De Giorgi-Nash-Moser's theorem

Tageddine Damien MATH 581 - Partial Differential Equations

April 22, 2019

De Giorgi-Nash-Moser's regularity theorem

Theorem 1. Let $u \in W^{1,2}(\Omega)$ be a weak solution of

$$Lu = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left(a_{i,j}(x) \frac{\partial}{\partial x_i} u(x) \right) = 0$$
(1)

assuming that the measurable and bounded coefficients $a_{i,j}$ satisfies the structural conditions,

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a_{i,j} \xi_i \xi_j, \quad |a_{i,j}(x)| \le \Lambda,$$

$$\tag{2}$$

for all $x \in \Omega$, $\xi \in \mathbb{R}^n$, with constants $0 < \lambda < \Lambda < \infty$. Then u is Hölder continuous in Ω . More precisely, for any $\omega \subset \subset \Omega$, there exist some $\alpha \in (0, 1)$ and a constant C with

$$|u(x) - u(y)| \le C|x - y|^{\alpha},\tag{3}$$

for all $x, y \in \omega$. α depends on n, $\frac{\Lambda}{\lambda}$ and ω , C in addition on $Osc_{\omega}(u) := sup_{\omega}(u) - inf_{\omega}(u)$.

Preliminary H^1 bound

Proposition 1. Let $u \in W^{1,2}(\Omega)$ satisfying to the problem (1) on the ball $B_1 \subset \subset \Omega$, then we have the following gradient estimate

$$\|\nabla u\|_{L^2(B_{1/2})} \le C_1(n,\lambda,\Lambda) \|u\|_{L^2(B_1)},\tag{4}$$

where C_1 is a constant.

Proof. Choose η a cut-off function such that

$$\begin{cases} \eta = 1 & \text{in } B_{1/2}, \\ 0 \le \eta \le 1 & \text{in } B_1, \\ \eta = 0 & \text{in } B_1^c. \end{cases}$$
(5)

for which $\nabla \eta$ is bounded and $\|\nabla \eta\|_{L^{\infty}}$ depends only on n. We can write the first intermediate estimate

$$\int_{B_{1/2}} |\nabla u|^2 \le \int_{B_1} \eta^2 |\nabla u|^2 \le \frac{1}{\lambda} \int_{B_1} \eta^2 \sum_{i,j=1}^n a_{i,j} \partial_i u \partial_j u$$

Then recalling that u satisfies Lu = 0 in B_1 , we get from integration by parts that

$$\int_{B_1} \eta^2 |\nabla u|^2 \le \frac{2}{\lambda} \int_{B_1} |\eta u| \sum_{i,j=1}^n |a_{i,j}\partial_i u \partial_j \eta| \le 2\frac{\Lambda}{\lambda} \int_{B_1} |u \nabla \eta| \cdot |\eta \nabla u|,$$

from which we can deduce after applying Cauchy-Schwarz inequality that

$$\left(\int_{B_1} \eta^2 |\nabla u|^2\right)^{\frac{1}{2}} \le 2\frac{\Lambda}{\lambda} \left(\int_{B_1} |u\nabla \eta|^2\right)^{\frac{1}{2}} \le 2\frac{\Lambda}{\lambda} \|\nabla \eta\|_{L^{\infty}} \left(\int_{B_1} |u|^2\right)^{\frac{1}{2}}.$$

After squaring the last inequality we obtain the gradient estimate

$$\int_{B_{1/2}} |\nabla u|^2 \le \int_{B_1} \eta^2 |\nabla u|^2 \le 4 \left(\frac{\Lambda}{\lambda}\right)^2 \|\nabla \eta\|_{L^\infty}^2 \left(\int_{B_1} |u|^2\right),\tag{6}$$

where the constant C is given by $C(n, \lambda, \Lambda) = 4 \left(\frac{\Lambda}{\lambda}\right)^2 \|\nabla \eta\|_{L^{\infty}}^2$.

L^{∞} bound and Moser's iterations

Definition 1 (Subsolution and supersolution). A function $u \in W^{1,2}(\Omega)$ is called a weak *subsolution* (resp. *supersolution*) of L, denoted $Lu \ge 0$ (resp. $Lu \le 0$) if for all positive functions $\phi \in H_0^{1,2}(\Omega)$, we have that

$$\int_{\Omega} \sum_{i,j} a_{i,j} \partial_i u \partial_j \phi \le 0, \tag{7}$$

(resp ≥ 0 for supersolution). All the inequality are assumed to hold except possibly on sets of measure zero.

Theorem 2 (DGNM L^{∞} bound). Let L satisfy (2) and $u \in W^{1,2}(\Omega)$ be a positive subsolution of L, i.e. $Lu \ge 0$ and u > 0. Then u satisfies

$$\|u\|_{L^{\infty}(B_{1/2})} \le C_2(n,\lambda,\Lambda) \|u\|_{L^2(B_1)},\tag{8}$$

where C_2 is a constant.

Lemma 1. Under the hypotheses of theorem 2, and if we let $1/2 \le r \le r + w \le 1$ then u satisfies

$$\|\nabla u\|_{L^{2}(B_{r})} \leq C_{3}(n,\lambda,\Lambda)w^{-1}\|u\|_{L^{2}(B_{r+w})},\tag{9}$$

where C_3 is a constant.

Proof. Again choose a cut-off function η such that

$$\begin{cases} \eta = 1 & \text{in } B_r, \\ 0 \le \eta \le 1 & \text{in } B_{r+w}, \\ \eta = 0 & \text{in } B_{r+w}^c. \end{cases}$$
(10)

for which $\nabla \eta$ can be made bounded with $\|\nabla \eta\|_{L^{\infty}} \leq \frac{1}{w}$. Then the proof follows the exact same steps as the one done for proposition 1.

Definition 2 (Sobolev conjugate). If $1 \le p < n$, the Sobolev conjugate of p is

$$p^* := \frac{np}{n-p}.\tag{11}$$

Note that

$$\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}, \quad p^* > p.$$
(12)

Theorem 3 (Gagliardo-Nirenberg-Sobolev inequality). Assume $1 \le p < n$. There exists a constant C, depending only on p and n, such that

$$\|u\|_{L^{p^*}(\mathbb{R}^n)} \le C \|\nabla u\|_{L^p(\mathbb{R}^n)},\tag{13}$$

for all $u \in C_c^1(\mathbb{R}^n)$.

Lemma 2. Under the hypotheses of theorem 2, and if we let $1/2 \le r \le r + w \le 1$, then u satisfies

$$\|u\|_{L^{2^*}(B_r)} \lesssim w^{-1} \|u\|_{L^2(B_{r+w})} \tag{14}$$

Proof. Let η be a cut-off function satisfying to the following

$$\begin{cases} \eta = 1 & \text{in } B_r, \\ 0 \le \eta \le 1 & \text{in } B_{r+w}, \\ \eta = 0 & \text{in } B_{r+w}^c. \end{cases}$$
(15)

and for which $\nabla \eta$ is bounded with $\|\nabla \eta\|_{L^{\infty}} \leq \frac{1}{2w}$. Then combining the Gagliardo-Nirenberg-Sobolev inequality, proposition [1] and lemma [1] applied to ηu , we prove that

$$\|u\|_{L^{2^*}(B_r)} \le \|\eta u\|_{L^{2^*}(B_{r+w/2})} \lesssim \|\nabla(\eta u)\|_{L^2(B_{r+w/2})} \lesssim \frac{1}{2w} \|u\|_{L^2(B_{r+w/2})} + \|\nabla u\|_{L^2(B_{r+w/2})} \lesssim w^{-1} \|u\|_{L^2(B_{r+w})}.$$

Lemma 3. If $\beta > 1$ and u is a positive subsolution of equation (1) i.e. $Lu \ge 0$ and u > 0, then u^{β} is also a subsolution of equation (1).

Proof. Using the coercivity of L given in conditions (2) we have that

$$Lu^{\beta} = \sum_{i,j} \partial_j (a_{i,j} \partial_i (u^{\beta})) = \sum_{i,j} \partial_j (a_{i,j} \beta \partial_i u u^{\beta-1}) = \beta u^{\beta-1} \sum_{i,j} \partial_j (a_{i,j} \partial_i u) + \beta (\beta - 1) u^{\beta-2} \sum_{i,j} a_{i,j} \partial_i u \partial_j u,$$

$$\geq \beta u^{\beta-1} Lu + \lambda \beta (\beta - 1) u^{\beta-2} |\nabla u|^2,$$

and recalling that u is positive and a subsolution of equation (1) we can conclude that $Lu^{\beta} \ge 0$.

From where applying lemma 2 to u^{β} leads us to

$$\|u\|_{L^{\frac{2\beta n}{n-2}}(B_r)}^{\beta} = \|u^{\beta}\|_{L^{\frac{2n}{n-2}}(B_r)} \lesssim w^{-1} \|u^{\beta}\|_{L^{2}(B_{r+w})} = (Cw)^{-1} \|u\|_{L^{2\beta}(B_{r+w})}^{\beta}, \tag{16}$$

which, if we let $s = \frac{n}{n-2}$, gives the following result

Lemma 4. Under the hypotheses of theorem 2, if we let $1/2 \le r \le r + w \le 1$ and $p \ge 2$, then u satisfies

$$\|u\|_{L^{sp}(B_r)} \le (Cw^{-1})^{2/p} \|u\|_{L^p(B_{r+w})}.$$
(17)

Let $p \in \mathbb{R}$, R > 0, $x_0 \in \Omega$ and take $u \in L^p(B_R(x_0))$ positive, we define then the function Φ such that

$$\Phi(p,R) := \left(\oint_{B_R(x_0)} u^p \right)^{\frac{1}{p}}.$$
(18)

Lemma 5.

$$\lim_{p \to \infty} \Phi(p, R) = \sup_{B(x_0, R)} u := \Phi(\infty, R),$$
(19)

$$\lim_{p \to -\infty} \Phi(p, R) = \inf_{B(x_0, R)} u := \Phi(-\infty, R).$$

$$\tag{20}$$

Proof. The function $\Phi(\cdot, R)$ is monotonically increasing. Indeed, using Hölder's inequality we have that for any p < p' and $u \in L^{p'}(\Omega)$

$$\left(\oint_{\Omega} u^p\right)^{\frac{1}{p}} \le \frac{1}{|\Omega|^{1/p}} \left(\int_{\Omega} 1^{\frac{p'}{p'-p}}\right)^{\frac{p'-p}{pp'}} \left(\int_{\Omega} u^{p'}\right)^{\frac{p}{p'p}} = \left(\oint_{\Omega} u^{p'}\right)^{\frac{1}{p'}}.$$
(21)

Moreover, by definition of the essential supremum we know that for any $\varepsilon > 0$ there exists $\delta > 0$ such that,

$$|A_{\varepsilon}| := \left| \left\{ x \in B(x_0, R) : u(x) \ge \sup_{B(x_0, R)} u - \varepsilon. \right\} \right| > \delta$$
(22)

Therefore we can bound \varPhi below as follow

$$\left(\int_{B(x_0,R)} u^p\right)^{\frac{1}{p}} \ge \frac{1}{|B(x_0,R)|^{1/p}} \left(\int_{A_{\varepsilon}} u^p\right)^{\frac{1}{p}} \ge \left|\frac{\delta}{B(x_0,R)}\right|^{\frac{1}{p}} (\sup_{B(x_0,R)} u - \varepsilon),\tag{23}$$

hence

$$\lim_{p \to \infty} \Phi(p, R) \ge \sup_{B(x_0, R)} u - \varepsilon.$$
(24)

Combining the results (21) and (24), we prove (19), and (20) follows immediately by replacing u with u^{-1} . \Box

We are ready now to prove the DeGiorgi-Nash-Moser L^{∞} bound.

Proof. Consider a sequence of balls such that

$$B(0, 1/2) \subset \dots \subset B(0, r_{k+1}) \subset B(0, r_k) \subset \dots \subset B(0, r_0) = B(0, 1) \subset \subset \Omega,$$
(25)

i.e. $1/2 \le r_k \le 1$ for every $k \ge 0$. For instance, one can choose $r_k = \frac{1}{2} + \frac{1}{2(k+1)}$ so that $r_{k+1} - r_k = O(\frac{1}{k^2})$. From here we use Moser's technique which consist of iterating the result of lemma 4 in order to trap higher L^p norms,

$$\|u\|_{L^{2}(B_{1})} \ge A_{0} \|u\|_{L^{2s}(B_{r_{1}})} \ge \dots \ge A_{0} \cdots A_{k-1} \|u\|_{L^{2s^{k}}(B_{r_{k}})},$$
(26)

where $A_k = (C(r_k - r_{k-1})^{-1})^{s^{-k}}$. Nonetheless, we remark that

$$\log(\prod_{k=0}^{N} A_k) = \sum_{k=0}^{N} s^{-k} \log(C(r_k - r_{k-1})),$$
(27)

is the partial sum of a convergent series since

$$s^{-k}\log(C(r_k - r_{k-1})) = O\left(\frac{\log(k)}{s^k}\right).$$
 (28)

Hence, combining lemma 5 and the previous remark, we can take the limit in both sides of equation (26) and prove that there exists a constant C such that

$$\|u\|_{L^{\infty}(B_{1/2})} \le C(n,\lambda,\Lambda) \|u\|_{L^{2}(B_{1})}.$$
(29)

Moser-Harnack's inequality

Theorem 4 (Moser-Harnack's inequality). Let u be a positive weak solution to Lu=0 in a domain Ω of \mathbb{R}^n , and let $\omega \subset \subset \Omega$. Then

$$\sup_{\omega} u \le c \inf_{\omega} u \tag{30}$$

with c depending on n, ω , Ω and $\frac{\Lambda}{\lambda}$.

Theorem 5 (Weak Moser-Harnack's inequality). If the elliptic operator L satisfies the conditions (2), u weak solution of Lu=0 such that 0 < u < 1 on B_1 and

$$\left|\left\{x \in B_{1/2} : u(x) > 1/10\right\}\right| \ge \frac{1}{10} |B_{1/2}|,\tag{31}$$

then,

$$\inf_{B_{1/2}} u \ge \gamma, \tag{32}$$

where γ depends on n, and $\frac{\Lambda}{\lambda}$.

Lemma 6. If $u \in W^{1,2}(\Omega)$ is a weak solution of L and k is some real number, then the function v defined by

 $v = \max(u, k)$

is also a weak subsolution to L.

Corollary 1. Let u be a weak solution to Lu=0 on Ω and let r > 0 and $x \in \Omega$ such that $B_r(x) \subset \Omega$, then

$$\operatorname{Osc}_{B_{r/2}(x)} u \le (1 - \gamma) \operatorname{Osc}_{B_r(x)} u.$$
(33)

Proof. The key to this proof rely a scaling argument. Indeed, without lost of generality, since u is bounded, we can assume that

$$\inf_{B_r(x)} u = 0, \quad \sup_{B_r(x)} u = 1, \quad r = 1,$$
$$|\{x \in B_{1/2} : u(x) \ge t\}| \ge t|B_{1/2}|.$$

Then using the weak Moser-Harnack's inequality, we readily verify that

$$\operatorname{Osc}_{B_{1/2}} u \le (1 - \gamma) = (1 - \gamma) \operatorname{Osc}_{B_1} u.$$
(34)

Now we are able to prove the Hölder regularity of weak solution to the problem (1).

Proposition 2. Let $u: B_1 \mapsto \mathbb{R}$ satisfy (33). Then,

$$\|u\|_{C^{\alpha}(B_{1/2})} \lesssim \|u\|_{L^{\infty}(B_{1})},\tag{35}$$

for some $\alpha > 0$ depending on γ

Proof. Let $x, y \in B_{1/2}$, we define d = |x - y| and $a = \frac{1}{2}|x + y|$. Then, in order to establish a link u and d, we can recursively apply the result from corollary 1 to get that

$$|u(x) - u(y)| \le \operatorname{Osc}_{B_{d/2}(a)} u \le (1 - \gamma) \operatorname{Osc}_{B_d(a)} u \le \dots \le (1 - \gamma)^k \operatorname{Osc}_{B_{2^k d}(a)} u.$$
(36)

We then choose k carefully such that $\frac{1}{4} < 2^k d \leq \frac{1}{2}$. Then $k = \log_2(\frac{1}{d}) + O(1)$ and

$$|u(x) - u(y)| \le (1 - \gamma)^k \operatorname{Osc}_{B_{1/2}(a)} u \le (1 - \gamma)^k \operatorname{Osc}_{B_1(a)} u \le 2(1 - \gamma)^k ||u||_{L^{\infty}(B_1)}.$$
(37)

Also by being more precise in the constant in O(1), we see that we can safely say that $k \leq \log_2(\frac{1}{d}) + 2$ and so

$$(1-\gamma)^k \le 4(1-\gamma)^{\log_2(\frac{1}{d})} = 4d^{-\log_2(1-\gamma)}.$$
(38)

Hence we conclude by letting $\alpha = \alpha(\gamma) = -\log_2(1-\gamma) = \gamma + O(\gamma^2)$.

Therefore, the proof of DeGiorgi-Nash-Moser's theorem boils down to proving the weak Moser-Harnack's inequality. We will attack the proof using the same approach than the one for differential Harnack's inequality in the case of Laplace operator.

Lemma 7. Let u be a weak solution to Lu = 0 and u > 0 on B_1 . Then $\|\nabla \log u\|_{L^2(B_{1/2})} \lesssim 1$.

Proof. Choose η a cut-off function such that

$$\begin{cases} \eta = 1 & \text{in } B_{1/2}, \\ 0 \le \eta \le 1 & \text{in } B_1, \\ \eta = 0 & \text{in } B_1^c. \end{cases}$$
(39)

Then, using the elliptic condition we have

$$\int_{B_{1/2}} |\nabla \log u|^2 \le \int_{B_1} \eta^2 |\nabla \log u|^2 = \int_{B_1} \eta^2 |\nabla u|^2 u^{-2} \le \frac{1}{\lambda} \int_{B_1} \sum_{i,j=1}^n \eta^2 a_{i,j} \frac{\partial_i u}{u} \frac{\partial_j u}{u} = \frac{1}{\lambda} \int_{B_1} \sum_{i,j=1}^n \eta^2 a_{i,j} \partial_i u \partial_j u^{-1},$$

which gives when we integrate by parts that

$$\int_{B_{1/2}} |\nabla \log u|^2 \le 2\frac{\Lambda}{\lambda} \int_{B_1} \eta |\nabla \eta| |\nabla u| u^{-1} = \int_{B_1} \eta |\nabla \eta| |\nabla \log u|.$$

And again by Cauchy-Schwarz inequality

$$\int_{B_1} \eta^2 |\nabla \log u|^2 \lesssim \int_{B_1} \eta^2 |\nabla \log u| \int_{B_1} |\nabla \eta|^2, \tag{40}$$

which let us conclude that $\|\nabla \log u\|_{L^2(B_{1/2})} \lesssim 1$.

Let $w = -\log u$ and $v = w - \log(10)$, the following Poincaré inequality will give us a bound on the L^2 norm of w instead of the actual bound on ∇w .

Lemma 8 (Poincaré inequality). Let $H = \{v \leq 0\} \cap B_r$. For all $v \in W^{1,1}(B_r)$, we have

$$\int_{B_r} v_+^2 \le \frac{Cr^2 |B_r|}{|H|} \int_{B_r} |\nabla v_+|^2.$$
(41)

Proof. Let $u = v_+$, then by the usual Poincaré inequality we have

$$\int_{B_r} |\nabla u|^2 \ge \frac{C}{r^2} \int_{B_r} |u - \bar{u}|^2 \ge \frac{C}{r^2} \int_H |u - \bar{u}|^2 = \frac{C|H|}{r^2|B_r|} \int_{B_r} |\bar{u}|^2.$$
(42)

Moreover we also have by Poincaré inequality that

$$\int_{B_r} |\nabla u|^2 \ge \frac{C|H|}{r^2 |B_r|} \int_{B_r} |u - \bar{u}|^2, \tag{43}$$

and by adding the two previous inequalities we get

$$\int_{B_r} |\nabla u|^2 \ge \frac{C|H|}{2r^2|B_r|} \left(\int_{B_r} |u - \bar{u}|^2 + \int_{B_r} |\bar{u}|^2 \right) \ge \frac{C|H|}{2r^2|B_r|} \int_{B_r} |u|^2 \tag{44}$$

Lemma 9. Let u be a weak solution to Lu = 0 and u > 0 on B_1 . Moreover, if u satisfies

$$|A| := \left| \left\{ x \in B_{1/2} : u(x) > 1/10 \right\} \right| \ge \frac{1}{10} |B_{1/2}|, \tag{45}$$

then, $||w||_{L^2(B_{1/2})} \lesssim 1.$

Proof. The proof is a straight forward application of Poincaré inequality. Indeed we have

$$\left(\int_{B_{1/2}} |w|^2\right)^{\frac{1}{2}} - \frac{1}{|B_{1/2}|^{1/2}} \int_{B_{1/2}} w \le \left(\int_{B_{1/2}} |w - \bar{w}|^2\right)^{\frac{1}{2}} \lesssim \left(\int_{B_{1/2}} |\nabla w|^2\right)^2,\tag{46}$$

and by hypotheses

$$|A| := \left| \left\{ x \in B_{1/2} : w(x) \le \log(10) \right\} \right| \ge \frac{1}{10} |B_{1/2}|, \tag{47}$$

Therefore,

$$\begin{split} \left(\int_{B_{1/2}} |w|^2 \right)^{\frac{1}{2}} \lesssim \left(\int_{B_{1/2}} |\nabla w|^2 \right)^2 + \frac{1}{|B_{1/2}|^{1/2}} \int_{B_{1/2}-A} w + \frac{1}{|B_{1/2}|} \int_A w, \\ \lesssim \left(\int_{B_{1/2}} |\nabla w|^2 \right)^{\frac{1}{2}} + \frac{1}{|B_{1/2}|^{1/2}} \int_{B_{1/2}} w_+ + 1, \\ \lesssim \left(\int_{B_{1/2}} |\nabla w|^2 \right)^{\frac{1}{2}} + \left(\int_{B_{1/2}} w_+^2 \right)^{\frac{1}{2}} + 1, \end{split}$$

and using Poincaré's inequality we prove that

$$\left(\int_{B_{1/2}} |w|^2\right)^{\frac{1}{2}} \lesssim \left(\int_{B_{1/2}} |\nabla w|^2\right)^{\frac{1}{2}} + 1.$$
(48)

Hence, we now have a L^2 bound on w and we can conclude with the following lemme

Lemma 10. Let $w = -\log u$, then w is a weak subsolution and satisfy $Lw \ge 0$.

 $\mathit{Proof.}$ The proof follows with a straight forward computation

$$-\sum \partial_j (a_{ij}\partial_i \log u) = -\sum \partial_j (a_{ij}\partial_i u^{-1}) = Lu \cdot u^{-1} + \sum a_{ij} (\partial_i u) (\partial_j u) u^{-2} \ge 0.$$

$$(49)$$

Since, $w = -\log u > 0$ because u < 1, using previous results we have the upper bound

$$\|w\|_{L^{\infty}(B_{1/2})} \lesssim \|w\|_{L^{2}(B_{1/2})} \lesssim 1, \tag{50}$$

and the proof of the weak Harnack inequality follows by exponentiating the previous inequality.