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The principal motivations

@ The following diagram in the category of Banach *-algebras
commutes

AL —45 A
ok
Al Dyl
@ We are interested in the question of convergence in norm
| - || when A — 0.

@ Discretized operators do not commute in general i.e.
f(dng) # (dng)f-

@ The topology of discrete spaces (lattices, triangulations,...) is
ill-behaved.

Damien Tageddine On sequences of spectral triples 2/22



Spectral triple

Definition (Spectral triple)
A spectral triple is the data (A, H, D) where:

(i) Ais a real or complex x-algebra;

(i) H is a Hilbert space and a left-representation (7, ) of A in
B(H);
(iii) D is a Dirac operator, which is a self-adjoint operator on .

We require in addition that the Dirac operator satisfies the
following conditions

a) The resolvent (D — \)~!, A ¢ R, is a compact operator on H.
b) [D,a] € B(H), for any a € A.
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The 2-points space

Let a = (a1, a2) € M»(C) and the Dirac operator:

_i 0 1 _i 0 dp — a1
D_h<—1 0)’ da_h(al—az 0 )

If we define the following distance:
d(x,y) = jgg{la(X) —a(y)l - ID; 4]l <1}
then one can show that for X = {x, y}
d(x,y) = h.

Without prior assumption, we see the emergence of a small
parameter A in place of the usual distance Ax.
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Preliminary results

The centre of approximately finite C*-algebras exhaust all possible
abelian separable C*-algebras.

Theorem (Bratteli)

Let 3 be an abelian separable C*-algebra with unit. Then there
exists an approximately finite-dimensional C*-algebra 2 having 3
as center.

One can associate a C*-algebra A to a triangulation.

Theorem (Behncke and Leptin)

For any (finite) partially ordered set X, there exists a C*-algebra A
such that the primitive spectrum Prim(A) is homeomorphic to X.
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Preliminary results

@ Associate a separable Hilbert space H(X) to the space X and
attach to every point x € X a subspace H(x) C H(X):

H(x) = H (x) ® HT(x).

@ Associate to each point x € X an operator algebra A(x)
acting on H(x), extended by zero to the whole space H(X):

A(x) = 1y ® K(HT (x)).
@ Build the C*-algebra A(X) associated to X:

A(X) = @ A(x) actingon H(X) = @ H(x).

xeX xeX
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Sequences of spectral triples

We can draw the following commuting diagram:

(oM > Y i
A —24 A, I VoA T Ao
o | |
X X . X . X
1 o12 2 ®23 Di-1i ! i1 &

The spectrum Spec(A) equipped with the hull-kernel topology is
homeomorphic to the space X, and

lim Spec(A;) ~ Spec(li_rp Aj).
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Sequences of spectral triples

The algebra of continuous functions on the manifold M can be
obtained as the centre of the limit algebra A.

The limit C*-algebra A is isometrically *-isomorphic to
C*-algebra of the complex valued continuous sections I'(M, Ax,)
over the manifold M. The centre Z(A) is isomorphic to C(M, C).

A similar result is obtained for the representation space L2(M).

The Hilbert space L?>(M) of square integrable functions over the
manifold M is a subspace of Hy,:

Hoo = L2(M) @ H.
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Dirac operators associated to a triangulation

Definition
Let D € M>,(C) be an odd and hermitian matrix and let wj; be

the coefficients of the block D~. We say that D is an admissible
Dirac operator associate to X if it satisfies the additional condition:

a) vertices i and j do not share an edge < wj; =0, Vi, j € I,

b) the eigenvalues j, satisfy the asymptotic p,(D) = O(h™1).

The prototypical example is given by the combinatorial Dirac
operator, for which:
1 i~y
Wijj -= { J

0 otherwise.

Damien Tageddine On sequences of spectral triples 9/22



A first example on the lattice

We define the following algebra A and Dirac operator D:

B om i 0o D
A= Mon(C), H=C2m D_h<D+ 0)

with (D7)* = —D~ and where D~ is given by

0 1 o --- 0

D™ = 0
1

0 0
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A first example on the lattice

We consider a sequence of the block matrix block matrices D;

i( 0 D
D”‘h(D,+ 0>

Then the limit operator Dy, acts on Ay, by the commutator:

[D007a] = ([Do,ao], [D1>al]> T 7[Di7‘3i]7 : ) € H M{m,(c)'
iel

We can compute the spectrum of the commutator [Do, al:
) Ao ([Do: a]) = Uioa,([Di, ai])

i) || [Doos a] || = [l dealloo
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A first example on the lattice

Proposition (Spectral convergence)

There exists a finite measure (v and a unitary operator
U: [3(R) = L*(R, du) (1)
such that,
U[D,alU ¢ = %qﬁ, Vo € [2(R), (2)
Moreover, the norm of [D, a] is given by ||[D, a] || = ||dca||co-

This result can be generalized to the d-dimensional lattice A. The
C*-algebra A(A) and the Dirac operator D are obtained through
tensor products:

AN = A(L) @ --- @ A(L), n_21® DM ... @1.
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Beyond the lattice case

@ It is known that the canonical spectral triple
(C>®(M), L%(S), D) on a spin manifold M encodes the metric.
The geodesic distance between any two points p and g on M
is given by

nf [ e, 0.0t = svp {17() — F(@)] = 11D.1] <1}

@ As it defined the combinatorial Dirac operator does not
depend on the metric g of the manifold M.

@ Beyond the case of the lattice, the eigenvalues of the
commutator [D, a] are not immediately accessible.
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Dirac operator as stochastic matrix

If we consider the more general definition of D given by

wi#0 i~
(D)UIZ{ ’

0 otherwise.

where the coefficients wj; are obtained from a density distribution,
a first approach would be to study the convergence in average:

1 n
Shn(a) = - Z ek {Dﬁ‘(, ak} e;
k=1

with (ex) a family of projectors.
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F-P Equation and the Von-Mises Fisher distribution

Consider the one-parameter family of meausres (jix,¢)¢ satisfy the
parabolic equation:

8,UJx,t
ot

= LA,b(:ux,t) (3)
t=0

in the weak sense, with the operator L, ;

Lanf = tr(AD?*f) + (b,Vf), f e CZ(M) (4)
We consider the von Mises-Fisher distribution on the unit sphere
S given by:
pd(x;s,B) = Ca(B)exp (—f (s, x)) (5)
where 8 >0, ||s|| =1 and Cy4(f3) is a normalization constant.
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The Von-Mises Fisher distribution

We show that the von Mises-Fisher distribution satisfies the
Fokker-Planck equation:

8ps,t

ot = aS(/)S,t)-

t=0

The distribution can be defined on a normal neighbourhood U, of
the manifold M and satisfies a Fokker-Planck equation.

Proposition
The following limit holds at a point p € M

9 (cdwt) / e$”(5"’x)f(><)u(><)>

= 9i(F)(p)-
t=0

ot

P
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A first convergence result

We defined the family of projectors e, such that:

0 * ok wf;j * ok
*
ekDXkek:

xK.s;
and the coefficients wj; are defined wfj(h) = Cq(5h) exp <—< ’};S’>).
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A first convergence result

Let {Xil;}:_l be a sequence of i.i.d. sampled points from a uniform
distribution on an open normal neighbourhood Up of a point p in a
compact Riemannian manifold M of dimension d. Let 3,7" be the
associated operator given by:

Sh" : Z [Dé((, ak} eﬁ.

Put h, = n=%, where o > 0, then in probability:

lim sup |W o $}(a)(p) — [P, 3] (p)| = 0.

=00 5¢F
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Laplace operator

Let {x;}!_, be a sequence of i.i.d. sampled points from a uniform
distribution on an open normal neighbourhood U, of a point p in a
compact Riemannian manifold M of dimension d. Q' be the
associated operator given by:

n d+1 <X,k751>
Qln(a)(p) = nh2 Z Z/\2 exp( - )a;j(ak).

k=1 j=1

Put h,, = n=%, where a > 0, then in probability:

Jim_sup |041(2)(p) — Aw(a)(p)| =0 (6)
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Conclusion

Given a compact spin manifold (M, g), we have the following:

@ associate to each K; a C*-algebra A; with limit C(M),
e define a differential structure da = [D;, a] on each A;,
o for the lattice, (D;) converges to the usual Dirac operator Op.
@ Using the same tools than the continuous case
(C, L2(M), Om).

Future works:

@ convergence results of the (D;) to the classical Dirac operator,

@ provide a unifying framework in the langage of spectral triples.
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