Noncommutative geometry on discrete spaces

Damien Tageddine

Department of Mathematics and Statistics, McGill University

2023 CMS Summer Meeting, June 4th, 2023

The principal motivations

• The following diagram in the category of Banach *-algebras commutes

- We are interested in the question of convergence in norm $\|\cdot\|_{\hbar}$ when $\hbar \to 0$.
- Discretized operators do not commute in general i.e. $f(d_{\hbar}g) \neq (d_{\hbar}g)f$.
- The topology of discrete spaces (lattices, triangulations,...) is ill-behaved.

何 ト イ ヨ ト イ ヨ ト

Definition (Spectral triple)

A spectral triple is the data $(\mathcal{A}, \mathcal{H}, D)$ where:

- (i) A is a real or complex *-algebra;
- (ii) \mathcal{H} is a Hilbert space and a left-representation (π, \mathcal{H}) of A in $\mathcal{B}(\mathcal{H})$;

(iii) D is a *Dirac operator*, which is a self-adjoint operator on \mathcal{H} .

We require in addition that the Dirac operator satisfies the following conditions

a) The resolvent $(D - \lambda)^{-1}$, $\lambda \notin \mathbb{R}$, is a compact operator on H.

b)
$$[D, a] \in B(\mathcal{H})$$
, for any $a \in A$.

The 2-points space

Let $a = (a_1, a_2) \in M_2(\mathbb{C})$ and the Dirac operator: $D = \frac{i}{\hbar} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad da = \frac{i}{\hbar} \begin{pmatrix} 0 & a_2 - a_1 \\ a_1 - a_2 & 0 \end{pmatrix}.$

If we define the following distance:

$$d(x, y) = \sup_{a \in A} \{ |a(x) - a(y)| : ||[D, a]|| \le 1 \}$$

then one can show that for $X = \{x, y\}$

$$d(x,y)=\hbar.$$

Without prior assumption, we see the emergence of a small parameter \hbar in place of the usual distance Δx .

The centre of approximately finite C^* -algebras exhaust all possible abelian separable C^* -algebras.

Theorem (Bratteli)

Let \mathfrak{Z} be an abelian separable C^* -algebra with unit. Then there exists an approximately finite-dimensional C^* -algebra \mathfrak{A} having \mathfrak{Z} as center.

One can associate a C^* -algebra A to a triangulation.

Theorem (Behncke and Leptin)

For any (finite) partially ordered set X, there exists a C^* -algebra A such that the primitive spectrum Prim(A) is homeomorphic to X.

• • = • • = •

Preliminary results

 Associate a separable Hilbert space H(X) to the space X and attach to every point x ∈ X a subspace H(x) ⊆ H(X):

$$H(x) = H^-(x) \otimes H^+(x).$$

Associate to each point x ∈ X an operator algebra A(x) acting on H(x), extended by zero to the whole space H(X):

$$A(x) = 1_{H^-(x)} \otimes \mathcal{K}(H^+(x)).$$

• Build the C^* -algebra A(X) associated to X:

$$A(X) = \bigoplus_{x \in X} A(x)$$
 acting on $H(X) = \bigoplus_{x \in X} H(x)$.

Sequences of spectral triples

We can draw the following commuting diagram:

Theorem

The spectrum $Spec(A_{\infty})$ equipped with the hull-kernel topology is homeomorphic to the space X_{∞} and

$$\lim_{\leftarrow} Spec(A_i) \simeq Spec(\lim_{\rightarrow} A_i).$$

The algebra of continuous functions on the manifold M can be obtained as the centre of the limit algebra A_{∞} .

Theorem (T.)

The limit C^* -algebra A_{∞} is isometrically *-isomorphic to C^* -algebra of the complex valued continuous sections $\Gamma(M, A_{\infty})$ over the manifold M. The centre $Z(A_{\infty})$ is isomorphic to $C(M, \mathbb{C})$.

A similar result is obtained for the representation space $L^2(M)$.

Theorem (T.)

The Hilbert space $L^2(M)$ of square integrable functions over the manifold M is a subspace of H_{∞} :

$$H_{\infty}=L^2(M)\oplus H.$$

Definition

Let $D \in M_{2m}(\mathbb{C})$ be an odd and hermitian matrix and let ω_{ij} be the coefficients of the block D^- . We say that D is an admissible Dirac operator associate to X if it satisfies the additional condition:

a) vertices *i* and *j* do not share an edge $\Leftrightarrow \omega_{ij} = 0, \ \forall i, j \in \mathfrak{M},$

b) the eigenvalues μ_n satisfy the asymptotic $\mu_n(D) = O(\hbar^{-1})$.

The prototypical example is given by the *combinatorial Dirac operator*, for which:

$$\omega_{ij} := \left\{ egin{array}{cc} 1 & ext{if } i \sim j, \ 0 & ext{otherwise}. \end{array}
ight.$$

A first example on the lattice

We define the following algebra A and Dirac operator D:

$$A = M_{2m}(\mathbb{C}), \quad H = \mathbb{C}^{2m}, \quad D = rac{i}{\hbar} \left(egin{array}{cc} 0 & D^- \\ D^+ & 0 \end{array}
ight)$$

with $(D^+)^* = -D^-$ and where D^- is given by

$$D^{-} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

•

伺 ト イヨ ト イヨト

A first example on the lattice

We consider a sequence of the block matrix block matrices D_i

$$D_i = \frac{i}{\hbar} \left(\begin{array}{cc} 0 & D_i^- \\ D_i^+ & 0 \end{array} \right)$$

Then the limit operator D_{∞} acts on A_{∞} by the commutator:

$$[D_{\infty}, a] = ([D_0, a_0], [D_1, a_1], \cdots, [D_i, a_i], \cdots) \in \prod_{i \in I} M^-_{2m_i}(\mathbb{C}).$$

We can compute the spectrum of the commutator $[D_{\infty}, a]$:

i)
$$\sigma_{A_{\infty}}([D_{\infty}, a]) = \overline{\bigcup_i \sigma_{A_i}([D_i, a_i])}$$

ii) $\|[D_{\infty}, a]\| = \|d_{\varsigma}a\|_{\infty}$

Proposition (Spectral convergence)

There exists a finite measure μ and a unitary operator

$$U: L^2(\mathbb{R}) \to L^2(\mathbb{R}, d\mu) \tag{1}$$

such that,

$$U[D,a]U^{-1}\phi = \frac{da}{dx}\phi, \quad \forall \phi \in L^2(\mathbb{R}),$$
(2)

Moreover, the norm of [D, a] is given by $|| [D, a] || = || d_c a ||_{\infty}$.

This result can be generalized to the *d*-dimensional lattice Λ . The *C**-algebra $A(\Lambda)$ and the Dirac operator *D* are obtained through tensor products:

$$A(\Lambda) = A(L) \otimes \cdots \otimes A(L), \quad D_n = \sum_{k=1}^d 1 \otimes \cdots \otimes D_n^{(k)} \otimes \cdots \otimes 1.$$

It is known that the canonical spectral triple
 (C[∞](M), L²(S), D) on a spin manifold M encodes the metric.
 The geodesic distance between any two points p and q on M is given by

$$\inf_{\gamma} \int_0^1 \sqrt{g_{\gamma}(\dot{\gamma}(t),\dot{\gamma}(t))} dt = \sup_{f \in \mathcal{A}} \left\{ |f(p) - f(q)| \ : \ \| [D,f] \| \leq 1 \right\}$$

- As it defined the combinatorial Dirac operator does not depend on the metric g of the manifold M.
- Beyond the case of the lattice, the eigenvalues of the commutator [*D*, *a*] are not immediately accessible.

If we consider the more general definition of D given by

$$(D)_{ij} := \begin{cases} \omega_{ij} \neq 0 & \text{if } i \sim j, \\ 0 & \text{otherwise.} \end{cases}$$

where the coefficients ω_{ij} are obtained from a density distribution, a first approach would be to study the convergence in average:

$$S_n^{\hbar_n}(a) := rac{1}{n} \sum_{k=1}^n e_k \left[D_X^k, a_k
ight] e_k^*$$

with (e_k) a family of projectors.

F-P Equation and the Von-Mises Fisher distribution

Consider the one-parameter family of meausres $(\mu_{x,t})_t$ satisfy the parabolic equation:

$$\left. \frac{\partial \mu_{x,t}}{\partial t} \right|_{t=0} = L_{A,b}(\mu_{x,t}) \tag{3}$$

in the weak sense, with the operator $L_{A,b}$

$$L_{A,b}f = tr(AD^2f) + \langle b, \nabla f \rangle, \quad f \in C^{\infty}_{c}(M)$$
(4)

We consider the von Mises-Fisher distribution on the unit sphere \mathbb{S}^d given by:

$$\rho_d(x; s, \beta) = C_d(\beta) \exp\left(-\beta \langle s, x \rangle\right) \tag{5}$$

where $\beta \geq 0$, $\|s\| = 1$ and $C_d(\beta)$ is a normalization constant.

We show that the von Mises-Fisher distribution satisfies the Fokker-Planck equation:

$$\left.\frac{\partial \rho_{s,t}}{\partial t}\right|_{t=0} = \partial_s(\rho_{s,t}).$$

The distribution can be defined on a normal neighbourhood U_p of the manifold M and satisfies a Fokker-Planck equation.

Proposition

The following limit holds at a point $p \in M$

$$\frac{\partial}{\partial t}\left(C_d(\beta_t)\int_{U_p}e^{\widehat{\Phi}_{\beta}(s_i,x)}f(x)\mu(x)\right)\bigg|_{t=0}=\partial_i(f)(p).$$

A first convergence result

We defined the family of projectors e_k such that:

and the coefficients ω_{ij} are defined $\omega_{ij}^k(\hbar) = C_d(\beta_\hbar) \exp\left(-\frac{\langle x_i^k, s_j \rangle}{\hbar}\right)$.

Theorem (T.)

Let $\left\{x_{i_0}^k\right\}_{k=1}^n$ be a sequence of *i.i.d.* sampled points from a uniform distribution on an open normal neighbourhood U_p of a point *p* in a compact Riemannian manifold *M* of dimension *d*. Let $\widehat{S}_n^{\hbar_n}$ be the associated operator given by:

$$\widehat{S}_n^{\hbar_n}(a) := rac{1}{n} \sum_{k=1}^n e_k \left[D_X^k, a_k
ight] e_k^*.$$

Put $\hbar_n = n^{-\alpha}$, where $\alpha > 0$, then in probability:

$$\lim_{n\to\infty}\sup_{a\in F} \left|\Psi\circ\widehat{S}_n^{\hbar_n}(a)(p)-[\mathcal{D},a](p)\right|=0.$$

Theorem (T.)

Let $\{x_i\}_{i=1}^n$ be a sequence of i.i.d. sampled points from a uniform distribution on an open normal neighbourhood U_p of a point p in a compact Riemannian manifold M of dimension d. $\Omega_n^{\hbar_n}$ be the associated operator given by:

$$\Omega_n^{\hbar_n}(a)(p) = \frac{C_d(\beta_{\hbar})}{n\hbar^2} \sum_{k=1}^n \sum_{j=1}^{d+1} \lambda_j^2 \exp\left(-\frac{\left\langle x_i^k, s_j \right\rangle}{\hbar}\right) \alpha_{ij}(a_k).$$

Put $\hbar_n = n^{-\alpha}$, where $\alpha > 0$, then in probability:

$$\lim_{n\to\infty}\sup_{a\in F} \left|\Omega_n^{\hbar_n}(a)(p) - \Delta_M(a)(p)\right| = 0$$
 (6)

Given a compact spin manifold (M, g), we have the following:

- associate to each K_i a C^* -algebra A_i with limit C(M),
- define a differential structure $da = [D_i, a]$ on each A_i ,
- for the lattice, (D_i) converges to the usual Dirac operator ∂_M .
- Using the same tools than the continuous case $(C^{\infty}, L^{2}(M), \partial_{M}).$

Future works:

- convergence results of the (D_i) to the classical Dirac operator,
- provide a unifying framework in the langage of spectral triples.

Thank you !

æ

▶ ▲ 문 ▶ ▲ 문 ▶

D. Tageddine, J-C. Nave Noncommutative geometry on Infinitesimal Spaces submitted, arXiv:2209.12929.

D. Tageddine, J-C. Nave Statistical Fluctuation of Infinitesimal Spaces submitted, arXiv:2304.10617.

 Balachandran, A. P. and Bimonte, G. and Ercolessi, E. and Landi, G. and Lizzi, F. and Sparano, G. and Teotonio-Sobrinho, P.
 Noncommutative Lattices as Finite Approximations and Their Noncommutative Geometries Journal of Geometry and Physics (1996), pp. 163-194.

References

M. Khalkhali and N. Pagliaroli

Spectral Statistics of Dirac Ensembles Journal of Mathematical Physics (2022).

A. Connes

Noncommutative geometry *Academic Press (1994).*

🛯 O. Bratteli

The center of approximately finite-dimensional C^* -algebras Journal of Functional Analysis (1975), pp. 195-202.

H. Behncke and H. Leptin
 C*-algebras with finite duals
 Journal of Functional Analysis (1973), pp. 253-262