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Introduction - Motivations

The principal motivations

@ The following diagram of Banach *-algebras commutes
AL —4 A
L ¢
Al A

@ Question of convergence in norm || - || when & — 0.

o In general, f(drg) # (drg)f.
@ The topology of discrete spaces is ill-behaved.
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» 70's, Lattice QFT, Wilson, Adams (simplicial gauge theories)

» 2002, Geometric Computational Electromagnetics, Bossavit
(generalized finite differences)

» 90's-00's, Geometric numerical integration, Hairer,
Munthe-Kaas (symplectic integrator)

» 2005-7, Discrete exterior calculus, Hirani, Marsden, Desbrun,
Gawlik

» 2006-7, Finite element exterior calculus, Christiansen, Arnold
(compatible discretizations)

» 2000-?, Symmetry-preserving numerical approximations,
Olver, Hydon, Wan, Nave (Lie groups, variational complexes)
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» 2023, Dirac operators for matrix algebras converging to
coadjoint orbits, Rieffel
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triples and Gromov-Hausdorff convergence, Latremoliere et al.
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Spectral Triples

Definition (Spectral triple)
A spectral triple is the data (A, H, D) where:

(i) A is a real or complex x-algebra;

(i) H is a Hilbert space and a left-representation (m,H) of A in
B(H);
(iii) D is a Dirac operator, which is a self-adjoint operator on .

We require in addition that the Dirac operator satisfies the
following conditions

a) The resolvent (D — \)~!, A ¢ R, is a compact operator on H.
b) [D,a] € B(#H), for any a € A.
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Original contributions

To every simplicial complex (poset) X, one can associate a
C*-algebra A(X):

AX) —2 5 AKX

id id’

XTX’

We can draw the following commuting diagram:

Ay 1 Ay $33 Y A T A
lidl lidz lid,‘ l
X X . X: . X

1 o12 2 $23 Di-1i ! i1 &
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Original contributions

The spectrum Spec(Ax) equipped with the hull-kernel topology is
homeomorphic to the space X, and

ILm Spec(A;) ~ Spec(IiLn Ai).

Proof (sketch).
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Original contributions

The spectrum Spec(Ax) equipped with the hull-kernel topology is
homeomorphic to the space X, and

ILm Spec(A;) ~ Spec(IiLn Ai).

Proof (sketch).

» From ¢ : X' — X, construct ¢* : A(X) — A(X').
» The system {A,, N, ¢}, .} forms a direct system.
» Conclude with the GNS construction.
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Original contributions

The algebra of continuous functions on the manifold M can be
obtained as the centre of the limit algebra A.

The limit C*-algebra A is isometrically *-isomorphic to
C*-algebra of the complex valued continuous sections I'(M, Ax,)
over the manifold M. The centre Z(A) is isomorphic to C(M, C).
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The algebra of continuous functions on the manifold M can be
obtained as the centre of the limit algebra A.

The limit C*-algebra A is isometrically *-isomorphic to
C*-algebra of the complex valued continuous sections I'(M, Ax,)
over the manifold M. The centre Z(A) is isomorphic to C(M, C).

A similar result is obtained for the representation space L2(M).

The Hilbert space L?>(M) of square integrable functions over the
manifold M is a subspace of Hy,:

Hoo = L2(M) @ H.
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A first example on the lattice

We define the following algebra A and Dirac operator D:

B om i 0o D
A= Mon(C), H=C2m D_h<D+ 0)

with (D7)* = —D~ and where D~ is given by

0 1 o --- 0

D™ = 0
1

0 0
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Original contributions

Proposition (Spectral convergence)

There exists a finite measure | and a unitary operator
U: 3(R) — L*(R, du)

such that, J
UID,alU™ e = o, Vo € LX(R),

Moreover, the norm of [D, a] is given by ||[D, a] || = ||dca||co-
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Proposition (Spectral convergence)

There exists a finite measure | and a unitary operator
U: 3(R) — L*(R, du)

such that, J
UID,alU™ e = o, Vo € LX(R),

Moreover, the norm of [D, a] is given by ||[D, a] || = ||dca||co-

This result can be generalized to the d-dimensional lattice A. The
C*-algebra A(A) and the Dirac operator D are obtained through
tensor products:

AN =A(L) ® - AL), n_21® DM .- @1.
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» It is known that the canonical spectral triple
(C>®(M), L%(S), D) on a spin manifold M encodes the metric.
The geodesic distance between any two points p and g on M
is given by
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Beyond the lattice case

» It is known that the canonical spectral triple
(C>®(M), L%(S), D) on a spin manifold M encodes the metric.
The geodesic distance between any two points p and g on M
is given by

inf /0 & (3(6), 1(0))dt = sup {I7(p) ~ F(a)| = 10,111 < 1}

» As it defined the combinatorial Dirac operator does not
depend on the metric g of the manifold M.

» Beyond the case of the lattice, the eigenvalues of the
commutator [D, a] are not immediately accessible.
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Dirac operator as stochastic matrix

If we consider the more general definition of D given by

wi#0 i~
(D)UIZ{ ’

0 otherwise.

where the coefficients wj; are obtained from a density distribution,
a first approach would be to study the convergence in average:

1 n
Shn(a) = - Z ek {Dﬁ‘(, ak} e;
k=1

with (ex) a family of projectors.
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Original contributions

Let {X"Ig}:ﬂ be a sequence of i.i.d. sampled points from a uniform
distribution on an open normal neighbourhood U, of a point p in a
compact Riemannian manifold M of dimension d. Let §,’?” be the
associated operator given by:

1

Sh" : EZ [Dﬁ‘(,ak} ey

Put h, = n=%, where o > 0, then in probability:

lim sup |[Wo S(a)(p) — [D, 4] (p)| = 0.

n—o00 acF
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Original contributions

Proof (sketch).
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Proof (sketch).

» The Dirac operator is expressed as D = ¢ Z jwijaj @ Ej

» The coefficients wj; are obtained from the Von Mises-Fisher
k
distribution wj(h) Cq(Bp) exp ( <SJ>>

» Recall that the VMF distribution is a solution of a
Fokker-Planck equation.

Damien Tageddine Noncommutative geometry and infinitesimal spaces 14 /20



Original contributions

Proof (sketch).

» The Dirac operator is expressed as D = ¢ Z jwijaj @ Ej

» The coefficients wj; are obtained from the Von Mises-Fisher
k
distribution wj(h) Cq(Bp) exp ( <SJ>>

» Recall that the VMF distribution is a solution of a
Fokker-Planck equation.

» Conclude with the Hoeffding's inequality.
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Original contributions

Theorem (T.)

Let {x;};_, be a sequence of i.i.d. sampled points from a uniform
distribution on an open normal neighbourhood U, of a point p in a
compact Riemannian manifold M of dimension d. Q' be the
associated operator given by:

k=1 j=1

n d+1 <X,k,sj>
Qi (a)(p) = nh2 ZZ/\2exp( - )a,-j(ak).

Put hy, = n~%, where o > 0, then in probability:

im, sup |2 (2)(p) — Am(a)(p )| =0 (1)

n—o0
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Conclusion and future works

We summarize the list of original contributions:

» Associate to an arbitrary simplicial set K; a C*-algebra A; and
show that the limit Ay, contains C(M),

» Define a differential structure da = [D;, a] on each A;,

» In the lattice case, (D;) converges to the usual derivative %.

» In the general case of a triangulation, a convergence in
average is shown for the Dirac operator and the laplacian.
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Conclusion and future works

Future works:

» Provide a unifying framework of approximation theory in the
language of spectral triples,

» Formulation in terms of deformation quantization and use
Berezin-Toeplitz type of quantizations,

» Generalized convergence results of the (D;) to the classical
Dirac operator,

» Applications to the limit of graph laplacian,

» Berkovich projective spaces and nonarchimedean geometry.
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Thank you |
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The 2-points space

Let a = (a1, a2) € M»(C) and the Dirac operator:

_i 0 1 _i 0 dp — a1
D_h<—1 0)’ da_h(al—az 0 )

If we define the following distance:
d(x,y) = jgg{la(X) —a(y)l - ID; 4]l <1}
then one can show that for X = {x, y}
d(x,y) = h.

Without prior assumption, we see the emergence of a small
parameter A in place of the usual distance Ax.
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Spin Geometry

Let M be an oriented Riemannian manifold with a SO(n)-frame
bundle P — M. A spin structure on M is a lift:

P— M, Spin(n)-frame bundle.
We consider the associate spin bundle . = P X~ Ap, where

¢ € °(Y) are called spinors. Let V the lift of the Levi-Civita
connection on M to P, with w the associated 1-form.

() —Yo T'X©.7 £ TX®.7 — [™()

Dirac operator D=cogloV
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Spin Geometry

Let ¢ € (),

1
Dy = dip + 5 Zw;je;ejw.

i<j

We work at the Hilbert space level with H = L?(M,.%) square
integrable spinors

(,0) = [ (6(x). (), dvols

C>°(M) acting as bounded operators on H.
For f € C*°(M), we have the commutator [D, f]1) = —ic(df)y as
an operator in B(H).
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Spin Geometry

Consider the triple A = C®(M), D = @y, H = (L3(M,.#), 7).
QY A) == ker(m: A®A = A), Q"(A) = {aoday - - - da,, a; € A}.
Connes’ differential forms Qpf := Q*(A)/J
The representation in B(H),
m(apday - - - dap) = ag [D, a1] - - - [D, an]
m:Qp — Qgr(M)  aoda; - - - da, — agdgral - dyraz - - - dgran

extends to a canonical isomorphism of GDA.
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The Behncke-Leptin construction

Axioms of the Behncke-Leptin construction:
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The Behncke-Leptin construction

Axioms of the Behncke-Leptin construction:

1) Associate a separable Hilbert space H(X) and attach to every
point x € X a subspace H(x) C H(X) that decomposes into:

H(x) = H™(x) ® H*(x). (2)

where H™(x) ~ (?(Z).
2) Let 9 be the set of maximal points in X:

H(x) =H (x) ® C ~ H™ (x). (3)

2") If m is the set of minimal points in X, then x € m, one has:

H(x) = C® H"(x) ~ H(x). (4)
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The Behncke-Leptin construction

3) Associate to x € X an operator algebra A(x) acting on H(x)
(extended by zero to the whole space H(X)) such that

A() = 1y (o ® K(H (x)). (5)

where K(H™(x)) compact operators over H*(x).
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The Behncke-Leptin construction

3) Associate to x € X an operator algebra A(x) acting on H(x)
(extended by zero to the whole space H(X)) such that

A() = 1y (o ® K(H (x)). (5)

where K(H™(x)) compact operators over H*(x).

4) Build the C*-algebra A(X) associated to X as the algebra
generated by the subalgebras A(x) when x run over X:

AX) = @ A(x) acting on H(X) = @ H(x). (6)

xeX xeX
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The Behncke-Leptin construction: an example

wly1)1 @ k(y1) w(y3)1 @ k(ys)

k(z) k(z) k(zs)
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F-P Equation and the Von-Mises Fisher distribution

Consider the one-parameter family of measures (jix,¢)¢ satisfying
the parabolic equation:

8Mx,t
ot

o = gA,b(:ux,t) (7)

in the weak sense, with the operator .4 j,
Zapf = tr(AD?*f) + (b, V), f € CX(M) (8)

We consider the von Mises-Fisher distribution on the unit sphere
S given by:

pd(x;s, B) = Cq(B) exp (=f (s, x)) (9)

where 5 >0, ||s|| =1 and Cy4(3) is a normalization constant.
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The Von-Mises Fisher distribution

We show that the von Mises-Fisher distribution satisfies the
Fokker-Planck equation:

8ps,t
ot

= aS(/)S,t)-
t=0

The distribution can be defined on a normal neighbourhood U, of
the manifold M and satisfies a Fokker-Planck equation.

Proposition
The following limit holds at a point p € M

9 (cdwt) / e$”(5"’x)f(><)u(><)>

= 9i(f)(p)-

ot —

P
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The Von-Mises Fisher distribution

Theorem (Hoeffding)

Let Xi,...,X, be independent identically distributed random
variables, such that |X;| < K. Then

2
—EX;| > 5] < 2exp (—;;;) .

s
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