$\begin{array}{c} \mbox{Motivations}\\ \mbox{The Berkovich projective line}\\ \mbox{A first approach}\\ \mbox{Graph C^*-algebra}\\ \mbox{KMS states and Invariant measures}\\ \mbox{Conclusion} \end{array}$

Noncommutative geometry on the Berkovich line

D. Tageddine ¹

Joint work with M. Khalkhali (Western Ontario)

¹Department of Mathematics and Statistics, McGill University

NYC Noncommutative Geometry Seminar, December 11th, 2024

Motivations The Berkovich projective line A first approach Graph C*-algebra KMS states and Invariant measures Conclusion

Table of Contents

1 Motivations

- 2 The Berkovich projective line
- 3 Noncommutative geometry on $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$: A first approach
- ④ Graph C^* -algebra associated to $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_{
 ho})$
- 5 KMS states and Invariant measures

6 Conclusion

Motivations: Complex (arithmetic) dynamics

General philosophy: before studying a problem over \mathbb{C} or \mathbb{Q} , study it on \mathbb{C}_p or \mathbb{Q}_p .

 $\mathbb{P}^1(\mathbb{C}) o \mathbb{P}^1(\mathbb{C}_{\rho}) o$ Berkovich projective line

- Put nonarchinedeans places on the footing as archimedean ones
- Study the dynamics of a rational map $\varphi:\mathbb{C}\to\mathbb{C}$ and deduce arithmetic or geometric properties.
- Link with Arakelov geometry: intersection theory for arithmetic surfaces
- Green functions and potential theory over \mathbb{C}_p

Noncommutative Geometry & Number Theory

For a spectral triple $(\mathcal{A}, \mathcal{H}, D)$, there is an important function associated to the dirac operator

$$\zeta_D(z) := \operatorname{Tr}(|D|^{-z}) = \sum_{\lambda} \operatorname{Tr}(\Pi(\lambda, |D|))\lambda^{-z}$$

• The Bost-Connes system, $\mathcal{A} = \mathcal{C}^*(\mathbb{Q}/\mathbb{Z}) \rtimes \mathbb{N}^{ imes}$

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) = \zeta(\beta)$$

with inverse temperature $\beta.$ The symmetry group is the group of idèles.

- Quantum symmetries of the modular Hecke algebras A(Γ) where Γ is a congruence subgroup of SL(2, Z).
- Noncommutative geometry and Arakelov theory.

Motivations

- 2 The Berkovich projective line
- (3) Noncommutative geometry on $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$: A first approach
- 4 Graph C^* -algebra associated to $\mathbb{P}^1_{Berk}(\mathbb{C}_p)$
- 5 KMS states and Invariant measures
- 6 Conclusion

A non-archimedean absolute value in a field K is a function $|\cdot|: K \to [0, \infty)$ such that for all $x, y \in K$, $|x| \ge 0$, with $|x| = 0 \Leftrightarrow x = 0$

$$|xy| = |x| \cdot |y|,$$

►
$$|x + y| \le \max\{|x|, |y|\}.$$

One can define $\mathbb{P}^1(\mathcal{K})$: totally disconnected and not locally compact.

In 1990, Berkovich constructed $\mathbb{P}^1_{\operatorname{Berk}}(K)$ with much nicer properties.

Multiplicative Seminorms on K[z]

A **multiplicative seminorm** on K[z] is a function $\|\cdot\|_{\mathcal{C}}: K[z] \to [0,\infty)$ such that

$$\blacktriangleright \|c\|_{\zeta} = |c|, \quad \text{for all } c \in K$$

•
$$\|fg\|_{\zeta} = \|f\|_{\zeta} \cdot \|g\|_{\zeta}$$
, for all $f, g \in K[z]$, and

 $\blacktriangleright \ \|f+g\| \leq \|f\|_{\zeta} + \|g\|_{\zeta}, \quad \text{for all } f,g \in K[z].$

Definition (Analytic spectrum)

For A a normed ring, its *analytic spectrum* or *Berkovich spectrum* $Spec_{an}A$ is the set of all non-zero multiplicative seminorms on A, such that all functions:

$$\mathsf{Spec}_{\mathsf{an}} A \to \mathbb{R}_+, \qquad \zeta \mapsto \|a\|_{\zeta}$$

for $a \in A$ are continuous.

Definition

The **Berkovich affine line** $\mathbb{A}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p})$ is the set of all multiplicative seminorms on $\mathbb{C}_{p}[z]$. The **Berkovich projective line** $\mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p})$ is $\mathbb{A}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p}) \cup \{\infty\}$. The **Berkovich hyperbolic line** $\mathbb{H}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p})$ is $\mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p}) \setminus P^{1}(\mathbb{C}_{p})$.

As topological spaces, we equip $\mathbb{A}^1_{\operatorname{Berk}}(\mathbb{C}_p)$, $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$ and $\mathbb{H}^1_{\operatorname{Berk}}(\mathbb{C}_p)$ with the **Gel'fand topology**.

This is the weakest topology such that for every $f \in \mathbb{C}_p[v]$, the map

$$\mathbb{A}^1_{\operatorname{Berk}}(\mathbb{C}_p) \to \mathbb{R} \qquad \zeta \to \|f\|_{\zeta}$$

Points classification

э

Some properties of the Berkovich line

The Berkovich projective line $\mathbb{P}^1_{Berk}(\mathbb{C}_p)$:

- $1)\,$ is compact, path connected, Hausdorff metric space
 - (a) diameter of a point: diam(ξ) = inf_{a∈C_p} ||x a||_ξ
 (b) metric: ρ(ξ,ξ')
- is homeomorphic to the inverse limit of finite real-trees (Gromov 0-hyperbolic space).
- 3) (Favre & Rivera-Letelier; Baker & Rumely; Autissier, Chambert-Loir & Thuiller) Let $\phi \in \mathbb{C}_{v}(z)$ of degree $d \geq 2$:
 - i) Invariant measure: $\phi^*\mu_\phi = d\cdot\mu_\phi$
 - ii) Green functions
 - iii) Poisson's formula

$$f(z) = \int_{\partial D} f d\mu_{z,D}$$

Motivations

- 2 The Berkovich projective line
- **3** Noncommutative geometry on $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$: A first approach
- 4 Graph C^* -algebra associated to $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$
- 5 KMS states and Invariant measures
- 6 Conclusion

Spectral triple on the projective B-line

To each finite tree Γ , we associate a spectral triple $(\mathcal{A}_{\Gamma}, \mathcal{H}_{\Gamma}, D_{\Gamma})$

- \mathcal{A}_{Γ} is $\mathcal{C}_{\mathrm{Lip}}(\Gamma)$ Lipschitz continuous functions on Γ
- \mathcal{H}_{Γ} is the representation space $\ell^2(\Gamma)\otimes\mathbb{C}^2$

$$\pi(f)\psi_{\mathbf{v}} = \oplus_{\mathbf{v}_{+}\sim\mathbf{v}} \begin{pmatrix} f(\mathbf{v}_{+}) & 0\\ 0 & f(\mathbf{v}) \end{pmatrix} \psi_{\mathbf{v}}$$

$$D\psi_{\mathbf{v}} = \oplus_{\mathbf{v}_{+}\sim\mathbf{v}} \frac{1}{\rho(\mathbf{v},\mathbf{v}_{+})} \psi_{\mathbf{v}} \otimes \sigma$$

The pair $(r^*_{\Gamma,\Gamma'}, \iota_{\Gamma\Gamma'})$ induces a morphism of spectral triples

$$(A_{\Gamma},\mathcal{H}_{\Gamma},D_{\Gamma})\xrightarrow{(r_{\Gamma,\Gamma'}^{*},\iota_{\Gamma\Gamma'})}(A_{\Gamma'},\mathcal{H}_{\Gamma'},D_{\Gamma'})$$

We define the spectral $\{(A_j, \mathcal{H}_j, D_j), (r_{jk}^*, \iota_{jk})\}_J$ with the following notation:

$$A_j := C_{\text{Lip}}(\Gamma_j), \quad \mathcal{H}_j = \ell^2(\Gamma_j), \quad D_j = D_{\Gamma_j}$$
(1)

with the isometric morphism:

$$r_{jk}^*: A_j \to A_k, \quad \iota_{jk}: \mathcal{H} \to \mathcal{H}_k.$$
 (2)

Theorem

The triple $(C_{\text{Lip}}(\mathbb{P}^{1}_{\text{Berk}}), \ell^{2}(\mathbb{P}^{1}_{\text{Berk}}), D)$ is called the inductive realization of the inductive system $\{(C_{\text{Lip}}(\Gamma_{j}), \ell^{2}(\Gamma_{\text{Berk}}), D_{j}), (\phi_{jk}, I_{jk})\}_{J}$.

Define the measure $\boldsymbol{\mu}$ by

$$\mu(f) = \lim_{s \to s_0} \frac{\operatorname{Tr}(|D|^{-s}\pi(f))}{\operatorname{Tr}(|D|^{-s})}$$

It is possible to define a form \mathcal{Q}_s on $L^2(\mathbb{P}^1_{\operatorname{Berk}},\mu)$

$$Q_{s}(f,g) := \frac{1}{2} \mathrm{Tr}(|D|^{-s}[D,\pi(f)]^{*}[D,\pi(g)])$$

Correspondence: Dirichlet forms and Markovian semigroups.

For $s \in \mathbb{R}$, define a self-adjoint operator Δ_s such that $T_t := \exp(t\Delta_s)$ is a Markovian semigroup

$$\langle \Delta_s f, g \rangle = rac{1}{2} \mathsf{Tr}(|D|^{-s}[D, \pi(f)]^*[D, \pi(g)]).$$

Motivations

- 2 The Berkovich projective line
- (3) Noncommutative geometry on $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$: A first approach
- 4 Graph C^* -algebra associated to $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$
- 6 KMS states and Invariant measures

6 Conclusion

Points classification

æ

The Berkovich projective line can be described equivalently as a shift space.

- Alphabet: $\mathbb{Q}_1 = \mathbb{Q} \cap (0, 1)$
- Admissible words:

$$x = (q_{i_1}^{k_1}, q_{i_2}^{k_2}, q_{i_3}^{k_3}, \dots, q_{i_{m-1}}^{k_{m-1}}, q_{i_m}^\infty), q_{i_\ell} < q_{i_{\ell+1}}$$
, $\mathsf{q}_i \in \mathbb{Q}_1$

• Shift map: $\sigma : \mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p) \to \mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p), \ \sigma(x_n) = (x_{n+1}).$

$$egin{aligned} Z(q) &:= \left\{ qx \in \mathbb{P}^1_{ ext{Berk}}(\mathbb{C}_{
ho}) : x \in \mathbb{P}^1_{ ext{Berk}}(\mathbb{C}_{
ho})
ight\} ext{ and } \ F(q) &:= \left\{ x \in \mathbb{P}^1_{ ext{Berk}}(\mathbb{C}_{
ho}) : qx \in \mathbb{P}^1_{ ext{Berk}}(\mathbb{C}_{
ho})
ight\} \end{aligned}$$

• **Right inverse**: $\sigma \circ \sigma_q(x) = x$, where $\sigma_q : F(q) \to Z(q)$

Define the cylinder sets

$$C(\alpha,\beta) := \{\beta x \in \mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p) : \alpha x \in \mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)\}$$

Let $\mathcal{B}_{\mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p})}$ the Boolean algebra generated by the cylinder sets. The C^{*} -algebra $\mathcal{O}_{\mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p})}$ the universal unital C^{*} -algebra generated by **projections** $\{p_{A} : A \in \mathcal{B}_{\mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p})}\}$ and **partial** isometries $\{s_{q} : q \in \mathbb{Q}_{1}\}$ subject to the relations:

In particular, $s_{\alpha}^* s_{\alpha} = p_{\mathcal{C}(\alpha, \emptyset)} = p_{\mathcal{F}_{\alpha}}$ and $s_{\beta} s_{\beta}^* = p_{\mathcal{C}(\emptyset, \beta)} = p_{Z_{\beta}}$.

Semibranching system

Consider a measure space (X, μ) and a countable family $\{\sigma_i\}_{i \in \mathbb{N}}$, of measurable maps $\sigma_i : D_i \to X$, defined on measurable subsets $D_i \subset X$. The family $\{\sigma_i\}_{i \in \mathbb{N}}$ is called a semibranching system if: (1) There exists a family $\{R_i\}_{i \in \mathbb{N}}$ of measurable subsets of X s.t.,

 $\mu(X \setminus \cup_i R_i) = 0$, and $\mu(R_i \cap R_j) = 0$, for $i \neq j$ (3)

where we denote by R_i the range $R_i = \sigma_i(D_i)$.

(2) There is a Radon-Nikodym derivative

$$\Phi_{\sigma_i} = rac{d(\mu \circ \sigma_i)}{d\mu} > 0, \quad \mu ext{-almost everywhere on } D_i.$$

 $\sigma: \mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p}) \to \mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{p}) \text{ and } \{\sigma(q): F(q) \to Z(q): q \in \mathbb{Q}_{1}\}$ define a semibranching system.

Representation of $\mathcal{O}_{\mathbb{P}^1_{\mathrm{Berk}}(\mathbb{C}_p)}$

Consider the representation space $\mathcal{H} = L^2(\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p))$ and define for $q \in \mathbb{Q}_1$

$$(S_q\psi)(x) = \chi_{Z(q)}(x)\psi \circ \sigma(x)$$

with adjoint

$$(S_q^*\varphi)(x) = \chi_{F(q)}(x)\psi \circ \sigma_q(x)$$

Then, $\pi: s_q \mapsto S_q$ extends to a *-representation of $\mathcal{O}_{\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)}$

- $S_q S_q^* = P_{Z(q)}$, where $P_{Z(q)}$ is the projection given by multiplication by the characteristic function $\chi_{Z(q)}$
- It satisfies Cuntz-Krieger like relations:

$$\sum_q S_q S_q^* = 1$$

• $S_q^*S_q = P_{F(q)}$, where $P_{F(q)}$ is the projection given by multiplication by $\chi_{F(q)}$.

Projecton-valued Measures

Definition

Let ${\mathcal H}$ be a Hilbert space and

$$\mathcal{P}_{\mathcal{H}} := \left\{ P \in \mathcal{B}(\mathcal{H}) : P = P^2 = P^* \right\}$$

An operator-valued map $P : \Sigma(X) \to \mathcal{P}_{\mathcal{H}}$ defined on $\Sigma(X)$ is called a **projection valued measure** if

(1)
$$P(X) = 1$$
 and $P(\emptyset) = 0$,
(2) If B_1, B_2, \dots in $\Sigma(X)$, such that $B_i \cap B_j = \emptyset$ for $i \neq j$, one has
$$P\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} P(B_i)$$
(4)

in the strong topology sense.

(3) $P(E \cap F) = P(E)P(F)$ for $E, F \in \Sigma(X)$.

Projection-valued Measure

Using the Kolmogorov Extention theorem, we get

Proposition (Khalkhali & T.)

The operator-valued map defined on cylinders $Z(q) \mapsto S_q S_q^*$ extends to a spectral measure $P : \Sigma(\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)) \to \mathcal{P}_{\mathcal{H}}.$

Let $f \in \mathcal{H}$ be a cyclic vector, then we can define a measure:

$$\mu_f(E) := P^f(E) := \langle P(E)f, f \rangle = \|P(E)f\|^2$$

This measure can be decomposed using the C^* -algebra

$$\int_{\mathbb{P}^1_{\mathrm{Berk}}(\mathbb{C}_p)} \psi \ d\mu_f = \sum_{q \in \mathbb{Q}_1} \int_{\mathbb{P}^1_{\mathrm{Berk}}(\mathbb{C}_p)} \psi \circ \sigma_q \ d\mu_{S_q^*f}$$

The transfer operator $T_{\sigma} : L^2(\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)) \to L^2(\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p))$ that composes with the coding map denoted by σ ,

 $(T_{\sigma}\psi)(x) = \psi(\sigma(x)).$

its adjoint P_{σ} given by

$$\int \psi \mathsf{P}_{\sigma}(\xi) \mathsf{d}\mu = \int \mathsf{T}_{\sigma}(\psi) \xi \mathsf{d}\mu$$

and called the **Perron-Frobenius operator**. Then, the Perron-Frobenius operator P_{σ} is of the form

$$(P_{\sigma}\xi)(x) = \sum_{q \in \mathbb{Q}_1} \chi_{Z(q)}\xi(\sigma_q(x)) = \sum_{q \in \mathbb{Q}_1} S_q^*$$

Graph Laplacian $P_{\sigma}\xi = \xi \Leftrightarrow \Delta\xi = 0$

Motivations

- 2 The Berkovich projective line
- (3) Noncommutative geometry on $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$: A first approach
- 4 Graph C*-algebra associated to $\mathbb{P}^1_{Berk}(\mathbb{C}_p)$
- 5 KMS states and Invariant measures

6 Conclusion

A C^* -dynamical system is a pair (A, σ) with a

- A a C*-algebra
- $\sigma : \mathbb{R} \to \operatorname{Aut}(A)$

such that $\sigma_0 = \mathrm{id}$, $\sigma_s \circ \sigma_t = \sigma_{s+t}$ and $t \mapsto \sigma_t(a)$ is norm continuous. A state of A is a linear functional $\varphi : A \to \mathbb{C}$ such that

$$arphi(\textit{a}^*\textit{a}) \geq 0$$
 and $\|arphi\| = arphi(1) = 1$

Examples:

- The states of a commutative C*-algebra C₀(Ω_A) are in bijection with probability measures μ on Ω_A φ_μ(f) = ∫_{Ω_A} fdμ
- GNS construction $\varphi(a) = \langle \pi_{\varphi}(a) \xi_{\varphi}, \xi_{\varphi} \rangle$

Definition (KMS states)

A state φ on A satisfies the Kurbo-Martin-Schwinger (KMS) condition with respect to σ at inverse temperature $\beta \neq 0$ (φ is a σ -KMS_{β}), if

$$\varphi(ab) = \varphi(b\sigma_{i\beta}(a))$$

for all σ -analytic elements $a, b \in A$

This a trace-like condition, twisted by σ along imaginary time.

Proposition

If $\beta \neq 0$ and φ is a KMS_{β} state, then φ is σ -invariant.

The Patterson-Sullivan measure

Harmonic measures on \mathbb{D} : Poisson kernel

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|\xi - x\|^2}$$

Poisson transform: $f \mapsto \mathcal{P}f = \int_{\mathbb{S}^1} f(\xi) d\nu_x(\xi)$ defines an isomorphism between $L^{\infty}(\mathbb{S}^1)$. Equivalently, harmonic measures associated to points of \mathbb{D} :

$$\forall \xi \in \mathbb{S}^1 \ \forall x, y \in \mathbb{D}, \ \frac{d\nu_x}{d\nu_y}(\xi) = e^{-b_{\xi}(y,x)}.$$
(5)

where, $b_{\xi}(x, y)$ is the **Busemann function**

$$orall \xi \in \mathbb{S}^1 \; orall x, y \in \mathbb{D}, \; b_\xi(x,y) = \log\left(rac{P(y,\xi)}{P(x,\xi)}
ight)$$

 $P(x,\xi)d\sigma(\xi)$ is the **Patterson-Sullivan measure** on \mathbb{D} .

The Patterson-Sullivan measure

 $P(x,\xi)d\sigma(\xi)$ is supported on \mathbb{S}^1 and is invariant under Möbius transformation $\operatorname{Iso}(\mathbb{D})$.

(Patterson construction) This extends to more general hyperbolic space X (such as Gromov hyperbolic, \mathbb{R} -trees). Consider a compactification $\overline{X} = X \cup \partial X$, $\Gamma < \text{Iso}(X)$ a discrete subgroup.

Busemann funnction :
$$b_{\xi}(x, y) = \lim_{z \to \xi} (d(x, z) - d(y, z)).$$

Proposition (Coornaert)

If $\delta(\Gamma) < \infty$, then there exists a (unique) measure Γ -quasiconformal of dimension $\delta(\Gamma)$ with support in ∂X . This measure is called the Patterson-Sullivan measure s.t

$$orall \xi \in \partial X, \quad rac{d\mu_{PS,y}}{d\mu_{PS,x}}(\xi) = e^{-\delta b_{\xi}(y,x)}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

For $\varphi \in \mathbb{C}_{\rho}(\mathcal{T})$ of $\deg = 1$, defines an action on $\mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{\rho})$ $\operatorname{Aut}(\mathbb{P}^{1}_{\operatorname{Berk}}(\mathbb{C}_{\rho})) \simeq \operatorname{PGL}_{2}(\mathbb{C}_{\rho})$

The action is continuous on $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$ and isometric on $\mathbb{H}^1_{\operatorname{Berk}}(\mathbb{C}_p)$ Let $\Gamma < \operatorname{PGL}_2(\mathbb{C}_p)$ a **Schottky subgroup**;

$$\sigma_g : \mathrm{PGL}_2(\mathbb{C}_p) \times \mathbb{P}^1(\mathbb{C}_p) \to \mathbb{P}^1(\mathbb{C}_p), \ \sigma_g(x) = \begin{pmatrix} \mathrm{diam}(g) & a \\ 0 & 1 \end{pmatrix} \cdot x$$

its limit set is given by

$$\Lambda := \left\{ y \in \partial X \mid y = \lim \{ \gamma_m(x) \} \{ \gamma_m \} \in \mathrm{PGL}_2(\mathbb{C}_p) \right\} = \partial \mathbb{P}^1_{\mathrm{Berk}}(\mathbb{C}_p)$$

 C^* -dynamical system (\mathcal{A}, σ_t) on $\mathbb{P}^1_{\text{Berk}}(\mathbb{C}_p)$

Let $\mathcal{H} = L^2(\mathbb{P}^1_{Berk}(\mathbb{C}_p))$, (π, U) a covariant representation. The crossed product algebra:

$$\mathcal{A} = \mathcal{C}(\Lambda) \rtimes \Gamma, \quad (\pi_{\xi} \rtimes \mathcal{U})(f) = \sum_{\gamma' \in \Gamma} \pi_{\xi}(f_{\gamma'}) \mathcal{U}_{\gamma'}$$

One-parameter automorphism on the generators:

$$\sigma_t\left(\sum_{\gamma}f_{\gamma}(\xi)U_{\gamma}\right) = e^{itH}fe^{-itH} = \sum_{\gamma}p^{itB(x_0,\gamma x_0,\xi)}f_{\gamma}(\xi)U_{\gamma}$$

(Busemann function) $B(x_0, \gamma x_0, \xi) = \lim_{x \to \xi} \rho(x_0, x) - \rho(\gamma x_0, x).$

Then (\mathcal{A}, σ_t) defines a C^* -dynamical system with KMS_{β} states.

KMS & P-S. measure

Unique KMS sates at inverse temperature $\beta = \delta(\Lambda)$:

$$\varphi_{\beta,x_0}\left(\sum_{\gamma}f_{\gamma}(\xi)U_{\gamma}\right)=\int_{\Lambda}f_{e}(\xi)d\mu_{PS,x_0}(\xi)$$

associated to the Hamiltonian

$$H(f_{\gamma}(\xi)\otimes\gamma)=B(x_{0},\gamma x_{0},\xi)f_{\gamma}(\xi)\otimes\gamma$$

One can define a 1-cocycle $c: \Gamma \to \mathcal{H}_{\pi}$ such that

$$B(x_0, \gamma x_0, \xi) = \|c(\gamma)\|_{\mathcal{H}_{\pi}}^2, \qquad \gamma \in \Gamma$$

In the Hilbert space $\ell^2(\Gamma, \mathcal{H}_{\pi})$, define the self-adjoint operator

$$\left| Df_{\gamma} = \| c_{\gamma} \| f_{\gamma} \right| \qquad \Rightarrow \qquad D^2 f_{\gamma} = B(x_0, \gamma x_0, \xi) f_{\gamma}$$

Motivations

- 2 The Berkovich projective line
- (3) Noncommutative geometry on $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$: A first approach
- 4 Graph C^* -algebra associated to $\mathbb{P}^1_{\operatorname{Berk}}(\mathbb{C}_p)$
- 5 KMS states and Invariant measures

6 Conclusion

We have constructed three different spectral triples on the B-line, each of which has some geometric and dynamic information:

- Inverse limit of finite spectral triples
- Spectral triple associated to $\Gamma \subset \operatorname{PGL}_2(K)$
- Invariant measures and KMS states on crossed product algebras./

Remaining questions:

- (noncommutative) potential theory
- summability of the spectral triples
- arithmetic/dynamic

Thank you !

æ

御 と く き と く き と

References I

- Matthew Baker and Robert Rumely, *Potential Theory on the Berkovich Projective Line* (en).
- Caterina Consani and Matilde Marcolli, *Non-commutative geometry, dynamics, and infinity-adic Arakelov geometry,* October 2003, arXiv:math/0205306.
- Gunther Cornelissen and Matilde Marcolli, *Graph Reconstruction and Quantum Statistical Mechanics*, September 2012.
- Remus Floricel and Asghar Ghorbanpour, *On inductive limit spectral triples*, December 2017.
- M. Greenfield, M. Marcolli, and K. Teh, *Twisted spectral triples and quantum statistical mechanical systems*, P-Adic Numbers, Ultrametric Analysis, and Applications **6** (2014), 81–104.

References II

- Magnus Goffeng, Adam Rennie, and Alexandr Usachev, Constructing KMS states from infinite-dimensional spectral triples, Journal of Geometry and Physics 143 (2019), 107–149.
- Masoud Khalkhali and Damien Tageddine, *Noncommutative geometry on the berkovich projective line*, 2024.
- Tsuyoshi Kajiwara and Yasuo Watatani, C^{*}-algebras associated with complex dynamical systems, September 2003.
- John Lott, *Limit Sets as Examples in Noncommutative Geometry*, K-Theory **34** (2005), 283–326.
- Qiuyu Ren, *Linear Fractional Transformations on the Berkovich Projective Line* (en).