sum_{i, j=1}^{n} a_{i, j} \partial_{i} u \partial_{j} u .
$$

Then recalling that u satisfies $L u=0$ in B_{1}, we get from integration by parts that

$$
\int_{B_{1}} \eta^{2}|\nabla u|^{2} \leq \frac{2}{\lambda} \int_{B_{1}}|\eta u| \sum_{i, j=1}^{n}\left|a_{i, j} \partial_{i} u \partial_{j} \eta\right| \leq 2 \frac{\Lambda}{\lambda} \int_{B_{1}}|u \nabla \eta| \cdot|\eta \nabla u|
$$

from which we can deduce after applying Cauchy-Schwarz inequality that

$$
\left(\int_{B_{1}} \eta^{2}|\nabla u|^{2}\right)^{\frac{1}{2}} \leq 2 \frac{\Lambda}{\lambda}\left(\int_{B_{1}}|u \nabla \eta|^{2}\right)^{\frac{1}{2}} \leq 2 \frac{\Lambda}{\lambda}\|\nabla \eta\|_{L^{\infty}}\left(\int_{B_{1}}|u|^{2}\right)^{\frac{1}{2}}
$$

After squaring the last inequality we obtain the gradient estimate

$$
\begin{equation*}
\int_{B_{1 / 2}}|\nabla u|^{2} \leq \int_{B_{1}} \eta^{2}|\nabla u|^{2} \leq 4\left(\frac{\Lambda}{\lambda}\right)^{2}\|\nabla \eta\|_{L^{\infty}}^{2}\left(\int_{B_{1}}|u|^{2}\right) \tag{6}
\end{equation*}
$$

where the constant C is given by $C(n, \lambda, \Lambda)=4\left(\frac{\Lambda}{\lambda}\right)^{2}\|\nabla \eta\|_{L^{\infty}}^{2}$.

L^{∞} bound and Moser's iterations

Definition 1 (Subsolution and supersolution). A function $u \in W^{1,2}(\Omega)$ is called a weak subsolution (resp. supersolution) of L, denoted $L u \geq 0$ (resp. $L u \leq 0$) if for all positive functions $\phi \in H_{0}^{1,2}(\Omega)$, we have that

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j} a_{i, j} \partial_{i} u \partial_{j} \phi \leq 0 \tag{7}
\end{equation*}
$$

(resp ≥ 0 for supersolution). All the inequality are assumed to hold except possibly on sets of measure zero.
Theorem 2 (DGNM L^{∞} bound). Let L satisfy (2) and $u \in W^{1,2}(\Omega)$ be a positive subsolution of L, i.e. Lu ≥ 0 and $u>0$. Then u satisfies

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C_{2}(n, \lambda, \Lambda)\|u\|_{L^{2}\left(B_{1}\right)} \tag{8}
\end{equation*}
$$

where C_{2} is a constant.
Lemma 1. Under the hypotheses of theorem 2, and if we let $1 / 2 \leq r \leq r+w \leq 1$ then u satisfies

$$
\begin{equation*}
\|\nabla u\|_{L^{2}\left(B_{r}\right)} \leq C_{3}(n, \lambda, \Lambda) w^{-1}\|u\|_{L^{2}\left(B_{r+w}\right)} \tag{9}
\end{equation*}
$$

where C_{3} is a constant.
Proof. Again choose a cut-off function η such that

$$
\left\{\begin{array}{lcc}
\eta=1 & \text { in } & B_{r} \tag{10}\\
0 \leq \eta \leq 1 & \text { in } & B_{r+w} \\
\eta=0 & \text { in } & B_{r+w}^{c}
\end{array}\right.
$$

for which $\nabla \eta$ can be made bounded with $\|\nabla \eta\|_{L^{\infty}} \leq \frac{1}{w}$. Then the proof follows the exact same steps as the one done for proposition 1.

Definition 2 (Sobolev conjugate). If $1 \leq p<n$, the Sobolev conjugate of p is

$$
\begin{equation*}
p^{*}:=\frac{n p}{n-p} . \tag{11}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}, \quad p^{*}>p \tag{12}
\end{equation*}
$$

Theorem 3 (Gagliardo-Nirenberg-Sobolev inequality). Assume $1 \leq p<n$. There exists a constant C, depending only on p and n, such that

$$
\begin{equation*}
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leq C\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{13}
\end{equation*}
$$

for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$.
Lemma 2. Under the hypotheses of theorem 2, and if we let $1 / 2 \leq r \leq r+w \leq 1$, then u satisfies

$$
\begin{equation*}
\|u\|_{L^{2^{*}}\left(B_{r}\right)} \lesssim w^{-1}\|u\|_{L^{2}\left(B_{r+w}\right)} \tag{14}
\end{equation*}
$$

Proof. Let η be a cut-off function satisfying to the following

$$
\left\{\begin{array}{lcc}
\eta=1 & \text { in } & B_{r} \tag{15}\\
0 \leq \eta \leq 1 & \text { in } & B_{r+w} \\
\eta=0 & \text { in } & B_{r+w}^{c}
\end{array}\right.
$$

and for which $\nabla \eta$ is bounded with $\|\nabla \eta\|_{L^{\infty}} \leq \frac{1}{2 w}$. Then combining the Gagliardo-Nirenberg-Sobolev inequality, proposition [1] and lemma [1] applied to ηu, we prove that

$$
\|u\|_{L^{2^{*}}\left(B_{r}\right)} \leq\|\eta u\|_{L^{2^{*}}\left(B_{r+w / 2}\right)} \lesssim\|\nabla(\eta u)\|_{L^{2}\left(B_{r+w / 2}\right)} \lesssim \frac{1}{2 w}\|u\|_{L^{2}\left(B_{r+w / 2}\right)}+\|\nabla u\|_{L^{2}\left(B_{r+w / 2}\right)} \lesssim w^{-1}\|u\|_{L^{2}\left(B_{r+w}\right)}
$$

Lemma 3. If $\beta>1$ and u is a positive subsolution of equation (1) i.e. $L u \geq 0$ and $u>0$, then u^{β} is also a subsolution of equation (1).

Proof. Using the coercivity of L given in conditions (2) we have that

$$
\begin{aligned}
L u^{\beta}=\sum_{i, j} \partial_{j}\left(a_{i, j} \partial_{i}\left(u^{\beta}\right)\right)=\sum_{i, j} \partial_{j}\left(a_{i, j} \beta \partial_{i} u u^{\beta-1}\right) & =\beta u^{\beta-1} \sum_{i, j} \partial_{j}\left(a_{i, j} \partial_{i} u\right)+\beta(\beta-1) u^{\beta-2} \sum_{i, j} a_{i, j} \partial_{i} u \partial_{j} u, \\
& \geq \beta u^{\beta-1} L u+\lambda \beta(\beta-1) u^{\beta-2}|\nabla u|^{2},
\end{aligned}
$$

and recalling that u is positive and a subsolution of equation (1) we can conclude that $L u^{\beta} \geq 0$.
From where applying lemma 2 to u^{β} leads us to

$$
\begin{equation*}
\|u\|_{L^{\frac{2 \beta n}{n-2}\left(B_{r}\right)}}^{\beta}=\left\|u^{\beta}\right\|_{L^{\frac{2 n}{n-2}}\left(B_{r}\right)} \lesssim w^{-1}\left\|u^{\beta}\right\|_{L^{2}\left(B_{r+w}\right)}=(C w)^{-1}\|u\|_{L^{2 \beta}\left(B_{r+w}\right)}^{\beta} \tag{16}
\end{equation*}
$$

which, if we let $s=\frac{n}{n-2}$, gives the following result
Lemma 4. Under the hypotheses of theorem 2, if we let $1 / 2 \leq r \leq r+w \leq 1$ and $p \geq 2$, then u satisfies

$$
\begin{equation*}
\|u\|_{L^{s p}\left(B_{r}\right)} \leq\left(C w^{-1}\right)^{2 / p}\|u\|_{L^{p}\left(B_{r+w}\right)} . \tag{17}
\end{equation*}
$$

Let $p \in \mathbb{R}, R>0, x_{0} \in \Omega$ and take $u \in L^{p}\left(B_{R}\left(x_{0}\right)\right)$ positive, we define then the function Φ such that

$$
\begin{equation*}
\Phi(p, R):=\left(f_{B_{R}\left(x_{0}\right)} u^{p}\right)^{\frac{1}{p}} \tag{18}
\end{equation*}
$$

Lemma 5.

$$
\begin{align*}
\lim _{p \rightarrow \infty} \Phi(p, R) & =\sup _{B\left(x_{0}, R\right)} u:=\Phi(\infty, R) \tag{19}\\
\lim _{p \rightarrow-\infty} \Phi(p, R) & =\inf _{B\left(x_{0}, R\right)} u:=\Phi(-\infty, R) . \tag{20}
\end{align*}
$$

Proof. The function $\Phi(\cdot, R)$ is monotonically increasing. Indeed, using Hölder's inequality we have that for any $p<p^{\prime}$ and $u \in L^{p^{\prime}}(\Omega)$

$$
\begin{equation*}
\left(f_{\Omega} u^{p}\right)^{\frac{1}{p}} \leq \frac{1}{|\Omega|^{1 / p}}\left(\int_{\Omega} 1^{\frac{p^{\prime}}{p^{\prime}-p}}\right)^{\frac{p^{\prime}-p}{p p^{\prime}}}\left(\int_{\Omega} u^{p^{\prime}}\right)^{\frac{p}{p^{\prime} p}}=\left(f_{\Omega} u^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}} \tag{21}
\end{equation*}
$$

Moreover, by definition of the essential supremum we know that for any $\varepsilon>0$ there exists $\delta>0$ such that,

$$
\begin{equation*}
\left|A_{\varepsilon}\right|:=\left|\left\{x \in B\left(x_{0}, R\right): u(x) \geq \sup _{B\left(x_{0}, R\right)} u-\varepsilon .\right\}\right|>\delta \tag{22}
\end{equation*}
$$

Therefore we can bound Φ below as follow

$$
\begin{equation*}
\left(f_{B\left(x_{0}, R\right)} u^{p}\right)^{\frac{1}{p}} \geq \frac{1}{\left|B\left(x_{0}, R\right)\right|^{1 / p}}\left(\int_{A_{\varepsilon}} u^{p}\right)^{\frac{1}{p}} \geq\left|\frac{\delta}{B\left(x_{0}, R\right)}\right|^{\frac{1}{p}}\left(\sup _{B\left(x_{0}, R\right)} u-\varepsilon\right) \tag{23}
\end{equation*}
$$

hence

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \Phi(p, R) \geq \sup _{B\left(x_{0}, R\right)} u-\varepsilon \tag{24}
\end{equation*}
$$

Combining the results (21) and (24), we prove (19), and (20) follows immediately by replacing u with u^{-1}.
We are ready now to prove the DeGiorgi-Nash-Moser L^{∞} bound.
Proof. Consider a sequence of balls such that

$$
\begin{equation*}
B(0,1 / 2) \subset \cdots \subset B\left(0, r_{k+1}\right) \subset B\left(0, r_{k}\right) \subset \cdots \subset B\left(0, r_{0}\right)=B(0,1) \subset \subset \tag{25}
\end{equation*}
$$

i.e. $1 / 2 \leq r_{k} \leq 1$ for every $k \geq 0$. For instance, one can choose $r_{k}=\frac{1}{2}+\frac{1}{2(k+1)}$ so that $r_{k+1}-r_{k}=O\left(\frac{1}{k^{2}}\right)$.

From here we use Moser's technique which consist of iterating the result of lemma 4 in order to trap higher L^{p} norms,

$$
\begin{equation*}
\|u\|_{L^{2}\left(B_{1}\right)} \geq A_{0}\|u\|_{L^{2 s}\left(B_{r_{1}}\right)} \geq \cdots \geq A_{0} \cdots A_{k-1}\|u\|_{L^{2 s^{k}}\left(B_{r_{k}}\right)}, \tag{26}
\end{equation*}
$$

where $A_{k}=\left(C\left(r_{k}-r_{k-1}\right)^{-1}\right)^{s^{-k}}$. Nonetheless, we remark that

$$
\begin{equation*}
\log \left(\prod_{k=0}^{N} A_{k}\right)=\sum_{k=0}^{N} s^{-k} \log \left(C\left(r_{k}-r_{k-1}\right)\right) \tag{27}
\end{equation*}
$$

is the partial sum of a convergent series since

$$
\begin{equation*}
s^{-k} \log \left(C\left(r_{k}-r_{k-1}\right)\right)=O\left(\frac{\log (k)}{s^{k}}\right) . \tag{28}
\end{equation*}
$$

Hence, combining lemma 5 and the previous remark, we can take the limit in both sides of equation (26) and prove that there exists a constant C such that

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C(n, \lambda, \Lambda)\|u\|_{L^{2}\left(B_{1}\right)} . \tag{29}
\end{equation*}
$$

Moser-Harnack's inequality

Theorem 4 (Moser-Harnack's inequality). Let u be a positive weak solution to $L u=0$ in a domain Ω of \mathbb{R}^{n}, and let $\omega \subset \subset \Omega$. Then

$$
\begin{equation*}
\sup _{\omega} u \leq c \inf _{\omega} u \tag{30}
\end{equation*}
$$

with c depending on n, ω, Ω and $\frac{\Lambda}{\lambda}$.
Theorem 5 (Weak Moser-Harnack's inequality). If the elliptic operator L satisfies the conditions (2), u weak solution of $L u=0$ such that $0<u<1$ on B_{1} and

$$
\begin{equation*}
\left|\left\{x \in B_{1 / 2}: u(x)>1 / 10\right\}\right| \geq \frac{1}{10}\left|B_{1 / 2}\right|, \tag{31}
\end{equation*}
$$

then,

$$
\begin{equation*}
\inf _{B_{1 / 2}} u \geq \gamma, \tag{32}
\end{equation*}
$$

where γ depends on n, and $\frac{\Lambda}{\lambda}$.
Lemma 6. If $u \in W^{1,2}(\Omega)$ is a weak solution of L and k is some real number, then the function v defined by

$$
v=\max (u, k)
$$

is also a weak subsolution to L.
Corollary 1. Let u be a weak solution to $L u=0$ on Ω and let $r>0$ and $x \in \Omega$ such that $B_{r}(x) \subset \Omega$, then

$$
\begin{equation*}
\underset{B_{r / 2}(x)}{\operatorname{Osc}} u \leq(1-\gamma) \underset{B_{r}(x)}{\operatorname{Osc}} u . \tag{33}
\end{equation*}
$$

Proof. The key to this proof rely a scaling argument. Indeed, without lost of generality, since u is bounded, we can assume that

$$
\begin{gathered}
\inf _{B_{r}(x)} u=0, \quad \sup _{B_{r}(x)} u=1, \quad r=1, \\
\left|\left\{x \in B_{1 / 2}: u(x) \geq t\right\}\right| \geq t\left|B_{1 / 2}\right|
\end{gathered}
$$

Then using the weak Moser-Harnack's inequality, we readily verify that

$$
\begin{equation*}
\underset{B_{1 / 2}}{\mathrm{Osc}} u \leq(1-\gamma)=(1-\gamma) \underset{B_{1}}{\mathrm{Osc} u} . \tag{34}
\end{equation*}
$$

Now we are able to prove the Hölder regularity of weak solution to the problem (1).
Proposition 2. Let $u: B_{1} \mapsto \mathbb{R}$ satisfy (33). Then,

$$
\begin{equation*}
\|u\|_{C^{\alpha}\left(B_{1 / 2}\right)} \lesssim\|u\|_{L^{\infty}\left(B_{1}\right)} \tag{35}
\end{equation*}
$$

for some $\alpha>0$ depending on γ

Proof. Let $x, y \in B_{1 / 2}$, we define $d=|x-y|$ and $a=\frac{1}{2}|x+y|$. Then, in order to establish a link u and d, we can recursively apply the result from corollary 1 to get that

$$
\begin{equation*}
|u(x)-u(y)| \leq \underset{B_{d / 2}(a)}{\operatorname{Osc}} u \leq(1-\gamma) \underset{B_{d}(a)}{\operatorname{Osc}} u \leq \cdots \leq(1-\gamma)^{k} \underset{B_{2^{k} d}(a)}{\operatorname{Osc}} u \tag{36}
\end{equation*}
$$

We then choose k carefully such that $\frac{1}{4}<2^{k} d \leq \frac{1}{2}$. Then $k=\log _{2}\left(\frac{1}{d}\right)+O(1)$ and

$$
\begin{equation*}
|u(x)-u(y)| \leq(1-\gamma)^{k} \underset{B_{1 / 2}(a)}{\operatorname{Osc}} u \leq(1-\gamma)^{k} \underset{B_{1}(a)}{\operatorname{Osc}} u \leq 2(1-\gamma)^{k}\|u\|_{L^{\infty}\left(B_{1}\right)} \tag{37}
\end{equation*}
$$

Also by being more precise in the constant in $O(1)$, we see that we can safely say that $k \leq \log _{2}\left(\frac{1}{d}\right)+2$ and so

$$
\begin{equation*}
(1-\gamma)^{k} \leq 4(1-\gamma)^{\log _{2}\left(\frac{1}{d}\right)}=4 d^{-\log _{2}(1-\gamma)} \tag{38}
\end{equation*}
$$

Hence we conclude by letting $\alpha=\alpha(\gamma)=-\log _{2}(1-\gamma)=\gamma+O\left(\gamma^{2}\right)$.
Therefore, the proof of DeGiorgi-Nash-Moser's theorem boils down to proving the weak Moser-Harnack's inequality. We will attack the proof using the same approach than the one for differential Harnack's inequality in the case of Laplace operator.

Lemma 7. Let u be a weak solution to $L u=0$ and $u>0$ on B_{1}. Then $\|\nabla \log u\|_{L^{2}\left(B_{1 / 2}\right)} \lesssim 1$.
Proof. Choose η a cut-off function such that

$$
\begin{cases}\eta=1 & \text { in } \tag{39}\\ 0 \leq \eta \leq 1 & B_{1 / 2} \\ 0 \leq & \text { in } \\ \eta=0 & \text { in } \\ B_{1},\end{cases}
$$

Then, using the elliptic condition we have
$\int_{B_{1 / 2}}|\nabla \log u|^{2} \leq \int_{B_{1}} \eta^{2}|\nabla \log u|^{2}=\int_{B_{1}} \eta^{2}|\nabla u|^{2} u^{-2} \leq \frac{1}{\lambda} \int_{B_{1}} \sum_{i, j=1}^{n} \eta^{2} a_{i, j} \frac{\partial_{i} u}{u} \frac{\partial_{j} u}{u}=\frac{1}{\lambda} \int_{B_{1}} \sum_{i, j=1}^{n} \eta^{2} a_{i, j} \partial_{i} u \partial_{j} u^{-1}$,
which gives when we integrate by parts that

$$
\int_{B_{1 / 2}}|\nabla \log u|^{2} \leq 2 \frac{\Lambda}{\lambda} \int_{B_{1}} \eta|\nabla \eta||\nabla u| u^{-1}=\int_{B_{1}} \eta|\nabla \eta||\nabla \log u| .
$$

And again by Cauchy-Schwarz inequality

$$
\begin{equation*}
\int_{B_{1}} \eta^{2}|\nabla \log u|^{2} \lesssim \int_{B_{1}} \eta^{2}|\nabla \log u| \int_{B_{1}}|\nabla \eta|^{2} \tag{40}
\end{equation*}
$$

which let us conclude that $\|\nabla \log u\|_{L^{2}\left(B_{1 / 2}\right)} \lesssim 1$.
Let $w=-\log u$ and $v=w-\log (10)$, the following Poincaré inequality will give us a bound on the L^{2} norm of w instead of the actual bound on ∇w.

Lemma 8 (Poincaré inequality). Let $H=\{v \leq 0\} \cap B_{r}$. For all $v \in W^{1,1}\left(B_{r}\right)$, we have

$$
\begin{equation*}
\int_{B_{r}} v_{+}^{2} \leq \frac{C r^{2}\left|B_{r}\right|}{|H|} \int_{B_{r}}\left|\nabla v_{+}\right|^{2} \tag{41}
\end{equation*}
$$

Proof. Let $u=v_{+}$, then by the usual Poincaré inequality we have

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} \geq \frac{C}{r^{2}} \int_{B_{r}}|u-\bar{u}|^{2} \geq \frac{C}{r^{2}} \int_{H}|u-\bar{u}|^{2}=\frac{C|H|}{r^{2}\left|B_{r}\right|} \int_{B_{r}}|\bar{u}|^{2} . \tag{42}
\end{equation*}
$$

Moreover we also have by Poincaré inequality that

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} \geq \frac{C|H|}{r^{2}\left|B_{r}\right|} \int_{B_{r}}|u-\bar{u}|^{2}, \tag{43}
\end{equation*}
$$

and by adding the two previous inequalities we get

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} \geq \frac{C|H|}{2 r^{2}\left|B_{r}\right|}\left(\int_{B_{r}}|u-\bar{u}|^{2}+\int_{B_{r}}|\bar{u}|^{2}\right) \geq \frac{C|H|}{2 r^{2}\left|B_{r}\right|} \int_{B_{r}}|u|^{2} \tag{44}
\end{equation*}
$$

Lemma 9. Let u be a weak solution to $L u=0$ and $u>0$ on B_{1}. Moreover, if u satisfies

$$
\begin{equation*}
|A|:=\left|\left\{x \in B_{1 / 2}: u(x)>1 / 10\right\}\right| \geq \frac{1}{10}\left|B_{1 / 2}\right| \tag{45}
\end{equation*}
$$

then, $\|w\|_{L^{2}\left(B_{1 / 2}\right)} \lesssim 1$.
Proof. The proof is a straight forward application of Poincaré inequality. Indeed we have

$$
\begin{equation*}
\left(\int_{B_{1 / 2}}|w|^{2}\right)^{\frac{1}{2}}-\frac{1}{\left|B_{1 / 2}\right|^{1 / 2}} \int_{B_{1 / 2}} w \leq\left(\int_{B_{1 / 2}}|w-\bar{w}|^{2}\right)^{\frac{1}{2}} \lesssim\left(\int_{B_{1 / 2}}|\nabla w|^{2}\right)^{2} \tag{46}
\end{equation*}
$$

and by hypotheses

$$
\begin{equation*}
|A|:=\left|\left\{x \in B_{1 / 2}: w(x) \leq \log (10)\right\}\right| \geq \frac{1}{10}\left|B_{1 / 2}\right| \tag{47}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\left(\int_{B_{1 / 2}}|w|^{2}\right)^{\frac{1}{2}} & \lesssim\left(\int_{B_{1 / 2}}|\nabla w|^{2}\right)^{2}+\frac{1}{\left|B_{1 / 2}\right|^{1 / 2}} \int_{B_{1 / 2}-A} w+\frac{1}{\left|B_{1 / 2}\right|} \int_{A} w \\
& \lesssim\left(\int_{B_{1 / 2}}|\nabla w|^{2}\right)^{\frac{1}{2}}+\frac{1}{\left|B_{1 / 2}\right|^{1 / 2}} \int_{B_{1 / 2}} w_{+}+1 \\
& \lesssim\left(\int_{B_{1 / 2}}|\nabla w|^{2}\right)^{\frac{1}{2}}+\left(\int_{B_{1 / 2}} w_{+}^{2}\right)^{\frac{1}{2}}+1
\end{aligned}
$$

and using Poincaré's inequality we prove that

$$
\begin{equation*}
\left(\int_{B_{1 / 2}}|w|^{2}\right)^{\frac{1}{2}} \lesssim\left(\int_{B_{1 / 2}}|\nabla w|^{2}\right)^{\frac{1}{2}}+1 \tag{48}
\end{equation*}
$$

Hence, we now have a L^{2} bound on w and we can conclude witth the following lemme
Lemma 10. Let $w=-\log u$, then w is a weak subsolution and satisfy $L w \geq 0$.
Proof. The proof follows with a straight forward computation

$$
\begin{equation*}
-\sum \partial_{j}\left(a_{i j} \partial_{i} \log u\right)=-\sum \partial_{j}\left(a_{i j} \partial_{i} u^{-1}\right)=L u \cdot u^{-1}+\sum a_{i j}\left(\partial_{i} u\right)\left(\partial_{j} u\right) u^{-2} \geq 0 \tag{49}
\end{equation*}
$$

Since, $w=-\log u>0$ because $u<1$, using previous results we have the upper bound

$$
\begin{equation*}
\|w\|_{L^{\infty}\left(B_{1 / 2}\right)} \lesssim\|w\|_{L^{2}\left(B_{1 / 2}\right)} \lesssim 1 \tag{50}
\end{equation*}
$$

and the proof of the weak Harnack inequality follows by exponentiating the previous inequality.

