Noncommutative geometry and infinitesimal spaces

Damien Tageddine

Department of Mathematics and Statistics, McGill University

Ph.D. Oral Defence, July 5th, 2023

3 1 4 3

• The following diagram of Banach *-algebras commutes

- Question of convergence in norm $\|\cdot\|_{\hbar}$ when $\hbar \to 0$.
- In general, $f(d_{\hbar}g) \neq (d_{\hbar}g)f$.
- The topology of discrete spaces is ill-behaved.

Noncommutative geometry \cap Geometric discretization

• The following diagram of Banach *-algebras commutes

- Question of convergence in norm $\|\cdot\|_{\hbar}$ when $\hbar \to 0$.
- In general, $f(d_{\hbar}g) \neq (d_{\hbar}g)f$.
- The topology of discrete spaces is ill-behaved.

Noncommutative geometry \cap Geometric discretization

NOR SEASE SER NOR

• The following diagram of Banach *-algebras commutes

- Question of convergence in norm $\|\cdot\|_{\hbar}$ when $\hbar \to 0$.
- In general, $f(d_{\hbar}g) \neq (d_{\hbar}g)f$.
- The topology of discrete spaces is ill-behaved.

Noncommutative geometry \cap Geometric discretization

► < = ► < = ► < = = <0 </p>

• The following diagram of Banach *-algebras commutes

- Question of convergence in norm $\|\cdot\|_{\hbar}$ when $\hbar \to 0$.
- In general, $f(d_{\hbar}g) \neq (d_{\hbar}g)f$.
- The topology of discrete spaces is ill-behaved.

Noncommutative geometry \cap Geometric discretization

• The following diagram of Banach *-algebras commutes

- Question of convergence in norm $\|\cdot\|_{\hbar}$ when $\hbar \to 0$.
- In general, $f(d_{\hbar}g) \neq (d_{\hbar}g)f$.
- The topology of discrete spaces is ill-behaved.

Noncommutative geometry \cap Geometric discretization

- 1957, Geometric integration theory, Whitney (forms on simplices)
- ▶ 70's, *Lattice QFT*, Wilson, Adams (simplicial gauge theories)
- 2002, Geometric Computational Electromagnetics, Bossavit (generalized finite differences)
- ▶ 90's-00's, Geometric numerical integration, Hairer, Munthe-Kaas (symplectic integrator)
- 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun, Gawlik
- 2006-?, Finite element exterior calculus, Christiansen, Arnold (compatible discretizations)
- 2000-?, Symmetry-preserving numerical approximations, Olver, Hydon, Wan, Nave (Lie groups, variational complexes)

- 1957, Geometric integration theory, Whitney (forms on simplices)
- ▶ 70's, Lattice QFT, Wilson, Adams (simplicial gauge theories)
- 2002, Geometric Computational Electromagnetics, Bossavit (generalized finite differences)
- ▶ 90's-00's, Geometric numerical integration, Hairer, Munthe-Kaas (symplectic integrator)
- 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun, Gawlik
- 2006-?, Finite element exterior calculus, Christiansen, Arnold (compatible discretizations)
- 2000-?, Symmetry-preserving numerical approximations, Olver, Hydon, Wan, Nave (Lie groups, variational complexes)

- 1957, Geometric integration theory, Whitney (forms on simplices)
- > 70's, Lattice QFT, Wilson, Adams (simplicial gauge theories)
- 2002, Geometric Computational Electromagnetics, Bossavit (generalized finite differences)
- 90's-00's, Geometric numerical integration, Hairer, Munthe-Kaas (symplectic integrator)
- 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun, Gawlik
- 2006-?, Finite element exterior calculus, Christiansen, Arnold (compatible discretizations)
- 2000-?, Symmetry-preserving numerical approximations, Olver, Hydon, Wan, Nave (Lie groups, variational complexes)

- 1957, Geometric integration theory, Whitney (forms on simplices)
- ▶ 70's, Lattice QFT, Wilson, Adams (simplicial gauge theories)
- 2002, Geometric Computational Electromagnetics, Bossavit (generalized finite differences)
- 90's-00's, Geometric numerical integration, Hairer, Munthe-Kaas (symplectic integrator)
- 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun, Gawlik
- 2006-?, Finite element exterior calculus, Christiansen, Arnold (compatible discretizations)
- 2000-?, Symmetry-preserving numerical approximations, Olver, Hydon, Wan, Nave (Lie groups, variational complexes)

- 1957, Geometric integration theory, Whitney (forms on simplices)
- ▶ 70's, Lattice QFT, Wilson, Adams (simplicial gauge theories)
- 2002, Geometric Computational Electromagnetics, Bossavit (generalized finite differences)
- 90's-00's, Geometric numerical integration, Hairer, Munthe-Kaas (symplectic integrator)
- 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun, Gawlik
- 2006-?, Finite element exterior calculus, Christiansen, Arnold (compatible discretizations)
- 2000-?, Symmetry-preserving numerical approximations, Olver, Hydon, Wan, Nave (Lie groups, variational complexes)

- 1957, Geometric integration theory, Whitney (forms on simplices)
- > 70's, Lattice QFT, Wilson, Adams (simplicial gauge theories)
- 2002, Geometric Computational Electromagnetics, Bossavit (generalized finite differences)
- 90's-00's, Geometric numerical integration, Hairer, Munthe-Kaas (symplectic integrator)
- 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun, Gawlik
- 2006-?, Finite element exterior calculus, Christiansen, Arnold (compatible discretizations)
- 2000-?, Symmetry-preserving numerical approximations, Olver, Hydon, Wan, Nave (Lie groups, variational complexes)

- 1957, Geometric integration theory, Whitney (forms on simplices)
- ▶ 70's, Lattice QFT, Wilson, Adams (simplicial gauge theories)
- 2002, Geometric Computational Electromagnetics, Bossavit (generalized finite differences)
- 90's-00's, Geometric numerical integration, Hairer, Munthe-Kaas (symplectic integrator)
- 2005-?, Discrete exterior calculus, Hirani, Marsden, Desbrun, Gawlik
- 2006-?, Finite element exterior calculus, Christiansen, Arnold (compatible discretizations)
- 2000-?, Symmetry-preserving numerical approximations, Olver, Hydon, Wan, Nave (Lie groups, variational complexes)

伺 ト イヨト イヨト ヨヨー わえつ

▶ 1991, Finitary substitute for continuous topology, Sorkin

- ▶ 1996, *Noncommutative lattices*, Landi, Balachandran et al., Bimonte et al.
- ▶ 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, Fuzzy geometry, Madore, Dubois-Violette
- ▶ 1994, *Toeplitz quantization of Khäler manifolds*, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

周 > 《 문 > 《 문 > 《 문] 는

- ▶ 1991, Finitary substitute for continuous topology, Sorkin
- 1996, Noncommutative lattices, Landi, Balachandran et al., Bimonte et al.
- ▶ 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, *Fuzzy geometry*, Madore, Dubois-Violette
- ▶ 1994, *Toeplitz quantization of Khäler manifolds*, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

- ▶ 1991, Finitary substitute for continuous topology, Sorkin
- 1996, Noncommutative lattices, Landi, Balachandran et al., Bimonte et al.
- > 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, *Fuzzy geometry*, Madore, Dubois-Violette
- ▶ 1994, *Toeplitz quantization of Khäler manifolds*, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

- ▶ 1991, Finitary substitute for continuous topology, Sorkin
- 1996, Noncommutative lattices, Landi, Balachandran et al., Bimonte et al.
- ▶ 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, Fuzzy geometry, Madore, Dubois-Violette
- ▶ 1994, *Toeplitz quantization of Khäler manifolds*, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

- ▶ 1991, Finitary substitute for continuous topology, Sorkin
- 1996, Noncommutative lattices, Landi, Balachandran et al., Bimonte et al.
- > 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, Fuzzy geometry, Madore, Dubois-Violette
- ▶ 1994, *Toeplitz quantization of Khäler manifolds*, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

- ▶ 1991, Finitary substitute for continuous topology, Sorkin
- 1996, Noncommutative lattices, Landi, Balachandran et al., Bimonte et al.
- > 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, Fuzzy geometry, Madore, Dubois-Violette
- 1994, Toeplitz quantization of Khäler manifolds, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

- ▶ 1991, Finitary substitute for continuous topology, Sorkin
- 1996, Noncommutative lattices, Landi, Balachandran et al., Bimonte et al.
- > 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, Fuzzy geometry, Madore, Dubois-Violette
- 1994, Toeplitz quantization of Khäler manifolds, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

- ▶ 1991, Finitary substitute for continuous topology, Sorkin
- 1996, Noncommutative lattices, Landi, Balachandran et al., Bimonte et al.
- > 1994, Discrete differential calculus, Dimakis, Müller-Hoïssen
- ▶ 90's, Fuzzy geometry, Madore, Dubois-Violette
- 1994, Toeplitz quantization of Khäler manifolds, Bordemann et al.
- 2000's, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Rieffel
- 2023, Dirac operators for matrix algebras converging to coadjoint orbits, Rieffel
- 2023, Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence, Latremoliere et al.

周 > 《 문 > 《 문 > 《 문] 는

A spectral triple is the data $(\mathcal{A},\mathcal{H},D)$ where:

- (i) \mathcal{A} is a real or complex *-algebra;
- (ii) \mathcal{H} is a Hilbert space and a left-representation (π, \mathcal{H}) of A in $\mathcal{B}(\mathcal{H})$;

(iii) D is a *Dirac operator*, which is a self-adjoint operator on \mathcal{H} .

We require in addition that the Dirac operator satisfies the following conditions

a) The resolvent $(D - \lambda)^{-1}$, $\lambda \notin \mathbb{R}$, is a compact operator on H.

b)
$$[D, a] \in B(\mathcal{H})$$
, for any $a \in A$.

.

A spectral triple is the data $(\mathcal{A},\mathcal{H},D)$ where:

- (i) A is a real or complex *-algebra;
- (ii) \mathcal{H} is a Hilbert space and a left-representation (π, \mathcal{H}) of A in $\mathcal{B}(\mathcal{H})$;

(iii) D is a *Dirac operator*, which is a self-adjoint operator on \mathcal{H} .

We require in addition that the Dirac operator satisfies the following conditions

- a) The resolvent $(D \lambda)^{-1}$, $\lambda \notin \mathbb{R}$, is a compact operator on H.
- b) $[D, a] \in B(\mathcal{H})$, for any $a \in A$.

• • = • • = •

A spectral triple is the data $(\mathcal{A}, \mathcal{H}, D)$ where:

- (i) A is a real or complex *-algebra;
- (ii) \mathcal{H} is a Hilbert space and a left-representation (π, \mathcal{H}) of A in $\mathcal{B}(\mathcal{H})$;

(iii) D is a *Dirac operator*, which is a self-adjoint operator on \mathcal{H} We require in addition that the Dirac operator satisfies the following conditions

- a) The resolvent $(D \lambda)^{-1}$, $\lambda \notin \mathbb{R}$, is a compact operator on H.
- b) $[D, a] \in B(\mathcal{H})$, for any $a \in A$.

伺 ト イヨ ト イヨト

A spectral triple is the data $(\mathcal{A}, \mathcal{H}, D)$ where:

- (i) A is a real or complex *-algebra;
- (ii) \mathcal{H} is a Hilbert space and a left-representation (π, \mathcal{H}) of A in $\mathcal{B}(\mathcal{H})$;
- (iii) D is a *Dirac operator*, which is a self-adjoint operator on \mathcal{H} .

We require in addition that the Dirac operator satisfies the following conditions

- a) The resolvent $(D \lambda)^{-1}$, $\lambda \notin \mathbb{R}$, is a compact operator on H.
- b) $[D, a] \in B(\mathcal{H})$, for any $a \in A$.

레이 소리에 소리에 드니다.

A spectral triple is the data $(\mathcal{A}, \mathcal{H}, D)$ where:

- (i) A is a real or complex *-algebra;
- (ii) \mathcal{H} is a Hilbert space and a left-representation (π, \mathcal{H}) of A in $\mathcal{B}(\mathcal{H})$;

(iii) D is a *Dirac operator*, which is a self-adjoint operator on \mathcal{H} .

We require in addition that the Dirac operator satisfies the following conditions

a) The resolvent $(D - \lambda)^{-1}$, $\lambda \notin \mathbb{R}$, is a compact operator on H.

b)
$$[D, a] \in B(\mathcal{H})$$
, for any $a \in A$.

Original contributions

To every simplicial complex (poset) X, one can associate a C^* -algebra A(X):

We can draw the following commuting diagram:

Original contributions

To every simplicial complex (poset) X, one can associate a C^* -algebra A(X):

We can draw the following commuting diagram:

The spectrum $Spec(A_{\infty})$ equipped with the hull-kernel topology is homeomorphic to the space X_{∞} and

$$\lim_{\leftarrow} Spec(A_i) \simeq Spec(\lim_{\rightarrow} A_i).$$

Proof (sketch).

- From $\phi : X' \to X$, construct $\phi^* : A(X) \to A(X')$.
- ▶ The system $\{A_n, \mathbb{N}, \phi_{m,n}^*\}$ forms a direct system.
- Conclude with the GNS construction.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (♪

The spectrum $Spec(A_{\infty})$ equipped with the hull-kernel topology is homeomorphic to the space X_{∞} and

$$\lim_{\leftarrow} Spec(A_i) \simeq Spec(\lim_{\rightarrow} A_i).$$

Proof (sketch).

From $\phi : X' \to X$, construct $\phi^* : A(X) \to A(X')$.

► The system $\{A_n, \mathbb{N}, \phi_{m,n}^*\}$ forms a direct system.

Conclude with the GNS construction.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (♪

The spectrum $Spec(A_{\infty})$ equipped with the hull-kernel topology is homeomorphic to the space X_{∞} and

$$\lim_{\leftarrow} Spec(A_i) \simeq Spec(\lim_{\rightarrow} A_i).$$

Proof (sketch).

- From $\phi : X' \to X$, construct $\phi^* : A(X) \to A(X')$.
- ▶ The system $\{A_n, \mathbb{N}, \phi_{m,n}^*\}$ forms a direct system.
 - Conclude with the GNS construction.

The spectrum $Spec(A_{\infty})$ equipped with the hull-kernel topology is homeomorphic to the space X_{∞} and

$$\lim_{\leftarrow} Spec(A_i) \simeq Spec(\lim_{\rightarrow} A_i).$$

Proof (sketch).

- From $\phi : X' \to X$, construct $\phi^* : A(X) \to A(X')$.
- ▶ The system $\{A_n, \mathbb{N}, \phi_{m,n}^*\}$ forms a direct system.
- Conclude with the GNS construction.

The algebra of continuous functions on the manifold M can be obtained as the centre of the limit algebra A_{∞} .

Theorem (T.)

The limit C^* -algebra A_{∞} is isometrically *-isomorphic to C^* -algebra of the complex valued continuous sections $\Gamma(M, A_{\infty})$ over the manifold M. The centre $Z(A_{\infty})$ is isomorphic to $C(M, \mathbb{C})$.

A similar result is obtained for the representation space $L^2(M)$.

Theorem (T.)

The Hilbert space $L^2(M)$ of square integrable functions over the manifold M is a subspace of H_{∞} :

$$H_{\infty} = L^2(M) \oplus H.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The algebra of continuous functions on the manifold M can be obtained as the centre of the limit algebra A_{∞} .

Theorem (T.)

The limit C^* -algebra A_{∞} is isometrically *-isomorphic to C^* -algebra of the complex valued continuous sections $\Gamma(M, A_{\infty})$ over the manifold M. The centre $Z(A_{\infty})$ is isomorphic to $C(M, \mathbb{C})$.

A similar result is obtained for the representation space $L^2(M)$.

Theorem (T.)

The Hilbert space $L^2(M)$ of square integrable functions over the manifold M is a subspace of H_{∞} :

$$H_{\infty} = L^2(M) \oplus H.$$

• • = • • = •

A first example on the lattice

We define the following algebra A and Dirac operator D:

$$A = M_{2m}(\mathbb{C}), \quad H = \mathbb{C}^{2m}, \quad D = rac{i}{\hbar} \left(egin{array}{cc} 0 & D^- \\ D^+ & 0 \end{array}
ight)$$

with $(D^+)^* = -D^-$ and where D^- is given by

$$D^{-} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

•

► < E ► < E ► E E < <</p>

Original contributions

Proposition (Spectral convergence)

There exists a finite measure μ and a unitary operator

$$U: L^2(\mathbb{R}) \to L^2(\mathbb{R}, d\mu)$$

such that,

$$U[D,a]U^{-1}\phi = rac{da}{dx}\phi, \quad \forall \phi \in L^2(\mathbb{R}),$$

Moreover, the norm of [D, a] is given by $|| [D, a] || = || d_c a ||_{\infty}$.

This result can be generalized to the *d*-dimensional lattice Λ . The C^* -algebra $A(\Lambda)$ and the Dirac operator *D* are obtained through tensor products:

$$A(\Lambda) = A(L) \otimes \cdots \otimes A(L), \quad D_n = \sum_{k=1}^d 1 \otimes \cdots \otimes D_n^{(k)} \otimes \cdots \otimes 1.$$

4 E 6 4 E
Original contributions

Proposition (Spectral convergence)

There exists a finite measure μ and a unitary operator

$$U: L^2(\mathbb{R}) \to L^2(\mathbb{R}, d\mu)$$

such that,

$$U[D,a]U^{-1}\phi = rac{da}{dx}\phi, \quad \forall \phi \in L^2(\mathbb{R}),$$

Moreover, the norm of [D, a] is given by $|| [D, a] || = || d_c a ||_{\infty}$.

This result can be generalized to the *d*-dimensional lattice Λ . The *C**-algebra $A(\Lambda)$ and the Dirac operator *D* are obtained through tensor products:

$$A(\Lambda) = A(L) \otimes \cdots \otimes A(L), \quad D_n = \sum_{k=1}^d 1 \otimes \cdots \otimes D_n^{(k)} \otimes \cdots \otimes 1.$$

It is known that the canonical spectral triple (C[∞](M), L²(S), D) on a spin manifold M encodes the metric. The geodesic distance between any two points p and q on M is given by

$$\inf_{\gamma} \int_0^1 \sqrt{g_{\gamma}(\dot{\gamma}(t),\dot{\gamma}(t))} dt = \sup_{f \in \mathcal{A}} \left\{ |f(p) - f(q)| \ : \ \|[D,f]\| \le 1 \right\}$$

- ► As it defined the combinatorial Dirac operator does not depend on the metric g of the manifold M.
- ▶ Beyond the case of the lattice, the eigenvalues of the commutator [*D*, *a*] are not immediately accessible.

伺 ト イヨト イヨト ヨヨー わえつ

► It is known that the canonical spectral triple (C[∞](M), L²(S), D) on a spin manifold M encodes the metric. The geodesic distance between any two points p and q on M is given by

$$\inf_{\gamma} \int_0^1 \sqrt{g_{\gamma}(\dot{\gamma}(t),\dot{\gamma}(t))} dt = \sup_{f \in \mathcal{A}} \left\{ |f(p) - f(q)| \ : \ \|[D,f]\| \leq 1 \right\}$$

- ► As it defined the combinatorial Dirac operator does not depend on the metric g of the manifold M.
- ▶ Beyond the case of the lattice, the eigenvalues of the commutator [*D*, *a*] are not immediately accessible.

NOR ELE VEN ELE NOR

► It is known that the canonical spectral triple (C[∞](M), L²(S), D) on a spin manifold M encodes the metric. The geodesic distance between any two points p and q on M is given by

$$\inf_{\gamma} \int_0^1 \sqrt{g_{\gamma}(\dot{\gamma}(t),\dot{\gamma}(t))} dt = \sup_{f \in \mathcal{A}} \left\{ |f(p) - f(q)| \ : \ \|[D,f]\| \le 1 \right\}$$

- As it defined the combinatorial Dirac operator does not depend on the metric g of the manifold M.
- ▶ Beyond the case of the lattice, the eigenvalues of the commutator [*D*, *a*] are not immediately accessible.

► It is known that the canonical spectral triple (C[∞](M), L²(S), D) on a spin manifold M encodes the metric. The geodesic distance between any two points p and q on M is given by

$$\inf_{\gamma} \int_0^1 \sqrt{g_{\gamma}(\dot{\gamma}(t),\dot{\gamma}(t))} dt = \sup_{f \in \mathcal{A}} \left\{ |f(p) - f(q)| \ : \ \|[D,f]\| \le 1 \right\}$$

- As it defined the combinatorial Dirac operator does not depend on the metric g of the manifold M.
- ▶ Beyond the case of the lattice, the eigenvalues of the commutator [*D*, *a*] are not immediately accessible.

NOR FERRENCE

If we consider the more general definition of D given by

$$(D)_{ij} := \begin{cases} \omega_{ij} \neq 0 & \text{if } i \sim j, \\ 0 & \text{otherwise.} \end{cases}$$

where the coefficients ω_{ij} are obtained from a density distribution, a first approach would be to study the convergence in average:

$$S_n^{\hbar_n}(\mathsf{a}) := rac{1}{n}\sum_{k=1}^n e_k\left[D_X^k, \mathsf{a}_k
ight] e_k^*$$

with (e_k) a family of projectors.

Theorem (T.)

Let $\left\{x_{i_0}^k\right\}_{k=1}^n$ be a sequence of *i.i.d.* sampled points from a uniform distribution on an open normal neighbourhood U_p of a point *p* in a compact Riemannian manifold *M* of dimension *d*. Let $\widehat{S}_n^{\hbar_n}$ be the associated operator given by:

$$\widehat{S}_n^{\hbar_n}(a) := rac{1}{n} \sum_{k=1}^n e_k \left[D_X^k, a_k
ight] e_k^*.$$

Put $\hbar_n = n^{-\alpha}$, where $\alpha > 0$, then in probability:

$$\lim_{n\to\infty}\sup_{a\in\mathscr{F}} \left|\Psi\circ\widehat{S}_n^{\hbar_n}(a)(p)-[\mathcal{D},a](p)\right|=0.$$

- The Dirac operator is expressed as D = ⁱ/_ħ ∑_{i,j} ω_{ij}α_{ij} ⊗ E_{ij}
 The coefficients ω_{ij} are obtained from the Von Mises-Fisher distribution ω^k_{ij}(ħ) = C_d(β_ħ) exp (- ^{⟨x^k_i,s_j⟩}/_ħ).
- Recall that the VMF distribution is a solution of a Fokker-Planck equation.
- Conclude with the Hoeffding's inequality.

- The Dirac operator is expressed as D = ⁱ/_ħ Σ_{i,j} ω_{ij}α_{ij} ⊗ E_{ij}
 The coefficients ω_{ij} are obtained from the Von Mises-Fisher distribution ω^k_{ij}(ħ) = C_d(β_ħ) exp (- (x^k_i,s_j)/_ħ).
- Recall that the VMF distribution is a solution of a Fokker-Planck equation.
- Conclude with the Hoeffding's inequality.

- ▶ The Dirac operator is expressed as $D = \frac{i}{\hbar} \sum_{i,j} \omega_{ij} \alpha_{ij} \otimes E_{ij}$
- ► The coefficients ω_{ij} are obtained from the Von Mises-Fisher distribution $\omega_{ij}^k(\hbar) = C_d(\beta_\hbar) \exp\left(-\frac{\langle x_i^k, s_j \rangle}{\hbar}\right)$.
- Recall that the VMF distribution is a solution of a Fokker-Planck equation.
- Conclude with the Hoeffding's inequality.

4 E 6 4 E 6

- ▶ The Dirac operator is expressed as $D = \frac{i}{\hbar} \sum_{i,j} \omega_{ij} \alpha_{ij} \otimes E_{ij}$
- ► The coefficients ω_{ij} are obtained from the Von Mises-Fisher distribution $\omega_{ij}^k(\hbar) = C_d(\beta_\hbar) \exp\left(-\frac{\langle x_i^k, s_j \rangle}{\hbar}\right)$.
- Recall that the VMF distribution is a solution of a Fokker-Planck equation.
- Conclude with the Hoeffding's inequality.

- ▶ The Dirac operator is expressed as $D = \frac{i}{\hbar} \sum_{i,j} \omega_{ij} \alpha_{ij} \otimes E_{ij}$
- ► The coefficients ω_{ij} are obtained from the Von Mises-Fisher distribution $\omega_{ij}^k(\hbar) = C_d(\beta_\hbar) \exp\left(-\frac{\langle x_i^k, s_j \rangle}{\hbar}\right)$.
- Recall that the VMF distribution is a solution of a Fokker-Planck equation.
- Conclude with the Hoeffding's inequality.

Theorem (T.)

Let $\{x_i\}_{i=1}^n$ be a sequence of i.i.d. sampled points from a uniform distribution on an open normal neighbourhood U_p of a point p in a compact Riemannian manifold M of dimension d. $\Omega_n^{\hbar_n}$ be the associated operator given by:

$$\Omega_n^{\hbar_n}(\mathbf{a})(\mathbf{p}) = \frac{C_d(\beta_{\hbar})}{n\hbar^2} \sum_{k=1}^n \sum_{j=1}^{d+1} \lambda_j^2 \exp\left(-\frac{\left\langle x_i^k, s_j \right\rangle}{\hbar}\right) \alpha_{ij}(\mathbf{a}_k).$$

Put $\hbar_n = n^{-\alpha}$, where $\alpha > 0$, then in probability:

$$\lim_{n\to\infty}\sup_{a\in\mathscr{F}} \left|\Omega_n^{\hbar_n}(a)(p) - \Delta_M(a)(p)\right| = 0 \tag{1}$$

• • = • • = •

- ▶ Associate to an arbitrary simplicial set K_i a C^* -algebra A_i and show that the limit A_∞ contains C(M),
- ▶ Define a differential structure $da = [D_i, a]$ on each A_i ,
- ▶ In the lattice case, (D_i) converges to the usual derivative $\frac{d}{dx}$.
- In the general case of a triangulation, a convergence in average is shown for the Dirac operator and the laplacian.

지금 지구 문지 문제

= 200

- ► Associate to an arbitrary simplicial set K_i a C*-algebra A_i and show that the limit A_∞ contains C(M),
- ▶ Define a differential structure $da = [D_i, a]$ on each A_i ,
- ▶ In the lattice case, (D_i) converges to the usual derivative $\frac{d}{dx}$.
- In the general case of a triangulation, a convergence in average is shown for the Dirac operator and the laplacian.

김 국 대 김 대 국 대

- ▶ Associate to an arbitrary simplicial set K_i a C^* -algebra A_i and show that the limit A_∞ contains C(M),
- ▶ Define a differential structure $da = [D_i, a]$ on each A_i ,
- ▶ In the lattice case, (D_i) converges to the usual derivative $\frac{d}{dx}$.
- In the general case of a triangulation, a convergence in average is shown for the Dirac operator and the laplacian.

- ▶ Associate to an arbitrary simplicial set K_i a C^* -algebra A_i and show that the limit A_∞ contains C(M),
- ▶ Define a differential structure $da = [D_i, a]$ on each A_i ,
- ▶ In the lattice case, (D_i) converges to the usual derivative $\frac{d}{dx}$.
- In the general case of a triangulation, a convergence in average is shown for the Dirac operator and the laplacian.

A B A B A B B B A A A

- ▶ Associate to an arbitrary simplicial set K_i a C^* -algebra A_i and show that the limit A_∞ contains C(M),
- Define a differential structure $da = [D_i, a]$ on each A_i ,
- ▶ In the lattice case, (D_i) converges to the usual derivative $\frac{d}{dx}$.
- In the general case of a triangulation, a convergence in average is shown for the Dirac operator and the laplacian.

- Provide a unifying framework of approximation theory in the language of spectral triples,
- Formulation in terms of deformation quantization and use Berezin-Toeplitz type of quantizations,
- ▶ Generalized convergence results of the (D_i) to the classical Dirac operator,
- ▶ Applications to the limit of graph laplacian,
- Berkovich projective spaces and nonarchimedean geometry.

伺 ト イヨト イヨト ヨヨー わえつ

- Provide a unifying framework of approximation theory in the language of spectral triples,
- Formulation in terms of deformation quantization and use Berezin-Toeplitz type of quantizations,
- ▶ Generalized convergence results of the (D_i) to the classical Dirac operator,
- ► Applications to the limit of graph laplacian,
- Berkovich projective spaces and nonarchimedean geometry.

伺 ト イヨト イヨト ヨヨー わえつ

- Provide a unifying framework of approximation theory in the language of spectral triples,
- Formulation in terms of deformation quantization and use Berezin-Toeplitz type of quantizations,
- ▶ Generalized convergence results of the (D_i) to the classical Dirac operator,
- ▶ Applications to the limit of graph laplacian,
- Berkovich projective spaces and nonarchimedean geometry.

- Provide a unifying framework of approximation theory in the language of spectral triples,
- Formulation in terms of deformation quantization and use Berezin-Toeplitz type of quantizations,
- ▶ Generalized convergence results of the (D_i) to the classical Dirac operator,
- Applications to the limit of graph laplacian,
- Berkovich projective spaces and nonarchimedean geometry.

A B A B A B B B A A A

- Provide a unifying framework of approximation theory in the language of spectral triples,
- Formulation in terms of deformation quantization and use Berezin-Toeplitz type of quantizations,
- ▶ Generalized convergence results of the (D_i) to the classical Dirac operator,
- Applications to the limit of graph laplacian,
- Berkovich projective spaces and nonarchimedean geometry.

A B A B A B B B A A A

- Provide a unifying framework of approximation theory in the language of spectral triples,
- Formulation in terms of deformation quantization and use Berezin-Toeplitz type of quantizations,
- ▶ Generalized convergence results of the (D_i) to the classical Dirac operator,
- Applications to the limit of graph laplacian,
- ▶ Berkovich projective spaces and nonarchimedean geometry.

B A B A B B B A A A

Thank you !

= 990

3 🕨 🖌 3

D. Tageddine, J-C. Nave Noncommutative geometry on Infinitesimal Spaces submitted, arXiv:2209.12929.

D. Tageddine, J-C. Nave Statistical Fluctuation of Infinitesimal Spaces submitted, arXiv:2304.10617.

 Balachandran, A. P. and Bimonte, G. and Ercolessi, E. and Landi, G. and Lizzi, F. and Sparano, G. and Teotonio-Sobrinho, P.
 Noncommutative Lattices as Finite Approximations and Their Noncommutative Geometries Journal of Geometry and Physics (1996), pp. 163-194.

NOR FERRENCE

References

M. Khalkhali and N. Pagliaroli

Spectral Statistics of Dirac Ensembles Journal of Mathematical Physics (2022).

A. Connes

Noncommutative geometry *Academic Press (1994).*

🛯 O. Bratteli

The center of approximately finite-dimensional C^* -algebras Journal of Functional Analysis (1975), pp. 195-202.

H. Behncke and H. Leptin
 C*-algebras with finite duals
 Journal of Functional Analysis (1973), pp. 253-262

4 E 6 4 E 6

The 2-points space

Let $a = (a_1, a_2) \in M_2(\mathbb{C})$ and the Dirac operator: $D = \frac{i}{\hbar} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad da = \frac{i}{\hbar} \begin{pmatrix} 0 & a_2 - a_1 \\ a_1 - a_2 & 0 \end{pmatrix}.$

If we define the following distance:

$$d(x, y) = \sup_{a \in A} \{ |a(x) - a(y)| : ||[D, a]|| \le 1 \}$$

then one can show that for $X = \{x, y\}$

$$d(x,y)=\hbar.$$

Without prior assumption, we see the emergence of a small parameter \hbar in place of the usual distance Δx .

Let *M* be an oriented Riemannian manifold with a SO(n)-frame bundle $P \rightarrow M$. A spin structure on *M* is a lift:

 $\tilde{P} \rightarrow M$, Spin(n)-frame bundle.

We consider the associate spin bundle $\mathscr{S} = \tilde{P} \times_{\gamma} \Delta_n$, where $\phi \in \Gamma^{\infty}(\mathscr{S})$ are called spinors. Let ∇ the lift of the Levi-Civita connection on M to \tilde{P} , with ω the associated 1-form.

$$\Gamma^{\infty}(\mathscr{S}) \stackrel{\nabla}{\longrightarrow} T^*X \otimes \mathscr{S} \stackrel{g^{-1}}{\longrightarrow} TX \otimes \mathscr{S} \stackrel{\mathrm{c}}{\longrightarrow} \Gamma^{\infty}(\mathscr{S})$$

Dirac operator $D = c \circ g^{-1} \circ \nabla$

Let $\psi \in \Gamma^{\infty}(\mathscr{S})$,

$$D\psi = d\psi + rac{1}{2}\sum_{i < j}\omega_{ij}e_ie_j\psi.$$

We work at the Hilbert space level with $\mathcal{H} = L^2(M, \mathscr{S})$ square integrable spinors

$$\langle \psi, \phi
angle = \int_{M} \langle \psi(\mathbf{x}), \phi(\mathbf{x})
angle_{\mathbf{x}} \, dvol_{\mathbf{g}}$$

 $\mathcal{C}^{\infty}(M)$ acting as bounded operators on \mathcal{H} . For $f \in \mathcal{C}^{\infty}(M)$, we have the commutator $[D, f] \psi = -ic(df)\psi$ as an operator in $B(\mathcal{H})$.

A E N A E N E

= 900

Consider the triple $\mathcal{A} = \mathcal{C}^{\infty}(M)$, $D = \partial_M$, $\mathcal{H} = (L^2(M, \mathscr{S}), \pi)$. $\Omega^1(\mathcal{A}) := \ker(m : A \otimes A \to A), \quad \Omega^n(\mathcal{A}) = \{a_0 da_1 \cdots da_n, a_i \in \mathcal{A}\}.$

Connes' differential forms $\Omega_D^* := \Omega^*(\mathcal{A})/J$

The representation in $B(\mathcal{H})$, $\pi(a_0 da_1 \cdots da_n) = a_0 [D, a_1] \cdots [D, a_n]$

 $\pi: \Omega^*_D \to \Omega_{dR}(M) \quad a_0 da_1 \cdots da_n \mapsto a_0 d_{dR} a_1 \cdot d_{dR} a_2 \cdots d_{dR} a_n$

extends to a canonical isomorphism of GDA.

▲母▼ ▲目▼ ▲目▼ 目目 わく⊙

Axioms of the Behncke-Leptin construction:

3 ▶ ∢ 3

ъ

Axioms of the Behncke-Leptin construction:

1) Associate a separable Hilbert space H(X) and attach to every point $x \in X$ a subspace $H(x) \subseteq H(X)$ that decomposes into:

$$H(x) = H^{-}(x) \otimes H^{+}(x).$$
⁽²⁾

where $H^{-}(x) \simeq \ell^{2}(\mathbb{Z})$.

Axioms of the Behncke-Leptin construction:

1) Associate a separable Hilbert space H(X) and attach to every point $x \in X$ a subspace $H(x) \subseteq H(X)$ that decomposes into:

$$H(x) = H^{-}(x) \otimes H^{+}(x).$$
⁽²⁾

where $H^{-}(x) \simeq \ell^{2}(\mathbb{Z})$.

2) Let \mathfrak{M} be the set of maximal points in X:

$$H(x) = H^{-}(x) \otimes \mathbb{C} \simeq H^{-}(x).$$
(3)

Axioms of the Behncke-Leptin construction:

1) Associate a separable Hilbert space H(X) and attach to every point $x \in X$ a subspace $H(x) \subseteq H(X)$ that decomposes into:

$$H(x) = H^{-}(x) \otimes H^{+}(x).$$
⁽²⁾

where $H^{-}(x) \simeq \ell^{2}(\mathbb{Z})$.

2) Let \mathfrak{M} be the set of maximal points in X:

$$H(x) = H^{-}(x) \otimes \mathbb{C} \simeq H^{-}(x).$$
(3)

2') If \mathfrak{m} is the set of minimal points in X, then $x \in \mathfrak{m}$, one has:

$$H(x) = \mathbb{C} \otimes H^+(x) \simeq H^+(x). \tag{4}$$

3) Associate to $x \in X$ an operator algebra A(x) acting on H(x) (extended by zero to the whole space H(X)) such that

$$A(x) = 1_{H^-(x)} \otimes \mathcal{K}(H^+(x)).$$
(5)

where $\mathcal{K}(H^+(x))$ compact operators over $H^+(x)$.

A B A B A B B B A A A
The Behncke-Leptin construction

 Associate to x ∈ X an operator algebra A(x) acting on H(x) (extended by zero to the whole space H(X)) such that

$$A(x) = 1_{H^-(x)} \otimes \mathcal{K}(H^+(x)).$$
(5)

where $\mathcal{K}(H^+(x))$ compact operators over $H^+(x)$.

 Build the C*-algebra A(X) associated to X as the algebra generated by the subalgebras A(x) when x run over X:

$$A(X) = \bigoplus_{x \in X} A(x)$$
 acting on $H(X) = \bigoplus_{x \in X} H(x)$. (6)

NOR ELE 4 EN 4 EN 900

The Behncke-Leptin construction: an example

F-P Equation and the Von-Mises Fisher distribution

Consider the one-parameter family of measures $(\mu_{x,t})_t$ satisfying the parabolic equation:

$$\left. \frac{\partial \mu_{x,t}}{\partial t} \right|_{t=0} = \mathscr{L}_{A,b}(\mu_{x,t}) \tag{7}$$

in the weak sense, with the operator $\mathscr{L}_{A,b}$

$$\mathscr{L}_{A,b}f = tr(AD^{2}f) + \langle b, \nabla f \rangle, \quad f \in C^{\infty}_{c}(M)$$
(8)

We consider the von Mises-Fisher distribution on the unit sphere \mathbb{S}^d given by:

$$\rho_d(x; s, \beta) = C_d(\beta) \exp\left(-\beta \langle s, x \rangle\right) \tag{9}$$

where $\beta \geq 0$, $\|s\| = 1$ and $C_d(\beta)$ is a normalization constant.

We show that the von Mises-Fisher distribution satisfies the Fokker-Planck equation:

$$\left.\frac{\partial \rho_{s,t}}{\partial t}\right|_{t=0} = \partial_s(\rho_{s,t}).$$

The distribution can be defined on a normal neighbourhood U_p of the manifold M and satisfies a Fokker-Planck equation.

Proposition

The following limit holds at a point $p \in M$

$$\frac{\partial}{\partial t}\left(C_d(\beta_t)\int_{U_p}e^{\widehat{\Phi}_{\beta}(s_i,x)}f(x)\mu(x)\right)\bigg|_{t=0}=\partial_i(f)(p).$$

4 3 6 4 3 6

Theorem (Hoeffding)

Let X_1, \ldots, X_n be independent identically distributed random variables, such that $|X_i| \le K$. Then

$$P\left[\left|\frac{\sum_{i} X_{i}}{n} - \mathbb{E}X_{i}\right| > \varepsilon\right] < 2\exp\left(-\frac{\varepsilon^{2}n}{2\kappa^{2}}\right).$$

★ ∃ ► < ∃ ►</p>

= 900