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Abstract
In this poster, we will present how the general framework of noncommutative geometry can be
used for the discretization of differential operators. We present the exterior derivative as a
commutator with a hermitian operator; the so-called Dirac operator. We show that finite
difference expressions can be recovered as convex combinations of eigenvalues of this
commutator. In addition, we show that under suitable conditions i.e. when the coefficients of the
Dirac operator are determined by a suitable distribution, the Laplace operator on a smooth
manifold is recovered at the limit.

Introduction

The main objective of this work is to derive ab initio finite difference calculus that is com-
patible with the geometry of the continuous problem. This leads us to use noncommutative
differential geometry.
This allows us to extend tools from differential geometry such as differential maps along with
their differential complex, affine connections and a Laplace operator. Moreover, we can then
study spectral convergence of these objects with respect to a parameter h.
The main objective can be divided into three sub-objectives.

1. Establishing a proper notion of discrete space X , obtained from a manifold M
2. Exhibit the algebra of continuous sections over X . Following Gelfand-Naimark’s theorem,

this should be a C∗-algebra A.
3. Provide an exterior algebra Ω(A) and a differential calculus.

What is noncommutative geometry ?

Noncommutative geometry is a field of mathematics concerned with noncommutative algebras
and their study with a geometric approach. A noncommutative algebra can be thought as an
algebra with noncommutative coordinates, i.e. xy does not always equal yx . Noncommutative
differential geometry (NDG) is a particular and most notable realization of the program of
noncommutative geometry lead by Alain Connes [1].
The theory aims at describing the internal geometry of a certain type of noncommutative
“algebra of functions” using a structure called a spectral triple (see next section for more
details). NDG underlies many applications in several branches of mathematics, among which
are operator algebras and number theory. In physics, it has notably produced the noncom-
mutative standard model as a proposed extension of the standard model of particle physics.
My own research has been influenced by Connes’ elegant description of quantum mechanics
using NDG and the beauty of the subject.
Heuristically, non-Hausdorff topological spaces are fuzzy spaces where two points are not
always distinguishable. Discrete spaces such as lattices or partially ordered sets (posets) can
be modelled as such. This type of space is of paramount importance in discrete theories of
differential equations.

Spectral triple

A spectral triple is the data (A, H, D) where:

i) A is a real or complex ∗-algebra;
ii) H is a Hilbert space and a left-representation (π, H) of A in B(H);
iii) D is a Dirac operator, which is a self-adjoint operator on H.

We require in addition that the Dirac operator satisfies the following conditions

a) The resolvent (D − λ)−1, λ /∈ R, is a compact operator on H .
b) [D, a] ∈ B(H), for any a ∈ A.

Why noncommutative geometry ?

The discretization of a mathematical structure represented by an arrow d : A1 → A2 between
two objects A1 and A2 in an abelian category is defined by the following commutative diagram:
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A~
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2
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π π′
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where A~
1 and A~

2 are objects of a subcategories and d~ : A~
1 → A~

2 depending on a positive
parameter ~ > 0. Since we are mainly interested in the convergence in norm ‖·‖~ when ~ → 0
of the preceding diagram, we focus on the category of ∗-Banach algebras. In addition, when d
is a differential operator, one can already notice that the discretized differential structure will
irremediably differ from its continuous counterpart since functions and forms do not commute
anymore: gd~f 6= d~fg .

Preliminary results

Starting from a manifold M, we construct an inverse system of triangulation, (Kn) which
become sufficiently fine for large n. We associate to each space Kn a C∗-algebra An such
that the triangulation Kn is identified with its spectrum Spec(An). The C∗-algebras give a
piecewise-linear structure to the triangulations. We then form an inductive system (An) with
limit a C∗-algebra A∞ with centre isomorphic to the space of continuous function C(M).
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Structural results

Theorem [2, Thm 4.1]: The limit C∗-algebra A∞ is isometrically ∗-isomorphic to C∗-
algebra of the complex valued continuous sections Γ(M, A∞) over the manifold M. The
center Z (A∞) is isomorphic to the algebra of continuous functions C(M,C):

Z (A∞) ' C(M,C).
Theorem [2, Thm 4.5]: The Hilbert space L2(M) of square integrable functions over
the manifold M is a subspace of the Hilbert space H∞:

H∞ = L2(M) ⊕ H.

We consider a sequence of the block matrix block matrices Di

Di = i
h

(
0 D−

i
D+

i 0

)
Then the limit operator D∞ acts on A∞ by the commutator:

[D∞, a] = ([D0, a0], [D1, a1], · · · , [Di , ai ], · · · ) ∈
∏
i∈I

M−
2mi

(C).

We can compute the spectrum of the commutator [D∞, a]:

σA∞([D∞, a]) = ∪iσAi([Di , ai ]), and ‖ [D∞, a] ‖ = ‖dca‖∞.

The limit-operator [D∞, a] can be indentified to a multiplication operator using the spectral
theorem.

Spectral convergence

There exists a finite measure µ and a unitary operator

U : L2(R) → L2(R, dµ) (1)

such that,
U[D, a]U−1φ = da

dx φ, ∀φ ∈ L2(R), (2)

Moreover, the norm of [D, a] is given by ‖ [D, a] ‖ = ‖dca‖∞.

Beyond the lattice example

There are different limitation to the generalization of the example on the lattice. Firstly, let
us recall that, on a smooth Riemannian manifold, the Dirac operator encodes the information
of the metric g . As it stands, the combinatorial Dirac operator on a triangulation do not
contain enough geometric data. Secondly, the computation of the eigenvalues of the matrix
D becomes intractable.

A first convergence result

Theorem [3, Thm 4.1]: Let
{

xk
i0
}

be a sequence of i.i.d. sampled points from a uniform
distribution on a open normal neighbourhood Up of a point p in a compact Riemannian
manifold M of dimension d . Let S̃~n

n be the associated operator given by:

Ŝ~n
n : C∞(Up) → M2(R) ⊗ U(gl2mn), Ŝ~n

n (a) := 1
n

n∑
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[
Dk

X , ak
]
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Put ~n = n−α, where α > 0, then for a ∈ C∞(Up), in probability:

lim
n→∞

Ψ ◦ Ŝ~n
n (a) = [D, a] (p).

The previous result of convergence of the Dirac operator implies a convergence of the
Laplace operator. Indeed, one can define the Laplace operator as the bi-commutant with
the matrix D :

∆(a) = [D, [D, a]] .

Laplace operator

Theorem [3, Thm 4.3]: Let {xi}n
i=1 be a sequence of i.i.d. sampled points from a

uniform distribution on an open normal neighbourhood Up of a point p in a compact
Riemannian manifold M of dimension d . Ω~n

n be the associated operator given by:
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Put ~n = n−α, where α > 0, then in probability:

lim
n→∞

sup
a∈F

∣∣∣Ω~n
n (a)(p) − ∆M(a)(p)

∣∣∣ = 0 (4)
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