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Abstract

This paper is a follow-up on the noncommutative differential geometry on
infinitesimal spaces [19]. In the present work, we extend the algebraic conver-
gence from [19] to the geometric setting. On the one hand, we reformulate the
definition of finite dimensional compatible Dirac operators using Clifford alge-
bras. This definition also leads to a new construction of a Laplace operator.
On the other hand, after a brief introduction of the Von Mises-Fisher distribu-
tion on manifolds, we show that when the Dirac operators are interpreted as
stochastic matrices, the sequence (Dn)n∈N converges in average to the usual
Dirac operator on a spin manifold. The same conclusion can be drawn for the
Laplace operator.
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1 Introduction
The approximation theory of partial differential equations (PDE) can take various
aspects. Traditionally, numerical analysis proposes different strategies to discretize
operators. Depending on the situation, finite differences, finite elements, finite vol-
umes, or spectral methods may be utilized. In this process, the focus is usually
analytical. That is, the aim is to control asymptotic convergence of the approx-
imation error in a small parameter (∆t,∆x, ...). In fact, only a small subset of
discretization techniques aim to preserve certain underlying structures (e.g. geo-
metric, algebraic, etc. . . ) of the continuous operator at the discrete level. The
present work is a follow-up to [19], in which we provided a general framework to
tackle this question.

In our paper, we are interested in the so-called family of compatible discretiza-
tion, also called geometric discretization. The focus of these approximations is that
discrete theory can, and indeed should, possess a geometric description on its own
right. Among various types of approaches, one may mention the finite element
exterior calculus [1], the discrete exterior calculus [10], methods enforcing group
symmetries such as in [4, 5], or conservation laws such as those in [20, 21]. Since
a fair amount of the theory of PDEs is developed on (subdomain of) Rn, the later
approaches are, at least in their original incarnations, focused on Euclidean spaces.
However, examples of partial differential equations arise in a wide variety of ap-
plications. As such, extensions of some of the previously mentioned techniques to
non-Euclidean domains remains a challenge. Hence, a crucial question in the theory
of discretization, is the generalization of classical geometric approaches to smooth
manifolds. Also, and still on the topic of convergence analysis of finite elements, [22]
studies the cotangent discretization of the Laplace-Beltrami operator; the key result
is that mean cruvature vectors converge in the sense of distributions, but fail to
converge in L2. Finally, there are the central research advances on diffusion maps in
[15, 7] and the one on random point clouds in [2, 3]. As one can see, approaching the
problem of compatible discretizations on manifolds rests heavily on the initial setup
chosen to tackle it. The various results are therefore quite different, and perhaps
appear disconnected from one another.

In our recent work [19], we derive a general framework to describe finite differ-
ence calculus. This framework relies on the tools of C∗-algebras and noncommu-
tative differential geometry (see [8, 9]). More specifically, starting uniquely from a
differentiable manifold M , we exhibit a discrete space X and its associate algebra
A(X) playing the role of an algebra of function. Then, using the natural setting
of C∗-algebra, and its representation theory, we define a differential calculus on the
space X. The corner stone of this definition is a so-called Dirac operator. Finally,
this construction allows us to study spectral convergence with respect to a positive
parameter h in the case where X is a lattice. Doing so may provide a general dis-
crete construction of differential operators on smooth manifolds.
In the present work, we aim at studying the relation between the Dirac operator,
D defined in [19] and its continuous counterpart D, thus extending our previous
construction beyond the case of a lattice.

To this end, we recall the definition of the derivation d given as a commutator
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with D:
da = [D, a] , (1)

where a is an element of a C∗-algebra. This operator is analogous to the continuous
Dirac operator D. Indeed, in the case of a Riemannian manifold (M, g) with a spinor
bundle S !M , a Dirac operator D on S is a differential operator whose principal
symbol is that of c ◦ ddR, where c is the quantization map. In particular, for any
a ∈ C∞(M), one has:

[D, a] = ic ◦ ddR(a). (2)

The operator D is defined using the Clifford algebras (see [18, Def. 5.5.12 p.406]
for a complete definition). Indeed, in local coordinates on a normal neighbourhood
centred at a point p:

Dp =
d∑
j=1

ej
∂

∂xj

∣∣∣∣
p

(3)

where {ej | j = 1, . . . , d} is an orthonormal local frame embedded in a Clifford
algebra. In [19] , we gave the following definition for the operator D :

D =
∑
i<j

ωijeij, ωij ∈ C (4)

where the eij are merely matrix elements in M2n(C) associated to a graph. In order
to obtain an analogous description of (37) in terms of Clifford elements, in the
present work, we redefine finite dimensional Dirac operator as an element in the
algebra M2(C) ⊗ U(g), where U(g) is the universal Lie algebra associated to a Lie
algebra g. In addition, this definition leads to a construction of a Laplace operator
using the inclusion map U(g)! Cl(g), where Cl(g) is the Clifford algebra on g.

Now, to a fixed triangulation X, one can associate a collection of Dirac operators
(Dt)t∈N, where each matrix Dt can be seen as an irreducible matrix associate to the
graph G obtained from X. It has n vertices labelled 1, . . . , n, and there is an edge
from vertex i to a vertex j precisely when ωij 6= 0. More precisely, in the probabilistic
setting, a vertex i is connected to a vertex j with probability ωij.
Then, if we let at ∈ Dom(Dt) and define the average operator,

SN =
1

N

N∑
t=1

et [Dt, at] e
∗
t , (5)

where (et)t∈N is some family of projections. The key here is to choose the coefficients
ωtij associated to Dt in order for the average operator SN to converge to [D, a] as
N !∞. The main result of the present work is given by the following theorem.

Theorem 1.1 (Main result). Let
{
xki0
}n
k=1

be a sequence of i.i.d. sampled points
from a uniform distribution on a open normal neighbourhood Up of a point p in a
compact Riemannian manifold M of dimension d. Let S̃~n

n be the associated operator
given by:

Ŝ~n
n : C∞(Up)!M2(R)⊗ U(gl2mn), Ŝ~n

n (a) :=
1

n

n∑
k=1

ek
[
Dk
X , ak

]
e∗k. (6)
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Put ~n = n−α, where α > 0, then for a ∈ C∞(Up), in probability:

lim
n!∞

Ψ ◦ Ŝ~n
n (a) = [D, a] (p).

Additionally, a similar result is proved for the case of the Laplace operator. These
results generalize the previous ones obtained in [19] beyond the case of a lattice. It
is worth mentioning at this point, in the realm of noncommutative geometry, the
work of [14], where in the same spirit (though in different context and approaches)
the Dirac operators are defined as random matrices and form a so-called Dirac
ensembles. More specifically, the coefficients of the N × N matrix D are random
variables, following a prescribed density function; the spectral properties in the
large N limit are then explored. In the present work however, the Dirac operator
is associated to a graph and the density functions of the coefficients are specifically
chosen to obtain a convergence result with respect to D.

This paper is arranged as follows. In Section 2, we start with a presentation of the
main results of [19]. We then introduce Clifford algebras and universal enveloping
algebras in order to define and study Dirac operators on finite dimensional spaces.
In Section 3, we then introduce the Fokker-Planck equation, the Von Mises-Fisher
distribution, and their generalization to manifolds. This is followed by some tech-
nical lemmas required to define the coefficients ωij necessary to prove Theorem 1.1.
In Section 4, we prove our main result, Theorem 1.1, and we obtain as a by-product
a convergence result for the Laplacian operator.

2 Dirac operators in the algebraic setting
In this section, we introduce two of the main algebraic tools that we are going to
use in this study: the Clifford algebras and the universal enveloping Lie algebra.
We then define and study Dirac operators on finite spectral triples in terms of root
vectors of a Lie algebra g.

2.1 Noncommutative Geometry on Infinitesimal spaces

In the research paper [19], we show that a discrete topological space X can be
identified to the spectrum Spec(A) of a C∗-algebra A. Starting with a Rieman-
nian manifold (M, g), we construct an inverse system of triangulations, (Kn) which
become sufficiently fine for large n. Using the Behncke-Leptin construction, we as-
sociate to each Kn a C∗-algebra An such that the triangulation Kn is identified with
the spectrum Spec(An). We then form an inductive system (An) with limit A∞.

Theorem 1. The spectrum Spec(A∞) equipped with the hull-kernel topology is home-
omorphic to the space X∞ and

lim
 
Spec(Ai) ' Spec(lim

!
Ai). (7)

We then show that the centre of A∞ is isomorphic to the space of continuous
function C(M). In this sense, any element g ∈ C(M) can be uniformly approximated
arbitrarily closely by elements an in the central subalgebras An.
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Theorem 2. The space of continuous function C(M) is approximated by the system
of commutative subalgebras (An, φ

∗
n,∞) in the following sense:

C(M) =
⋃
n∈N

φ∗n,∞(An) ∩ C(M). (8)

In addition, the sequence of representations (Hn) is also considered as a direct
system with limit H∞ containing the space of square integrable functions L2(M).
Finally, we define the spectral triples (A, h, Dn), where Dn is a so-called Dirac op-
erator. We show that under certain conditions, the sequence (Dn) converges to the
multiplication operator by the de Rham differential dca.

Theorem 3. (Spectral convergence) There exists a finite measure µ and a unitary
operator

U : L2(R)! L2(R, dµ) (9)

such that,

U [D, a]U−1φ =
da

dx
φ, ∀φ ∈ L2(R), (10)

Moreover, the norm of the commutator is given by ‖ [D, a] ‖ = ‖dca‖∞.

Thus, we have built a correspondence between a given triangulation X and a
Dirac operator D: the non-zero coefficients of D are determined by the connectiv-
ity between vertices of the graph. We showed that this is however not enough to
represent the metric of the manifold. Thus, we ask now the question on how to
set the coefficients ωij of D so that at the limit (in the sense of (44)) the sequence
converges.

2.2 Clifford algebras

Let V be a finite dimensional vector space over a commutative field K of character-
istic zero endowed with a quadratic form q. Let T (V ) be the tensor algebra over V .
Consider the ideal Iq in T (V ) generated by all elements of the form v⊗ v+ q(v) for
v ∈ V . Then the quotient algebra

Cl(V, q) = T (V )/Iq. (11)

is the Clifford algebra associated to the quadratic space (V, q).
Moreover, we can choose any orthonormal basis Zi of V with respect to q as a set
of generators of Cl(V ). We then have the relations,

ZiZj = −ZjZi, i 6= j, Z2
i = −1. (12)

Then the following set

Zi1Zi2 · · ·Zik 1 ≤< i1 < i2 < · · · < ik ≤ n = dimV (13)

spans Cl(V ). In addition, given a q-orthonormal basis Zi of V , the mapping

1 7! 1, Zi1 · · ·Zik 7! Zi1 ∧ · · · ∧ Zik (14)

yields an isomorphism of vector spaces Cl(V, q) '
∧
V .
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2.3 Dirac operators in the Clifford algebra setting

Let k = R,C and let g be a Lie algebra over k. We start by recalling the definition
of the universal enveloping algebra.

Definition 2.1. The universal enveloping algebra of g is a map ϕ : g! U(g), where
U(g) us a unital associative algebra, satisfying the following properties:

1) ϕ is a Lie algebra homomorphism, i.e. ϕ is k-linear and

ϕ ([X, Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X). (15)

2) If A is any associative algebra with a unit and α : g ! A is any Lie algebra
homomorphism, there is a unique homomorphism of associative algebras β :
U(g)! A such that the diagram

g U(g)

A

ϕ

α
β

is commutative, i.e. there is an isomorphism

HomLie(g, LA) ' HomAss(U(g), A) (16)

We will now give a definition of Dirac operators on finite spectral triples in terms
of root vectors of a Lie algebra g. Then, using the canonical embedding g ↪! Cl(g)
into the Clifford algebra, we define a Laplace-type operator.

Consider the algebra A = gl2N(C) of complex matrices with its standard Lie
algebra structure. In [19], we have introduced the finite dimensional spectral triple
(A, h, D) given by:

• A is a Cartan subalgebra of Lie subalgebra g of A,

• h = C2N ,

• γ =

(
1N 0
0 −1N

)
.

The chirality element γ induces a decomposition of the representation space h into
the eigenspaces h± corresponding to the eigenvalues 1 and −1 such that h = h+⊕h−.
Incidentally, one has the decomposition of the algebra A as follows:

gl2N = gl+2N ⊕ gl−2N . (17)

Notice then that the pair (gl+2N , gl
−
2N) forms a Cartan pair. Any endomorphism

a ∈ End(h) defines an endomorphism ρa ∈ gl+2N given by

ρa =

(
a 0
0 −aT

)
∈ sp(2N,C) ∩ gl+2N . (18)
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We consider the compact real case with the embedding

sp(N) = sp(2N,C) ∩ u(2N) ↪! so(4N). (19)

If a is a diagonal element of End(h+), the map a 7! ρa identifies a with an element
of the maximal commutative subalgebra t of so(4N):

t =


 A1 0 0

0
. . . 0

0 0 An

 , Aj =

(
0 aj
−aj 0

) (20)

Consider the Cartan subalgebra A = t + it of so(4N,C). The root vectors are
4N × 4N block matrices having 2× 2-matrix Cs, s ∈ {1, . . . , 4}

X =

(
0 Cs
−Ct

s 0

)
(21)

in the position (i, j) with i < j and where

C1 =

(
1 i
i −1

)
, C2 =

(
1 −i
−i −1

)
, C3 =

(
1 −i
i 1

)
, C4 =

(
1 −i
i −1

)
.

associated to the linear functional in H∗ given by i(ai + aj), −i(ai + aj), i(ai − aj)
and i(aj − ai).

We will denote by g the Lie algebra so4N . We then consider the unital associative
algebra M2(C)⊗ gl2N and the homomorphism:

ϕ : g!M2(C)⊗ gl2N , ϕ(X) =
∑

1≤i,j≤2N

Xij ⊗ Eij, (22)

where Eij is the standard basis in gl2N and Xij are the 2×2-submatrix of X = (xrs)
obtained by keeping i+ 1 ≤ r ≤ i+ 2 and j + 1 ≤ s ≤ j + 2. In addition, ϕ is a Lie
algebra homomorphism with ϕ([X, Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X).
Then, using the universal property of U(g), the map ϕ extends into the homomor-
phism ϕ̂ : U(g) ! M2(C) ⊗ gl2N . Furthermore, taking the canonical embedding
h : gl2N ! U(gl2N), we get by composing the Lie algebra homomorphism

h ◦ ϕ̂ : U(g)!M2(C)⊗ U(gl2N). (23)

Let {Zij} be an orthonormal basis of root vectors in g, associated to the root −i(aj+
ak), we define the operator W by

W =
∑
i,j

ωWij Zij (24)

as an element of U(g), where ωWij are real coefficients.

Definition 2.2. Given an operatorW as in (24), a Dirac operator DW is an element
of M2(C)⊗ U(gl2N) defined by:

DW =
i

~
Re(W ), (25)

where ~ > 0 is a real parameter.
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Remark 2.1. In the previous definition, DW depends on the choice of element W
and in fact, more specifically on the choices of basis elements Zij. Another definition,
independent on the choice of basis elements, of Dirac operators on Lie algebras can
be found in [16]

Lemma 2.1. Let C2 = X + iY be the root vector associated to the root −i(ai+ aj).
Fix an element W as in (24). Then, for any a ∈ A, the exterior derivative can be
written as:

[DW , a] =
i

~
∑
i,j

ωWij αij(a)Y ⊗ Eij, (26)

an element of M2(C)⊗ U(gl2N) and with αij = ai − aj.

Proof. From the definition of DW and the definition of root vectors, we get that:

[DW , a] =
i

2~
∑
i,j

ωWij (ai − aj)Zij −
i

2~
∑
i,j

ωWij (ai − aj)Z∗ij. (27)

Then, using the map h ◦ ϕ̂, given by (22) and (23), we can identify a basis element
Zij with an element in M2(C)⊗ U(g) of the form C2 ⊗ Eij. Hence, we have that:

[DW , a] =
i

2~
∑
i,j

ωWij (ai − aj)C2 ⊗ Eij −
i

2~
∑
i,j

ωWij (ai − aj)C∗2 ⊗ Et
ij. (28)

Simplifying this expression using the fact that Et
ij = Eji, we get:

[DW , a] =
i

~
∑
ij

ωWij αij(a)Y ⊗ Eij. (29)

with αij(a) = ai − aj.

Furthermore, we recall that there exists a canonical Lie algebra homomorphism
ψ : gl2N ! Cl(gl2N) which extends into the map on the universal enveloping Lie
algebra:

ψ̂ : U(gl2N)! Cl(gl2N). (30)

We use this map to define a Laplace operator.

Definition 2.3 (Laplacian). Fix an element W . We then define the Laplace oper-
ator ∆ on A using the non-graded commutator. For any a ∈ A

∆(a) :=
1

2
ψ̂([DW , [DW , a]]). (31)

Proposition 2.1. For any a ∈ A, the Laplace operator is given by

∆(a) = −Ωg(a)⊗ 1 (32)

where Ωg =
1
~2
∑

i,j ω
2
ijJ ⊗ αij is an element of End(A,M2(C)).
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Proof. Let DW be a Dirac operator, then the bi-commutator of the Laplacian gives::

[DW , [DW , a]] = DW [DW , a]− [DW , a]DW . (33)

Thus, using Lemma 2.1, we obtain

[DW , [DW , a]] =
2

~2
∑
ij

ω2
ijαij(a)J⊗E2

ij+
1

~2
∑

(ij)6=(kl)

ωijωklαkl(a)J⊗[Eij, Ekl]+ (34)

with the bracket [A,B]+ = AB +BA and where the matrix J is given by:

J =

(
0 −1
1 0

)
.

Finally, applying the map ψ̂, the second term of the left-hand-side in Equation (34)
vanishes and we get:

∆(a) = − 1

~2
∑
i,j

ω2
ijαij(a)J ⊗ 1.

We have kept the definition of the Dirac operator DW in (25) very general,
however we recall that the operator we are interested in are the compatible one with
respect to a graph X. In other words, the value ωij is non-zero if ij is an edge in X.

Now, let us recall how the space X is obtain from a manifold M ; more details
can be found in [19]. One starts with a triangulation of M and then consider the
dual of the triangulation that we will call X. In fact, in [19] we used a slightly
different terminology and considered the triangulation as a poset, then looked at
the opposite poset with reversed order.

Since we are working with a graph X obtained from a dual triangulation, every
vertex i has exactly d + 1 neighbours i.e. only d + 1 of the ωij are non-zero for a
fixed i. Hence, if we fix an vertex i0, the definition of the commutator with DW

becomes:

([DW , a])i0 =
i

~

d+1∑
j=1

ωWi0kjαi0kj(a)Y ⊗ Ei0kj , (35)

Here, we relabel the index j without lost of generalities and to keep this indexing
simple. We will also drop the W index for the same reasons and get:

([D, a])i0 =
i

~

d+1∑
j=1

ωi0jαi0j(a)Y ⊗ Ei0j, (36)

Finally, let us recall the the (true) Dirac operator on a manifold is given in local
coordinates on a normal neighbourhood centred at a point p:

Dp =
d∑
j=1

ej
∂

∂xj

∣∣∣∣
p

(37)
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where {ej | j = 1, . . . , d} is an orthonormal local frame embedded in the Clifford
algebra Cl(Rd) using the natural embedding Rd ⊂ Cl(Rd).

Nevertheless, the Dirac operator as expressed in (36) is not an element of a
Clifford algebra. Moreover, the dimensions do not match. Indeed, because of the
structure of the triangulation, there are d+1 independent vectors in the expression
(36), instead of d as the dimension of the manifold M . Since we are trying to
approximate the true Dirac operator in (37), we need to re-write Equation (36) in
terms of Clifford elements in dimension d. To do so, let us denote by Vi0 , the vector
space defined by:

Vi0 := span {Y ⊗ Ei0,1, · · · , Y ⊗ Ei0,d+1} . (38)

Then, consider the isomorphism:

τ : Vi0
'
−! Rd+1 τ(Y ⊗ Ei0,j) = êj, ∀1 ≤ j ≤ d+ 1 (39)

where {êj}d+1
j=1 is the canonical basis on Rd+1 with respect to the standard inner

product. Moreover, defines the projection p on the subspace spanned by {êj}dj=1

and identified with Rd. Finally, if let the embedding ρ : Rd ! Cl(Rd), we can
compose these maps and define:

Ψ := ρ ◦ p ◦ τ : Vi0 ! Cl(Rd), Ψ
(
[D, a]i0

)
=
i

~

d∑
j=1

ωi0jαi0j(a)ej (40)

which allows us to express the commutator in terms of Clifford elements ej. We
notice, nevertheless, that this construction is not canonical and depends on the
choice of isomorphism τ .

2.4 Perron-Frobenius bound on [D, a]

To conclude this section, and before being able to show a convergence result to the
Dirac operator D, we would like to prove a preliminary result on the commutator
[D, a] and its boundedness at the limit when ~ ! 0. This result follows form the
correspondence between D and the graph associated, using the Perron-Frobenius
theorem. We only need to consider the operator D as a compatible operator in
some matrix space, without relying the Clifford algebra setting

We consider an infinite collection {An : n ∈ N} of commutative C∗-algebras. In
this case, we have identified each of the An with the Cartan subalgebras hi inside
the finite dimensional algebras Bn = so2mn(C) where mn ! ∞ when n ! ∞. We
can then construct the product:

Bω =
∏
n∈N

Bn = {(an) : ‖an‖ = sup ‖an‖ <∞}. (41)

Let a be an element in C∞(M), then there exists a coherent sequence (ai) such that

a = (a0, a1, · · · , an, · · · ) ∈
∏
n∈N

An. (42)
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We define a spectral triple on Bω by introducing the limit Dirac operator D as the
sequence

D = (D0, D1, · · · , Dn, · · · ) ∈
∏
n∈N

gl−2mn(C), (43)

where each Di is a Dirac operator associated to a poset Xop
i in the sense of [19].

This in turns induces a spectral triple on
∏

n∈N An along with the commutator:

dDa := [D, a] = ([D0, a0], [D1, a1], · · · , [Dn, an], · · · ) ∈
∏
n∈N

gl−2mn(C). (44)

In order to show that [D, a] is a bounded operator, we use Perron-Frobenius theorem,
which we start by recalling.

Theorem 2.1 (Perron-Frobenius [17]). Let A = (aij) be an n × n positive matrix:
aij > 0 for 1 ≤ i, j ≤ n. Then there exists a positive real number r, called the
Perron-Frobenius eigenvalue, such that r is an eigenvalue of A. Moreover, if the
spectral radius ρ(A) is equal to r.
The Perron-Frobenius eigenvalue satisfies the inequalities:

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij.

Proposition 2.2. For any a ∈ A, the spectral radius ρ(dDa) of dDa is bounded by

ρ(dDa) ≤ ‖ddRa‖∞. (45)

Proof. We consider the sequence of Dirac operators (Dα)α∈N associated to D.
Let ε > 0 and α ∈ N and define the operator d̃Dαa such that

(d̃Da)ij =

{
|(dDαa)ij| if (dDαa)ij 6= 0

ε otherwise (46)

The matrix d̃Dαa is positive by construction. In addition, we have the upper-bound:

‖ (dDαa)
k ‖2F ≤ ‖(d̃Dαa)k‖2F . (47)

Hence, using Theorem 2.1, we deduce that

ρ(dDαa)
2 = lim

k∞
‖(dDαa)k‖

2
k
F ≤ lim

k∞
‖(d̃Dαa)k‖

2
k
F

= ρ(d̃Dαa)
2

. max
1≤i≤n

∑
j

|(dDαa)ij|2 +Nε2.

The value ofN is the number of nonzero coefficient in (dDαa)ij and thus only depends
on the number of adjacency vertex in Xop

α which by definition equal to d+1, where
d is the dimension.
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Hence there exists a positive constant CM , which depends on the maximal length of
geodesics (M is compact) but is independent of α, such that

ρ(dDαa)
2 ≤ CM‖ddRa‖2∞ + (d+ 1)ε2. (48)

The last inequality holds for an arbitrary ε > 0 and α ∈ N. The result follows then
by taking ε to 0.

Corollary 2.1. For each a ∈ A, the operator [D, a] is a bounded operator.

Remark 2.2. It is clear that in the following framework, not only the Dirac operator
D define a differential structure but it also plays the role of a transition matrix. This
last point will be made clearer in the following section.

3 Von Mises-Fisher integral operators
In this section, we are going to introduce the Fokker-Planck equation (see [6]) in
terms of Fourier transform of a measure. Then we will define the Von Mises-Fisher
distribution on manifolds and prove technical lemmas.

3.1 The Fourier transform of finite measures

In this section, our main objects are integral operators and semigroup operators. Let
M be a locally compact separable subset of Rd with the induced Lebesgue measure.
Consider the Shwartz class

S(Rd) =
{
ϕ ∈ C∞(Rd) : ‖ϕ‖j,k <∞, j, k = 0, 1, 2, . . .

}
, ‖ϕ‖j,k = sup |xjϕ(k)(x)|.

The Fourier transform is a continuous linear isomorphism given by

F : S(Rd)! S(Rd), F(ϕ)(ξ) =
∫
Rd
ϕ(x)e−i〈x,ξ〉dx. (49)

This map can be restricted to an isomorphism on S(M).
We then consider the topological dual S ′ of S called the space of tempered distribu-
tions. The Fourier transform extends by duality to a continuous isomorphism on S ′
as follow, for T ∈ S ′:

〈T̂ , ϕ〉 = 〈T, ϕ̂〉 , ∀ϕ ∈ S. (50)

If T ∈ S ′ is represented by a function u ∈ Lp(Rd), then we denoted by Tu such that

Tu(ϕ) =

∫
Rd
u(x)ϕ(x)dx. (51)

Similarly, if we let M+(Rd) be the space of finite positive measures on Rd, then
for a measure µ ∈ M+(Rd), using Riesz-Kakutani representation theorem, we can
uniquely define Tµ ∈ S ′

Tµ(ϕ) =

∫
Rd
ϕ(x)dµ(x). (52)
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Then, we can define the Fourier transform of µ by T̂µ:

〈T̂µ, ϕ〉 = 〈Tµ, ϕ̂〉 , ∀ϕ ∈ S. (53)

We can also define the Fourier transform of µ as the complex valued function

µ̂(ξ) =

∫
Rd
e−i〈x,ξ〉dµ(x). (54)

Definitions (53) and (54) are equivalent in the following sense

〈Tµ, ϕ̂〉 = 〈µ̂, ϕ〉 , ∀ϕ ∈ S. (55)

Again, all these definitions can be restricted to a Fourier transform on M .

Proposition 3.1. Let µ be a measure in M+(Rd) with finite k-th moment, where
k = k1 + · · · kd. Then the Fourier transform µ(ξ) has bounded, continuous partial
derivatives of order less or equal than k and these are given by the formula:

∂kµ̂(ξ) =

∫
Rd
ikxk11 · · ·x

kd
d e
−i〈x,ξ〉dµ(x). (56)

Hence, if the function µ is analytic, then we have the expansion on Rd:

µ̂(ξ) =
∑

k=k1+···+kd

ξ1 · · · ξd
k1! · · · kd!

∂kµ̂(0). (57)

3.2 Family of one-parameter operators

Let L2(M) considered as a Banach space for the Lebesgue measure ν. Let then U
be an open subset of M × R+. We denote by D(U) the set of test functions on U
and its topological dual D ′(U) the space of distribution. A family of one-parameter
operators {Pt}t≥0 is a family of linear operators on L2(M) defined by:

P0 = id, (Ptf)(x) =

∫
M

f(y)pt(x, y)dν(y) (58)

such that pt(x, y) is a ν × ν-measurable function on M ×M . Now let us define the
new measure µt,x, for t ≥ 0 and x ∈M , by

µt,x(A) =

∫
A

pt(x, y)dν(y), (59)

for any ν-measurable subset A. Assume that µt,x is a probability measure for every
(t, x) ∈ R+ × M . In addition, assume that Pt admits a weak derivative ∂t. Let
ϕ ∈ D(U) and define the translation map:

Rt : D(U)! D(U), Rt(ϕ)(x, s) = ϕ(x, s+ t) (60)

extended by duality to a map on D ′(U). If we let ϕ0(x) := ϕ(x, t), we therefore
have on the one hand:

〈Pt, ϕ0〉 = 〈δ, ϕt〉. (61)
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On the other hand, using the Fourier transform (55) of Pt, we have

〈P̂t, ϕ〉 = 〈µ̂x,t, ϕ0〉. (62)

Hence, combining Equation (61) and Equation (57) and the fact that µ̂t(0) = 1, we
obtain:

〈1, ϕt〉 = 〈1, ϕ0〉+
∑

k=k1+···+kd≥1

∂kµ̂x,t(0)

k1! · · · kd!
〈ξ1 · · · ξd, ϕ0〉. (63)

Finally, dividing by t and taking the limit t! 0, assuming that the following limit:

lim
t!0+

∂kµ̂x,t(0)

t
exists for all k (64)

and the convergence is uniform in t, we have the following formal series

〈1, ∂tϕt|t=0〉 =
∑

k=k1+···+kd≥1

lim
t!0

1

t

∂kµ̂x,t(0)

k1! · · · kd!
〈ξ1 · · · ξd, ϕ0〉. (65)

In the special case where

lim
t!0+

∂kµ̂x,t(0)

t
= 0, ∀k ≥ 3, (66)

then µx,t satisfy the parabolic equation

∂µx,t
∂t

∣∣∣∣
t=0

= LA,b(µx,t) (67)

in the weak sense, with the operator LA,b

LA,bf = tr(AD2f) + 〈b,∇f〉 , f ∈ C∞c (M) (68)

and where A = (aij) is a mapping on M with values in the space of nonnegative
symmetric linear operator on Rd and b = (bi) is a vector field on M .

3.3 Von Mises-Fisher integral operators

In this section, we are going to identify the coefficients ωij in (26) using the so-called
Von Mises-Fisher distribution in order to obtain the main result in Theorem 1.1.

The probability density function of the von Mises-Fisher distribution on the unit
sphere Sd is given by:

ρd(x; s, β) = Cd(β) exp (−β 〈s, x〉) (69)

where β ≥ 0, ‖s‖ = 1; the normalization constant Cd(β) is given by

Cd(β) :=
β
d
2
−1

(2π)
d
2 I d

2
−1(β)

=

∫
Sd
ρd(x; s, β)dµ(x), (70)
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where Iv denotes the modified Bessel function of the first kind at order v. We will
refer to the von Mises-Fisher distribution as VMF (s, β).
Consider Sd as a submanifold of Rd+1 with the induced Lebesgue measure ν and the
euclidean metric. We consider the one-parameter family of integral operators

Pt : L
2(Sd)! L2(Sd), (Ptf)(x) = Cd(βt)

∫
Sd
f(x)ρd(x; s, βt)dν(x) (71)

with β = 1/t.

Proposition 3.2. The family {Pt}t>0 is a well-defined and satisfies the followings:

i) ‖Pt‖L2 ≤ 1,

ii) P0 = id.

Proof. Statement (i) follows immediately from the fact that Pt is induce by a prob-
ability measure and therefore, for f ∈ D(Sd) we have for the uniform norm

‖Pt(f)‖ ≤ ‖f‖. (72)

We now prove (ii). Let f ∈ D(Sd) and consider the difference:

|Ptf(x)− f(0)| ≤ Cd(βt)

∫
Sd
|f(x)− f(0)|ρd(x; s, βt)dν(x). (73)

Let ε > 0 and δ > 0 to be chosen. We define the set Sδ = Sd\B(s, δ), then taking
the uniform norm in the last inequality and splitting the right-hand-side, we get

‖Ptf − f(0)‖ ≤ Cd(βt)

∫
Sδ

|f(x)− f(0)|ρd(x; s, βt)dν(x) + ‖f − f(0)‖Scδ . (74)

Now, using the uniform continuity of f , we can chose δ such that

‖Ptf − f(0)‖ ≤ Cd(βt)

∫
Sδ

|f(x)− f(0)|ρd(x; s, βt)dν(x) +
ε

2
. (75)

We recall that the constant Cd(βt) is given by Equation (70) and that for large
values of x, Iν(x) ∼ ex√

2πx
. Therefore, we have the limit:

lim
t!0+

Cd(βt)

∫
Sδ

|f(x)− f(0)|ρd(x; s, βt)dν(x) = 0. (76)

Hence, for t small enough, we have that

‖Ptf − f(0)‖ ≤ ε. (77)
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Lemma 3.1. Consider the following real valued functions

A(t) = Cd(1/t)

∫ 1

0

r

tCd(r/t)
dr,

B(t) =

∫ 1

0

rCd(1/t)

Cd(r/t)
dr,

C(t) = 2π

[
tCd(1/t)

Cd−2(1/t)
−
∫ 1

0

tCd(1/τ)

Cd−2(r/t)
dr

]
s− (2π)

d
2Cd(1/t)

3Γ (d/2− 1)
s,

then B(t) and C(t) vanish as t! 0+ while A(t) converges to 1.

Proof. Recall that for large values of x, Iν(x) ∼ ex√
2πx

, hence Cd(1/t) vanishes as
t! 0. Therefore, we have:

A(t) =

(
Cd(1/t)

∫ 1

0

r

tCd(r/t)
dr

)
∼
I d

2
−2(1/t)

I d
2
−1(1/t)

! 1 (78)

It follows immediately that B(t) vanishes as t! 0.
Furthermore, we have the following inequalities:

0 ≤ (2π)
d
2 t

∫ 1

0

r
d

dr

[
(r/t)2−

d
2 Id/2−2(r/t)

]
dr ≤ 2πt

Cd−2(1/t)
− (2π)

d
2 t

Γ (d/2− 1)

Hence, we have the limit when t! 0,

tCd(1/t)

Cd−2(1/t)
− (2π)

d
2 t

Γ (d/2− 1)
! 0. (79)

Thus, the coefficient C(t) vanishes as t! 0.

Theorem 3.1 (Fokker-Planck equation on Sd). Let u(x) be a smooth function in
C∞(Rd) ∩ L2(R). We define the one-parameter family of operators:

Pt(u) = Cd(βt)

∫
Sd
exp(−βt〈s, x〉)u(x) dν(x) (80)

where βt = 1/t and with the initial condition:

u(x) = lim
t!0+

Pt(u)(x). (81)

Then the function u(x, t) = Pt(u)(x) satisfies the infinitesimal equation:

∂u

∂t

∣∣∣∣
t=0

=
∂u

∂s
. (82)

Proof. According to Equations (66) and (67), to prove the statement, it is enough
to show the following:

lim
t!0+

∇µ̂x,t(0)
t

= s, lim
t!0+

∂kµ̂x,t(0)

t
= 0, ∀k ≥ 2. (83)
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In fact, we will only show that

lim
t!0+

∇µ̂x,t(0)
t

= s, lim
t!0+

D2µ̂x,t(0)

t
= 0; (84)

the proof for the higher-moments follows mutatis mutandis the case k = 2.
We start by computing:

∇µ̂x,t(0) = Cd(βt)

∫
Sd
ξe−βt〈ξ,s〉 dξ. (85)

Using the divergence theorem on compact manifold, we get∫
Bd(0)
∇
(
e−βt〈x,s〉

)
dx =

s

t

∫ 1

0

r

Cd(r/t)
dr.

Hence, the 1-st moment is given by the following integral,

∇µ̂x,t(0) =
(
Cd(1/t)

∫ 1

0

r

tCd(r/t)
dr

)
s, (86)

where: ∫ 1

0

r

tCd(r/t)
dr = (2π)

d
2 t

[
Id/2−2(y)

y
d
2
−2

] 1
τ

!0+

.

On the other hand, the 2-nd moment is given by:

D2µ̂x,t(0) =

∫
Sd
exp(−βt〈s, x〉)ξ ⊗ ξ dξ −∇µ̂x,t(0)⊗∇µ̂x,t(0).

The first term of the left-hand side can be written as∫
Sd
e−βt〈s,ξ〉ξ ⊗ ξ dξ = Cd(βt)

[∫
Bd(0)

e−βt〈s,x〉
s

t
⊗ x dx+

∫
Bd(0)

e−βt〈s,x〉 dx

]
We can write the first integral as follows∫

Bd(0)
e−βt〈s,x〉

s

t
⊗ x dx = 2π

[
t

Cd−2(1/t)
−
∫ 1

0

t dr

Cd−2(r/t)

]
s− (2π)

d
2

3Γ (d/2− 1)
s.

The second integral can be directly computed as∫
Bd(0)

e−βt〈s,x〉 dx =

∫ 1

0

∫
Sd
e−βtr〈s,x〉r dξ dr =

∫ 1

0

r

Cd(r/t)
dr

The variance can be written in the closed form

D2µ̂x,t(0) = B(t)1+ C(t)ssT . (87)

where the coefficients are given by

B(t) =

∫ 1

0

rCd(1/t)

Cd(r/t)
dr,

C(t) = 2π

[
tCd(1/t)

Cd−2(1/t)
−
∫ 1

0

tCd(1/τ)

Cd−2(r/t)
dr

]
s− (2π)

d
2Cd(1/t)

3Γ (d/2− 1)
s.

We then conclude the proof using Lemma (3.1).
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3.4 Wrapped distributions on manifolds

In this section, we extend the previous results to the case where M is a smooth
manifold of dimension d. Since we are interested in the Dirac operator over spin
manifolds, these results are crucial for the rest of the present work.

Given a Lebesgue measure on TxM and a probability density ν on TxM whose
support is included in U , the density is then push forward at x ∈ φ(U) is given by

dµ = d(φ∗ν) = det(dφ−1)dν (88)

Among choices of φ and interesting candidate is the exponential map, due to its
algebraic and geometric properties.

Proposition 3.3. Let (M, g) be a Riemannian manifold. Fore every point p ∈ M ,
there is an open subset W ⊆M , with p ∈ W and a number ε > 0, so that:

expq : B(0, ε) ⊆ TqM ! Uq = exp(B(0, ε)) ⊆M (89)

is a diffeomorphism for every q ∈ W , with W ⊆ Uq.

Definition 3.1 (Normal neighbourhood). Let (M, g) be a Riemannian manifold.
For any q ∈ M , an open neighbourhood of q of the form Uq = expq(B(0, ε)) where
expq is a diffeomorphism from the open ball B(0, ε) onto Uq, is called a normal
neighbourhood.

Definition 3.2 (Injectivity radius). Let (M, g) be a Riemannian manifold. For
every point p ∈M , the injectivity radius of M at p, denoted δ(p), is the least upper
bound of the numbers r > 0, such that expp is a diffeomorphism on the open ball
B(0, r) ⊆ TpM . The injectivity radius, δ(M) of M is defined as:

δ(M) := inf
p∈M

δ(p). (90)

In what will follow, we will simply denote by δ the injectivity radius of M . Let
p ∈ M , we then consider the exponential map expp : B(0, δ)! Up = expp(B(0, δ)).
We can now pushforward the Von Mises-Fisher distribution from the tangent space
TpM at p to the manifold M . Let us define the map Φβ by:

Φβ : TpM × TpM ! R, Φβ(x, y) 7! βg(x, y) (91)

and its pullback using the inverse of the exponential map at p:

Φ̂β : Up × Up ! R, Φ̂β(q, q
′) := (exp−1p )∗(Φβ)(q, q

′). (92)

We will also denote by {e1, . . . , ed} a local orthogonal frame in TM .

Lemma 3.2. Consider the tangent vector ei(p) ∈ TpM for i ∈ {1, . . . , d} and let si
such that ei(p) = exp−1p (si). The following pushforward holds:∫

Up

eΦ̂β(si,x)f(x) dµ(x) =

∫
B(0,δ)

eΦβ(ei(p),y) expp∗(f)(y) det
(
d expp(y)

)
dν(y) (93)

where expp is the exponential map on the Riemannian manifold (M, g).
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Proof. This follows immediately from the definition of the definition of pullback and
the exponential map at p.

We can then define the map:

Θ :M !M+(Rd)× R+ p 7!

{
T tp(f) = Cd(βt)

∫
Up

eΦ̂β(si,x)f(x) dµ(x)

}
t>0

(94)

where βt = 1/t. This associates to any normal neighbourhood a one-parameter
family of operators. We are going to show that each family of operators satisfies
Equation (3.1).

Definition 3.3 (Jacobi field [11]). Let p ∈ M and γ : [0, a] ! M be a geodesic
with γ(0) = p, γ′(0) = v. Let w ∈ Tv(TpM) with |w| = 1. A Jacobi field J along γ
given by

J(t) = (d expp)tv(tw). (95)

Lemma 3.3. Let J be a Jacobi field. We have the following Taylor expansion about
t = 0:

〈w, J(t)〉 = t+ r(t), (96)

where limt!0
r(t)
t2

= 0.

Proof. From the definition of J and the properties of the exponential map, we have
that J(0) = (d0 expp)(0) = 0 and J ′(0) = w. Hence, the first two coefficients of the
Taylor expansion are

〈w, J(0)〉 = 0,

〈w, J ′(0)〉 = 1.

As J is a Jacobi field we have J ′′(0) = −R(γ′, J)γ′(0) = 0, where R is the curvature
tensor. This yields,

〈w, J ′′(0)〉 = 0, (97)

which concludes the proof.

Lemma 3.4. Define the smooth map:

G : TpM ! R, y 7! det
(
dy expp

)
, (98)

then, it satisfies ∇(G)(0) = 0.

Proof. In order to compute ∇(G)(0), we first use Jacobi’s identity

d

dt
det
(
dty expp

)∣∣∣∣
t=0

= det(d0 expp)tr
(
d0 exp

−1
p

d

dt

∣∣∣∣
t=0

dty expp

)
(99)

which simplifies into

d

dt
det
(
dty expp

)∣∣∣∣
t=0

= tr
(
d

dt

∣∣∣∣
t=0

dty expp

)
. (100)
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Using the definition of a Jacobi field and linearity of tr, we have that

tr
(
d

dt

∣∣∣∣
t=0

dty expp

)
=

d∑
i=1

〈
vi,

(
d

dt

∣∣∣∣
t=0

dty expp

)
vi

〉
,

=
d

dt

∣∣∣∣
t=0

d∑
i=1

〈
vi, dty expp(vi)

〉
,

=
d

dt

∣∣∣∣
t=0

d∑
i=1

1

t
〈vi, Ji(t)〉 .

Now using the Taylor expansion obtained in Lemma (3.3), we get:

〈vi, Ji(t)〉 = t+ r(t) (101)

where r(t) = o(t2), we conclude that:

tr
(
d

dt

∣∣∣∣
t=0

dty expp

)
= 0. (102)

Theorem 3.2. The following limit holds at p ∈M

∂

∂t

(
Cd(βt)

∫
Up

eΦ̂β(si,x)f(x) dµ(x)

)∣∣∣∣∣
t=0

= ei(f)(p). (103)

Proof. Using the pushforward map given in Lemma 3.2, the property of Von Mises-
Fisher distribution given in Theorem 3.1 and the isomorphism T0(Tp(M)) ' Tp(M),
we have:

∂

∂t

(∫
Up

eΦ̂β(si,x)f(x) dµ(x)

)∣∣∣∣∣
t=0

= ei
(
expp∗(f) det

(
d expp

))
(0). (104)

Then using Lemma 3.4, we deduce that:

∂

∂t

(
Cd(βt)

∫
Up

eΦ̂β(si,x)f(x) dµ(x)

)∣∣∣∣∣
t=0

= ei(f)(p). (105)

3.5 A remark on the semigroup approach

It is interesting to consider semigroup machinery as another approach to the prob-
lem of approximation of the Dirac operator. In this section, we consider L2(ν) as
the Hilbert space H.
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Definition 3.4 (Semigroup). A one-parameter unitary group is a map t! Pt from
R+ to L(H) such that

P0 = 1 Pt+s = PtPs, (106)

and t! Pt is continuous in the strong topology, i.e. Ut
s
−! Ut0 when t! t0.

Given a semigroup Pt in L2, define the generator L of the semigroup by

L (f) := lim
t!0

f − Ptf
t

, (107)

where the limit is understood in the L2-norm. The domain dom(L ) of the generator
L is the space of functions f ∈ H for which the above limit exists. By the Hille-
Yosida theorem, dom(L ) is dense in L2. Moreover, Pt can be recovered from L as
follows:

Pt = exp(−tL ). (108)

understood in the sense of spectral theory.
We then consider the operator L = −i d

dx
on H with dom(L ) = {f ∈ L2(R) : ξf̂ ∈

L2(R)}. Recall that L is unitary equivalent to the left-multiplication operator Mξ

using the Fourier transform
FLF−1 = ξf̂ . (109)

Then the associated semigroup Ut, so-called momentum operator, is given by the
left-multiplication operator in Fourier basis: FUtF−1f̂ = ξf̂ . Therefore,

Utf(x) = F−1(eitξf̂)(x) =
∫
R
ei(x+t)ξf̂ = f(x+ t). (110)

4 Statistical fluctuations of differential structures
We are now ready to state and prove Theorem 1.1. We keep the same notations
than the previous sections: M is a compact Riemannian manifold of dimension d; we
consider a point p ∈M and a normal neighbourhood Up associated to it; we denote
by {e1, . . . , ed} a local orthogonal frame in TM . If we let expp : B(0, δ) ! Up be
the exponential map at p. We finally define {s1, . . . , sd} such that:

ej(p) = exp−1p (sj), ∀j ∈ {1, . . . , d} . (111)

4.1 Von Mises-Fisher distribution and Dirac operator

We start by recalling that the notation DX means: a Dirac operator D associated
to a graph X in the sense of [19, Def. 4.3]. Now, let n be a positive integers
and fix a graph Xn equipped with a Dirac operator DXn and with set of vertices
{x1, . . . xn}. In addition, we are going to consider n copies of the same graph Xn,
each of which is equipped with a Dirac operator DXk and with a set of vertices
denoted by {xk1, . . . xkn}, for 1 ≤ k ≤ n. Then, we have a sequence of Dirac operators

(DX1 , DX2 , · · · , DXn) ∈ gl−2mn(C)
n, (112)
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acting on a sequence of diagonal elements (a0, a1, · · · , an) with each ai ∈ An.
If we denote by (aik)1≤i≤n the coefficients of ak in the block diagonal, then using the
projection maps M ! Xk we can identify these values with evaluations of a smooth
functions, denoted by a (see [19, Prop. 3.5] for more details):

aik = a(xki ), ∀i ∈ {1, . . . , n} (113)

for some point xki ∈ M . Fix a point p ∈ M and a neighbourhood Up of p in M .
Then, consider a sequence of points

{
xk1, . . . , x

k
n

}
in Up, for 1 ≤ k ≤ n, such that,

for a chosen index i0 (not depending on k), we have xki0 = p. We then define the
coefficients (ωkij)1≤i,j≤n of DXn as follows:

ωkij(~) = Cd(β~) exp

(
−
〈
xki , sj

〉
~

)
for 1 ≤ i, j ≤ n and for 1 ≤ k ≤ n. (114)

Furthermore, for every integer 1 ≤ k ≤ n, we define a family of projection elements
such that ek ∈M2mn(C) and we have the following matrix form:

ekDXke
∗
k =



0
0

∗ ∗ ωki0j ∗ ∗

0
∗
∗

0 ωki0j 0
∗
∗

0


. (115)

Remark 4.1. The non-zero coefficients correspond to the adjacency points of i0.

Hence, if we recall the expression given by the commutator in Equation (26), we
consider the following average of operators over the n copies of Xn:

Ŝ~n
n (a) :=

1

n

n∑
k=1

ek [DXk , ak] e
∗
k =

i

n~

n∑
k=1

d+1∑
j=1

ωki0j(~n)αi0j(ak)Y ⊗ Ei0j, (116)

where αi0j(ak) = a(xkj ) − a(p). Moreover, for the purpose of the proof of the main
theorem, we define a second operator given by:

S~n
j,n : C∞(M)! R, S~n

j,n(a) =
1

n~

n∑
k=1

ωki0j(~n)αi0j(ak). (117)

We assume now that the points
{
xk1, . . . , x

k
n

}
are thought as random variables in-

dependent and identically distributed (i.i.d.) from a uniform distribution. Let us
recall the definition of the map Ψ given in Equation (40):

Ψ : Vi0 ! Cl(Rd), Ψ
(
[D, a]i0

)
=
i

~

d∑
j=1

ωi0jαi0j(a)ej. (118)

Then, we can prove the following theorem.
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Theorem 4.1. Let
{
xki0
}n
k=1

be a sequence of i.i.d. sampled points from a uniform
distribution on a open normal neighbourhood Up of a point p in a compact Rieman-
nian manifold M of dimension d. Let S̃~n

n be the associated operator given by:

Ŝ~n
n : C∞(Up)!M2(R)⊗ U(gl2mn), Ŝ~n

n (a) :=
1

n

n∑
k=1

ek
[
Dk
X , ak

]
e∗k. (119)

Put ~n = n−α, where α > 0, then for a ∈ C∞(Up), in probability:

lim
n!∞

Ψ ◦ Ŝ~n
n (a) = [D, a] (p).

Proof. We consider the average operator defined by Equation (117). It is then
sufficient to prove that for ~n = n−α, where α > 0, and for a ∈ C∞(Up), we have:

lim
n!∞

S~n
j,n(a) = ej(a)(p) ∀1 ≤ j ≤ d.

in probability and then apply the map ψ̂ defined in (30). Recall that ej is given in
Equation (111).

The expectation value of the random variable S~n
n (a) is given by:

ES~n
j,n(a)(p) =

C(β~n)

~n

∫
Up

eΦ̂β~ (x,sj)(a(x)− a(p)) dµ(x), (120)

where we recognize the Von Mises-Fisher distribution. Thus, applying Hoeffding’s
inequality, we have:

P
[ ∣∣S~n

j,n(a)(p)− ES~n
j,n(a)(p)

∣∣ > ε
]
≤ 2 exp

(
− ε2n

Cd(nα)2

)
. (121)

Choosing ~ as a function of n, such that ~(n) = n−α, where α > 0, we have, for any
real number ε > 0:

lim
n!∞

P
[ ∣∣S~n

j,n(a)(p)− ES~n
j,n(a)(p)

∣∣ > ε
]
= 0. (122)

Finally, we prove the statement using Theorem 3.2:

lim
n!∞

S~n
j,n(a)(p) = ej(a)(p), (123)

along with the definition of the map Ψ in Equation (40).

Remark 4.2. Every line in the matrix DX corresponds then to a point p and a
normal neighbourhood Up obtained from the image of the exponential map of a ball
of radius δ. Indeed, since M is compact, we have a finite cover {Upi}Ni=1 with center
{pi}Ni=1 every one of which being associated to a line of DX .
If we consider a sequence of Dirac operators DXn , then what we are doing is in
fact taking refinements of normal neighbourhoods, increasing with the numbers of
vertices in Xn.
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4.2 Uniform convergence

It is interesting to mention that the previous result can be extended to have a
uniform convergence, following the same steps than [2, Prop. 1]. We then state the
result without proof.
Let F be the space of smooth functions f ∈ C∞(Up), such that ej(f) is smooth.
Then for each ~ > 0, we have:

lim
n!∞

P
[
sup
a∈F

∣∣∣S~n
n (a)(p)− ES~n

n (a)(p)
∣∣∣ > ε

]
= 0. (124)

Theorem 4.2. Let
{
xki0
}n
k=1

be a sequence of i.i.d. sampled points from a uniform
distribution on a open normal neighbourhood Up of a point p in a compact Rieman-
nian manifold M of dimension d. Let Ŝ~n

n be the associated operator given by:

Ŝ~n
n : C∞(Up)!M2(R)⊗ U(gl2mn), Ŝ~n

n (a) :=
1

n

n∑
k=1

ek
[
Dk
X , ak

]
e∗k. (125)

Put ~n = n−α, where α > 0, then in probability:

lim
n!∞

sup
a∈F

∣∣∣Ψ ◦ Ŝ~n
n (a)(p)− [D, a] (p)

∣∣∣ = 0. (126)

4.3 The Laplacian

In this final section, we want to study the convergence result for the Laplacian
defined in Proposition 4.3. The Laplacian ∆Xk obtained from the Dirac operator
(115) and acting on an element ak is given by:

∆Xk(ak) =
1

~2
d+1∑
j=1

(ωkij)
2αij(ak)J. (127)

Now assume that the coefficients ωkij of the Dirac DXk are given by:

ωkij(~) = Cd(β~)
√
λj exp

(
−
〈
xki , sj

〉
2~

)
, (128)

where λj are positive numbers to be specified. Then we study the convergence of
the averaging operator:

Ω~
n(a)(p) =

Cd(β~)

n~2
n∑
k=1

d+1∑
j=1

λj exp

(
−
〈
xki , sj

〉
~

)
αij(ak). (129)

such that, if u =
∑d

i=1 si, then sd+1 = −u/‖u‖ and λj = 1/(d + ‖u‖) for 1 ≤ j ≤ d

and λd+1 = ‖u‖/(d+ ‖u‖). Notice then that
∑d+1

j=1 λj = 1.
Moreover, the expectation value of the random variable Ω~n

n (a) is given by:

EΩ~
n(a)(p) = Cd(β~)

∫
Up

ρd(x; β~) (a(x)− a(p)) dµ(x) (130)
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where the probability density ρd(x; βt) is given by:

ρd(x; β~) =
d+1∑
j=1

λ2j exp

(
−〈x, sj〉

~

)
. (131)

We recognize a convex combination of Von Mises-Fisher distribution. Consequently,
following the same steps as in Theorem 3.1, this distribution satisfies the equation:

∂

∂t

(
Cd(βt)

∫
Up

ρd(x; βt)f(x) dµ(x)

)∣∣∣∣∣
t=0

= ∆M(f)(p). (132)

Theorem 4.3. Let {xi}ni=1 be a sequence of i.i.d. sampled points from a uniform
distribution on an open normal neighbourhood Up of a point p in a compact Rieman-
nian manifold M of dimension d. Ω~n

n be the associated operator given by:

Ω~n
n : C∞(Up)! R, Ω~n

n (a)(p) =
Cd(β~)

n~2
n∑
k=1

d+1∑
j=1

λ2j exp

(
−
〈
xki , sj

〉
~

)
αij(ak).

Put ~n = n−α, where α > 0, then in probability:

lim
n!∞

sup
a∈F

∣∣∣Ω~n
n (a)(p)−∆M(a)(p)

∣∣∣ = 0 (133)

4.4 Discussion

Going back to the definition of the Dirac operator associated to a graph X with
non-zero coefficients ωij, we recall that the goal was to compute the values ωij in
order to obtain a convergence when considering a sequence of refined triangulations.
We have exhibited the coefficients

ωij(~) = Cd(β~) exp

(
−〈xi, sj〉

2~

)
(134)

obtained from the Von Mises-Fisher distribution. Hence, we are able to prove a
convergence result to the Dirac operator on a normal neighbourhood (Theorem 4.2)
as well as a convergence of the Laplace operator (Theorem 4.3). However, as far
as the Laplacian is concerned, this choice is not unique, in fact one could take the
values of ωij obtained from a normal distribution and such that:

ω2
ij(~) = exp

(
‖xi − xj‖2

4~

)
(135)

and still get a convergence result. Nevertheless, keeping in mind that we are also
interested in the convergence of the square root i.e. to the Dirac operator, it is not
clear that such a choice of coefficients would also work.

Moreover, one may also consider classical discretizations of the Laplacian such
as the combinatorial one with the choice:

vertices i and j do not share an edge⇔ ωij = 0, ∀i, j (136)
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or the cotangent Laplacian with the choice

ω2
ij =


1
2
(cotαij + cot βij) ij is an edge,
−
∑

k∼i ω
2
ik i = j,

0 otherwise.
(137)

In these two cases the question of convergence to the Laplacian is unclear [22], let
alone convergence in the square root.

There is therefore an important direction worth investigating: whether a conver-
gent Laplacian constructed from a specific distribution or obtained from a known
discretization implies convergence of its associated Dirac operator.
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