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A Brief History: Structure and Discretization

Whitney (1957), Geometric Integration Theory

C : Ωp(M) → Cp(K ,Z), C(ω) := σ 7→ ⟨ω, σ⟩
W : C0(K ,Z) → Ω0(M), W(xi) = λi

Harlow and Welch, MAC grid (1965), K. Yee, Yee’s lattice (1966)

Figure: MAC grid (left) and Yee’s lattice (right).
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A Brief History: Structure and Discretization

Arnold et al. (2000’s) Finite Element Exterior Calculus
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Hirani (2003), Desbrun, Hirani, Leok, Marsden et al. (2005) Discrete
Exterior Calculus

(K , Ω∗(K ), d), ∗ : Ωk(K ) → Ωd−k(∗K )

Question: Identify a unifying picture ?
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Objectives

Objectives:

1) Describe a differential calculus using the following ingredients

An algebra of ”functions” : A

A differential map d : Leibniz rule, self-adjoint, exterior algebra ...

2) This differential structure is an approximation of the continuous one.
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Motivation

Examples:

Let (M, g) be Riemannian manifold: (C∞(M), d , Ω∗(M)).

Let d an elliptic operator, W a polynomial algebra: (W , d , Ω∗(W ))

→ (FEC model)

Let K a simplicial complex: (Ck(K ), d)

→ (DEC model)
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Universal Differential Algebra

Let A be an associative k-algebra, then one can define the multiplication
map

µ : A ⊗ A → A, µ(a ⊗ b) = ab

Then one can define the universal graded differential algebra as follow:

Ω1(A) = ker(µ), da := 1 ⊗ a − a ⊗ 1,

Ωk(A) = {a1da2da3 · · · dak , ai ∈ A} , Ω∗(A) =
⊕

k
Ωk(A).

If in addition, we require that A is equipped with an involution ∗

(da)∗ = d(a∗).
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C ∗-Algebra and Representations

In order to be able to talk about convergence, we need a norm.
Let A be a Banach algebra with an involution such that

∥a∗a∥ = ∥a∥2 ∀a ∈ A.

The algebra A is then called a C∗-algebra.
A representation (π, H) is a ∗-homomorphism:

π : A → B(H).

Theorem (Gelfand-Naimark-Seagal)
Any C∗-algebra A can be identified as a closed ∗-subalgebra of the algebra
of bounded operator B(H) on a separable Hilbert space H.
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Spectral Triple

One then needs to introduce a derivation map d on B(H) such that:

(da)∗ = d(a∗) (self-adjoint),
d(ab) = d(a)b + ad(b) (Leibniz rule).

For that purpose, we define a self-adjoint operator D : H → H and extend
the representation π : A → B(H) to a representation of Ω(A) in B(H):

π(da) = [D, π(a)]

The data (A, H, D) is called a spectral triple, and D a Dirac operator.
The definition of a spectral triple has been introduced by A. Connes
Noncommutative Geometry (1994).
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Manifolds and Triangulations

Let (M, g) be a compact smooth Riemannian manifold.

Theorem (Whitney)
Every k-smooth manifold M has k-smooth triangulation.

Let (Ki) be a sequence of triangulations such that

K1 > K2 > · · · > Ki > · · ·

ϕij : Kj → Ki , i < j .

Lemma
The topological space M is homeomorphic to the subspace of all the
maximal points of the inverse limit of the system (Ki , ϕij).
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C ∗-Algebra and Space

We recall the interplay between C∗-algebra and topological spaces:

Theorem (Gelfand)
Let A be a commutative unital C∗-algebra, then there exists a compact
Hausdorff topological space X such that:

A ≃ C(X ).

Claim
One can associate to every C∗-algebra A a topological space X , namely its
spectrum Spec(A).

We have the following identification:

Spec(A) ≃−→ K
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Take It to the Limit

We can draw the following commuting diagram:

A1 A2 · · · Ai · · · A∞

K1 K2 · · · Ki · · · K∞

Theorem A
The limit C∗-algebra A∞ is isometrically ∗-isomorphic to C∗-algebra of the
complex valued continuous sections Γ(M, A∞) over the manifold M. The
center Z (A∞) is isomorphic to C(M,C).
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Take it to the limit

We extend this construction to the representation Hi of the algebra Ai .
We have the following sequence:

H1 H2 · · · Hi · · · H∞

Theorem B
The Hilbert space L2(M) of square integrable functions over the manifold
M is a subspace of H∞:

H∞ = L2(M) ⊕ H.
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So Far...

We have introduced the following:

A sequence of C∗-algebras Ai with limit C(M)

A sequence of representations Hi with limit L2(M)

A so-called Dirac operator D and an exterior algebra ΩD(A)

If (M, g) is a compact spin manifold then data (C∞(M), L2(S), ∂M) is
enough to recover the geometric structure.
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A First Example: the Lattice

We define the following algebra A and Dirac operator D:

A = M2m(C), H = C2m, D = i
h

(
0 D−

D+ 0

)

with (D+)∗ = −D− and where D− is given by

D− =



0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... . . . 1
0 · · · · · · · · · 0


.
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A First Example: the Lattice

Proposition 1
For every element da ∈ Ω1

D(A), we have

σ(da) =
{

± i
h (λi+1 − λi) : 0 ≤ i ≤ d − 1

}
Moreover, we have the commutativity relation

[da, db] = 0, ∀a, b ∈ A.
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Case n = 2

Let a = (a1, a2) ∈ M2(C) and the Dirac operator:

D = i
h

(
0 1

−1 0

)
, da = i

h

(
0 a2 − a1

a1 − a2 0

)
.

If we define the following distance:

d(x , y) = sup
a∈A

{|a(x) − a(y)| : ∥[D, a]∥ ≤ 1}

then one can show that for X = {x , y}

d(x , y) = h.

Without prior assumption, we see the emergence of a small parameter h in
place of the usual distance ∆x .
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A First Example: the Lattice

Let ρ be a positive matrix with positive eigenvalues (µk) such that

Tr(ρ) =
∑

k
µk = 1

Then ρ is called a density matrix.

Proposition 2
Let ρ be a density matrix, then the expectation value is given by

< da >ρ= Tr(ρda) = i
h
∑

k
µk(ak+1 − ak)

for any element da ∈ Ω1
D(A).
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General Case and Direct Limits

In the general case of a triangulation Ki , we define Di as the block matrix

Di = i
h

(
0 D−

i
D+

i 0

)

where D−
i is the adjacency matrix associated to Ki .

Then the limit operator D∞ acts on A∞ by the commutator:

[D∞, a] = ([D0, a0], [D1, a1], · · · , [Di , ai ], · · · ) ∈
∏
i∈I

M−
2mi

(C).

Proposition 3 (lattice)
i) σA∞([D∞, a]) = ∪iσAi ([Di , ai ])
ii) ∥ [D∞, a] ∥ = ∥dca∥∞
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Conclusion

We have the following results: given a compact spin manifold (M, g),

associate to each Ki a C∗-algebra Ai with limit C(M),
define a differential structure da = [Di , a] on each Ai ,
for the lattice, (Di) converges to the usual Dirac operator ∂M .
Using the same tools than the continuous case (C∞, L2(M), ∂M) !

Future works:
formulate FEC and DEC models in this framework,
derive non-trivial discretizations (MAC, Yee..),
convergence results of the (Di) to the classical Dirac operator,

Stay tuned !
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