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Introduction - Motivations

The principal motivations

The following diagram of Banach *-algebras commutes

A1 A2

Aℏ
1 Aℏ

2

d

π π′

dℏ

Question of convergence in norm ∥ · ∥ℏ when ℏ → 0.
In general, f (dℏg) ̸= (dℏg)f .
The topology of discrete spaces is ill-behaved.

Noncommutative geometry ∩ Geometric discretization
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Introduction – Review in Numerical Approximations

▶ 1957, Geometric integration theory, Whitney (forms on
simplices)

▶ 70’s, Lattice QFT, Wilson, Adams (simplicial gauge theories)
▶ 2002, Geometric Computational Electromagnetics, Bossavit

(generalized finite differences)
▶ 90’s-00’s, Geometric numerical integration, Hairer,

Munthe-Kaas (symplectic integrator)
▶ 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun,

Gawlik
▶ 2006-?, Finite element exterior calculus, Christiansen, Arnold

(compatible discretizations)
▶ 2000-?, Symmetry-preserving numerical approximations,

Olver, Hydon, Wan, Nave (Lie groups, variational complexes)
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Introduction – Review in Noncommutative Geometry

▶ 1991, Finitary substitute for continuous topology, Sorkin
▶ 1996, Noncommutative lattices, Landi, Balachandran et al.,

Bimonte et al.
▶ 1994, Discrete differential calculus, Dimakis, Müller-Höıssen
▶ 90’s, Fuzzy geometry, Madore, Dubois-Violette
▶ 1994, Toeplitz quantization of Khäler manifolds, Bordemann

et al.
▶ 2000’s, Matrix algebras converge to the sphere for quantum

Gromov-Hausdorff distance, Rieffel
▶ 2023, Dirac operators for matrix algebras converging to

coadjoint orbits, Rieffel
▶ 2023, Isometry groups of inductive limits of metric spectral

triples and Gromov-Hausdorff convergence, Latremoliere et al.
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Spectral Triples

Definition (Spectral triple)
A spectral triple is the data (A,H,D) where:
(i) A is a real or complex ∗-algebra;
(ii) H is a Hilbert space and a left-representation (π,H) of A in

B(H);
(iii) D is a Dirac operator, which is a self-adjoint operator on H.
We require in addition that the Dirac operator satisfies the
following conditions

a) The resolvent (D − λ)−1, λ /∈ R, is a compact operator on H.
b) [D, a] ∈ B(H), for any a ∈ A.
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Original contributions
To every simplicial complex (poset) X , one can associate a
C∗-algebra A(X ):

A(X ) A(X ′)

X X ′

ϕ∗

id id ′

ϕ

We can draw the following commuting diagram:

A1 A2 · · · Ai · · · A∞

X1 X2 · · · Xi · · · X∞

ϕ∗
12

id1

ϕ∗
23

id2

ϕ∗
i−1i

idi

ϕ∗
ii+1

ϕ12 ϕ23 ϕi−1i ϕ∗
ii+1
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Original contributions

Theorem
The spectrum Spec(A∞) equipped with the hull-kernel topology is
homeomorphic to the space X∞ and

lim
←

Spec(Ai) ≃ Spec(lim
→

Ai).

Proof (sketch).

▶ From ϕ : X ′ → X , construct ϕ∗ : A(X ) → A(X ′).
▶ The system {An,N, ϕ∗m,n} forms a direct system.
▶ Conclude with the GNS construction.
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Original contributions

The algebra of continuous functions on the manifold M can be
obtained as the centre of the limit algebra A∞.

Theorem (T.)
The limit C∗-algebra A∞ is isometrically ∗-isomorphic to
C∗-algebra of the complex valued continuous sections Γ(M,A∞)
over the manifold M. The centre Z (A∞) is isomorphic to C(M,C).

A similar result is obtained for the representation space L2(M).

Theorem (T.)
The Hilbert space L2(M) of square integrable functions over the
manifold M is a subspace of H∞:

H∞ = L2(M) ⊕ H.
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A first example on the lattice

We define the following algebra A and Dirac operator D:

A = M2m(C), H = C2m, D = i
ℏ

(
0 D−

D+ 0

)

with (D+)∗ = −D− and where D− is given by

D− =



0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... . . . 1
0 · · · · · · · · · 0


.
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Original contributions

Proposition (Spectral convergence)
There exists a finite measure µ and a unitary operator

U : L2(R) → L2(R, dµ)

such that,
U[D, a]U−1ϕ = da

dx ϕ, ∀ϕ ∈ L2(R),

Moreover, the norm of [D, a] is given by ∥ [D, a] ∥ = ∥dca∥∞.

This result can be generalized to the d-dimensional lattice Λ. The
C∗-algebra A(Λ) and the Dirac operator D are obtained through
tensor products:

A(Λ) = A(L) ⊗ · · · ⊗ A(L), Dn =
d∑

k=1
1 ⊗ · · · ⊗ D(k)

n ⊗ · · · ⊗ 1.
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Beyond the lattice case

▶ It is known that the canonical spectral triple
(C∞(M), L2(S),D) on a spin manifold M encodes the metric.
The geodesic distance between any two points p and q on M
is given by

inf
γ

∫ 1

0

√
gγ(γ̇(t), γ̇(t))dt = sup

f ∈A
{|f (p) − f (q)| : ∥ [D, f ] ∥ ≤ 1}

▶ As it defined the combinatorial Dirac operator does not
depend on the metric g of the manifold M.

▶ Beyond the case of the lattice, the eigenvalues of the
commutator [D, a] are not immediately accessible.
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Dirac operator as stochastic matrix

If we consider the more general definition of D given by

(D)ij :=
{
ωij ̸= 0 if i ∼ j ,

0 otherwise.

where the coefficients ωij are obtained from a density distribution,
a first approach would be to study the convergence in average:

Sℏn
n (a) := 1

n

n∑
k=1

ek
[
Dk

X , ak
]

e∗k

with (ek) a family of projectors.

Damien Tageddine Noncommutative geometry and infinitesimal spaces 12 / 20



Original contributions

Theorem (T.)

Let
{

xk
i0

}n

k=1
be a sequence of i.i.d. sampled points from a uniform

distribution on an open normal neighbourhood Up of a point p in a
compact Riemannian manifold M of dimension d. Let Ŝℏn

n be the
associated operator given by:

Ŝℏn
n (a) := 1

n

n∑
k=1

ek
[
Dk

X , ak
]

e∗k .

Put ℏn = n−α, where α > 0, then in probability:

lim
n→∞

sup
a∈F

∣∣∣Ψ ◦ Ŝℏn
n (a)(p) − [D, a] (p)

∣∣∣ = 0.
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Original contributions

Proof (sketch).

▶ The Dirac operator is expressed as D = i
ℏ
∑

i ,j ωijαij ⊗ Eij

▶ The coefficients ωij are obtained from the Von Mises-Fisher
distribution ωk

ij (ℏ) = Cd(βℏ) exp
(

−⟨xk
i ,sj⟩
ℏ

)
.

▶ Recall that the VMF distribution is a solution of a
Fokker-Planck equation.

▶ Conclude with the Hoeffding’s inequality.
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Original contributions

Theorem (T.)
Let {xi}n

i=1 be a sequence of i.i.d. sampled points from a uniform
distribution on an open normal neighbourhood Up of a point p in a
compact Riemannian manifold M of dimension d. Ωℏn

n be the
associated operator given by:

Ωℏn
n (a)(p) = Cd(βℏ)

nℏ2

n∑
k=1

d+1∑
j=1

λ2
j exp

−

〈
xk

i , sj
〉

ℏ

αij(ak).

Put ℏn = n−α, where α > 0, then in probability:

lim
n→∞

sup
a∈F

∣∣∣Ωℏn
n (a)(p) − ∆M(a)(p)

∣∣∣ = 0 (1)

Damien Tageddine Noncommutative geometry and infinitesimal spaces 15 / 20



Conclusion and future works

We summarize the list of original contributions:

▶ Associate to an arbitrary simplicial set Ki a C∗-algebra Ai and
show that the limit A∞ contains C(M),

▶ Define a differential structure da = [Di , a] on each Ai ,
▶ In the lattice case, (Di) converges to the usual derivative d

dx .
▶ In the general case of a triangulation, a convergence in

average is shown for the Dirac operator and the laplacian.
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Conclusion and future works

Future works:

▶ Provide a unifying framework of approximation theory in the
language of spectral triples,

▶ Formulation in terms of deformation quantization and use
Berezin-Toeplitz type of quantizations,

▶ Generalized convergence results of the (Di) to the classical
Dirac operator,

▶ Applications to the limit of graph laplacian,
▶ Berkovich projective spaces and nonarchimedean geometry.
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Thank you !
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The 2-points space

Let a = (a1, a2) ∈ M2(C) and the Dirac operator:

D = i
ℏ

(
0 1

−1 0

)
, da = i

ℏ

(
0 a2 − a1

a1 − a2 0

)
.

If we define the following distance:

d(x , y) = sup
a∈A

{|a(x) − a(y)| : ∥[D, a]∥ ≤ 1}

then one can show that for X = {x , y}

d(x , y) = ℏ.

Without prior assumption, we see the emergence of a small
parameter ℏ in place of the usual distance ∆x .
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Spin Geometry

Let M be an oriented Riemannian manifold with a SO(n)-frame
bundle P → M. A spin structure on M is a lift:

P̃ → M, Spin(n)-frame bundle.

We consider the associate spin bundle S = P̃ ×γ ∆n, where
ϕ ∈ Γ∞(S ) are called spinors. Let ∇ the lift of the Levi-Civita
connection on M to P̃, with ω the associated 1-form.

Γ∞(S ) T ∗X ⊗ S TX ⊗ S Γ∞(S )∇ g−1 c

Dirac operator D = c ◦ g−1 ◦ ∇
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Spin Geometry

Let ψ ∈ Γ∞(S ),

Dψ = dψ + 1
2
∑
i<j

ωijeiejψ.

We work at the Hilbert space level with H = L2(M,S ) square
integrable spinors

⟨ψ, ϕ⟩ =
∫

M
⟨ψ(x), ϕ(x)⟩x dvolg

C∞(M) acting as bounded operators on H.
For f ∈ C∞(M), we have the commutator [D, f ]ψ = −ic(df )ψ as
an operator in B(H).
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Spin Geometry

Consider the triple A = C∞(M), D = /∂M , H = (L2(M,S ), π).

Ω1(A) := ker(m : A⊗A → A), Ωn(A) = {a0da1 · · · dan, ai ∈ A} .

Connes’ differential forms Ω∗D := Ω∗(A)/J

The representation in B(H),
π(a0da1 · · · dan) = a0 [D, a1] · · · [D, an]

π : Ω∗D → ΩdR(M) a0da1 · · · dan 7→ a0ddRa1 · ddRa2 · · · ddRan

extends to a canonical isomorphism of GDA.
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The Behncke-Leptin construction
Axioms of the Behncke-Leptin construction:

1) Associate a separable Hilbert space H(X ) and attach to every
point x ∈ X a subspace H(x) ⊆ H(X ) that decomposes into:

H(x) = H−(x) ⊗ H+(x). (2)

where H−(x) ≃ ℓ2(Z).
2) Let M be the set of maximal points in X :

H(x) = H−(x) ⊗ C ≃ H−(x). (3)

2’) If m is the set of minimal points in X , then x ∈ m, one has:

H(x) = C ⊗ H+(x) ≃ H+(x). (4)
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The Behncke-Leptin construction

3) Associate to x ∈ X an operator algebra A(x) acting on H(x)
(extended by zero to the whole space H(X )) such that

A(x) = 1H−(x) ⊗ K(H+(x)). (5)

where K(H+(x)) compact operators over H+(x).

4) Build the C∗-algebra A(X ) associated to X as the algebra
generated by the subalgebras A(x) when x run over X :

A(X ) =
⊕
x∈X

A(x) acting on H(X ) =
⊕
x∈X

H(x). (6)
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The Behncke-Leptin construction: an example

λ(x)1

µ(y1)1 ⊗ k(y1) µ(y2)1 ⊗ k(y2) µ(y3)1 ⊗ k(y3)

k(z1) k(z2) k(z3)
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F-P Equation and the Von-Mises Fisher distribution

Consider the one-parameter family of measures (µx ,t)t satisfying
the parabolic equation:

∂µx ,t
∂t

∣∣∣∣
t=0

= LA,b(µx ,t) (7)

in the weak sense, with the operator LA,b

LA,bf = tr(AD2f ) + ⟨b,∇f ⟩ , f ∈ C∞c (M) (8)

We consider the von Mises-Fisher distribution on the unit sphere
Sd given by:

ρd(x ; s, β) = Cd(β) exp (−β ⟨s, x⟩) (9)

where β ≥ 0, ∥s∥ = 1 and Cd(β) is a normalization constant.
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The Von-Mises Fisher distribution

We show that the von Mises-Fisher distribution satisfies the
Fokker-Planck equation:

∂ρs,t
∂t

∣∣∣∣
t=0

= ∂s(ρs,t).

The distribution can be defined on a normal neighbourhood Up of
the manifold M and satisfies a Fokker-Planck equation.

Proposition
The following limit holds at a point p ∈ M

∂

∂t

(
Cd(βt)

∫
Up

eΦ̂β(si ,x)f (x)µ(x)
)∣∣∣∣∣

t=0
= ∂i(f )(p).
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The Von-Mises Fisher distribution

Theorem (Hoeffding)
Let X1, . . . ,Xn be independent identically distributed random
variables, such that |Xi | ≤ K. Then

P
[∣∣∣∣∑i Xi

n − EXi

∣∣∣∣ > ε

]
< 2 exp

(
− ε2n

2K 2

)
.
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