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A numerical methodology is proposed to discretize a nonlinear low-frequency approximation to Maxwell’s equations using a local
discontinuous Galerkin (DG) finite element method, with an upwind-like numerical flux, for modeling superconductors. In this paper,
we focus on high-temperature superconductors (HTS) and the electrical resistivity is modeled using a power law. Nodal elements
and the Whitney element are used. Numerical studies have been performed to verify the proposed methodology: a problem with
a manufactured solution, the nonlinear magnetic front problem, and the magnetization of HTS wires. Based on the final time that
can be reached for a given time-step size, the proposed strategy is compared with the H formulation discretized using the Galerkin
finite element method with the Whitney element for the magnetic front problem. The proposed local DG strategy allows the use
of a larger time-step size over a longer time interval, particularly, when we use the Whitney element. The proposed methodology
can also capture sharp gradients of the current density with limited spurious oscillations. The numerical results are in agreement
with Bean’s model for large values of power-law’s exponent. The proposed local DG strategy could be generalized to more complex
electrical resistivity models, including multiphysics models.

Index Terms— Local discontinuous Galerkin (DG) finite element method, low-frequency Maxwell’s equations, magnetization,
nonlinear resistivity, p-curl problem, power-law model, superconductors.

I. INTRODUCTION

NUMERICAL modeling of high-temperature supercon-
ductors (HTS) involves the discretization of Maxwell’s

equations, in low-frequency regime, using a power law to
model electrical resistivity. Most numerical strategies are based
on a modification of Maxwell’s equations in order to obtain
a parabolic problem expressed with respect to the magnetic
field [1], the electric field [2], the magnetic vector potential
and a scalar potential [3], or the current vector potential and
the magnetic scalar potential [4]. There exist many commer-
cial codes that allow the discretization of these formulations.
Various discretization methods, such as the finite difference
method [2], [5] and the finite element method [1], [6], are
used to discretize the parabolic problems.

These parabolic problems are known to develop sharp
gradients of the current density for large values of the exponent
of the power-law model [7], [8]. These gradients are difficult
to capture using numerical methods designed to discretize par-
abolic partial differential equations (PDEs). Moreover, small
time-step sizes must be used to guarantee the stability of the
discrete problem. They make computational costs associated
with the study of industrial problems prohibitive [9].

The discontinuous Galerkin (DG) finite element method,
for which discontinuous discrete solutions are allowed, is
better suited for capturing sharp solutions. The DG finite
element method is used to discretize linear low-frequency
approximations to Maxwell’s equations [10]–[12] and non-
linear Maxwell’s equations to study nonlinear optics prob-
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lems [13]–[15]. For HTS modeling, Kameni et al. [6], [16]
and Makong et al. [17] use the nodal DG finite element
method to discretize the parabolic formulation based on the
electric field, also known as the E formulation. They use the
nonsymmetric interior penalty (NIP) method for the numerical
flux, which depends on a positive parameter that needs to be
determined. The NIP method enforces the continuity of the
discrete-dependent variable and its gradient at the interface
between elements. Since the boundary conditions are usually
given in term of the magnetic field, the imposition of these
conditions with the E formulation is not direct. Recently,
Makong et al. [18] discretize the parabolic problem with
respect to the magnetic field, the H formulation, using the
nodal DG method with the symmetric interior penalty (SIP)
method as numerical flux. The SIP method enforces the
continuity of the tangential component of the discrete mag-
netic field. Both numerical methodologies have taken advan-
tage of the natural parallelization of the DG method to
reduce the computational time of large-scale tridimensional
problems.

In this paper, we work directly with a low-frequency approx-
imation to Maxwell’s equations composed of a system of
the first-order PDEs, namely, Faraday’s law and Ohm’s law,
similar to what is proposed by Law and Laforest [5] for HTS
modeling in the context of the finite-difference time-domain
method. The benefit to use this form of Maxwell’s equations in
low-frequency regime is to split the nonlinear PDE into a linear
and nonlinear part, i.e., respectively, Faraday’s law and Ohm’s
law. A linear upwind-like numerical flux for this nonlinear
problem is proposed using the continuous inverse function
of Ohm’s law. The proposed numerical methodology can
be generalized to more complex and multiphysics electrical
resistivity models as long as there is a continuous inverse
function of Ohm’s law. Examples of such models can be found
in [19].
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This paper is structured as follows. In Section II,
a low-frequency approximation to Maxwell’s equations for
modeling HTS problems with a nonlinear electrical resistivity
is first introduced. This formulation is discretized using a
local DG finite element method with a linear upwind-like
numerical flux in Section III. We consider standard nodal
elements and the Whitney element. The Whitney element,
which is the lowest-order Nédélec element, is known to be
at divergence-free locally and, therefore, is used to enforce
locally the divergence-free magnetic induction field constraint.
A brief review of the discretization of the H formulation using
the Galerkin finite element method (GFEM) with the Whitney
element is also done. This numerical strategy is popular in the
electrical engineering community. To the best of our knowl-
edge, only this strategy is used for modeling industrial sys-
tems with complex geometries in three dimensions [20], [21].
In Section IV, a problem with a manufactured solution,
the nonlinear magnetic front problem, and the magnetization
of HTS wires are studied to verify the proposed methodology.
Based on the final time that can be reached for a given
time-step size, the nonlinear magnetic front problem is also
used to compare the proposed local DG strategy with the H
formulation discretized using the GFEM-based strategy. For
the magnetization of HTS wires, we complicate the problem
by considering air medium around the HTS wire.

II. MAXWELL’S EQUATIONS IN THE LOW-FREQUENCY

REGIME FOR HTS MODELING

Assuming a linear medium, electromagnetic phenomena are
modeled using Maxwell’s equations

∂t B + ∇ × E = 0

∂t D − ∇ × H = −J

∇ · D = ρc

∇ · B = 0 (1)

where B is the magnetic induction field, E is the electric field,
D = ε E is the electric field displacement, H = μ−1 B is
the magnetic field, ρc is the electric charge density, ε is the
electric permittivity, μ is the magnetic permeability, and J
is the current density. The relationship between the electric
field E and the current density J is given by Ohm’s law

E = ρ J (2)

where ρ is the electrical resistivity. Assuming a low-frequency
regime, we have ‖∂t D‖2 � ‖J‖2, where ‖ · ‖2 is the Euclid-
ean norm, which leads to the magneto-quasi-static condition
∂t D ≈ 0 [22]. The current density is then given by Ampère’s
law

J = ∇ × H (3)

and Ohm’s law (2) becomes

E = ρ ∇ × H. (4)

The first equation of system (1), which is known as
Faraday’s law, with Ohm’s law (4) and the divergence-free

constraint on B gives the system of the first-order PDEs

∂t (μH)+ ∇ × E = 0

E − ρ ∇ × H = 0

∇ · (μH) = 0 (5)

which are known as Maxwell’s equations in the low-frequency
regime for conducting materials. By combining the first
and second equation of system (5), a parabolic problem
expressed with respect to the magnetic field H is obtained

∂t (μH)+ ∇ × (ρ ∇ × H) = 0

∇ · (μH) = 0 (6)

which is known as the H formulation. It consists of a parabolic
PDE with a divergence-free constraint on μH. In this paper,
we assume that μ is a constant, and therefore, we have to
satisfy ∇ · H = 0.

Let us consider a domain � and its boundary �. Assuming
the boundary � = �D ∪ �N to be such that �D �= ∅ and
�D ∩ �N = ∅, the boundary conditions for system (6) are
given by

n × H = G1 on �D × I (7)

n × E = G2 on �N × I (8)

where E is given by Ohm’s law (4), n is the outward unit
normal to the boundary �, and I = [t0, tf] is a time interval.
The dependent variables for system (5) are both the magnetic
field H and the electric field E, and boundary conditions (7)
and (8) can, therefore, be imposed on all �.

For high-temperature superconducting materials, the electri-
cal resistivity is modeled using the power law

ρ = Ec

J p
c

‖∇ × H‖p−1
2 (9)

where Ec is the amplitude of the electric field for the critical
current, Jc is the critical current density, and p > 1 is a
parameter [23], [24]. The first equation of system (6) with
power-law model (9) gives

∂t (μH)+ ∇ ×
(

Ec

J p
c

‖∇ × H‖p−1
2 ∇ × H

)
= 0 (10)

which is also known as the p-curl problem [25]. The nonlin-
ear parabolic equation (10) becomes an ordinary differential
equation for ∇×H = 0, i.e., ∂t (μH) = 0. The p-curl problem
is, therefore, degenerated. By taking the limit as p → ∞ in
power-law model (9), Bean’s model is obtained

‖E‖2 =
{

0 if ‖J‖2 < Jc

e if ‖J‖2 = Jc
(11)

where e ∈ [0,∞[ [26]. For simple geometries, such as
a cylinder, analytical solutions with discontinuities on the
current density J are known. They are used to verify numerical
strategies for large exponents p.
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III. NUMERICAL METHODOLOGY

As mentioned earlier, most numerical strategies used to
study HTS problems modify the low-frequency approximation
to Maxwell’s equations (5) into a parabolic problem. In
this section, we briefly review the classical GFEM with the
Whitney element to discretize the H formulation (6). We also
propose a local DG method to discretize the first two equations
of system (5) for modeling HTS.

A. Galerkin Finite Element Method

Since the GFEM is based on the weak form of the PDEs,
let us consider the space of square integrable functions

L2(�) = {w : � → R s.t. ‖w‖L2(�) < ∞}
where the L2-norm is given by

‖w‖L2(�) =
(∫

�
w2 d�

)1/2

and � is the domain of definition of the problem. For a vector
field in [L2(�)]3, the L2-norm is given by

‖w‖L2(�) =
(

3∑
i=1

‖wi‖2
L2(�)

)1/2

. (12)

The inner product in L2(�) is given by

(v,w)� =
∫
�

v · w d�

in �. We also introduce the notation

〈v,w〉� =
∫
�

v · w ds

for functions defined on the boundary � of �. By multiplying
the equations to be discretized by a test function ψ that
belongs to a functional space W, followed by an integration
over �, the weak form of the first equation of the H formu-
lation (6) is obtained

(∂t (μH), ψ)� + (∇ × (ρ∇ × H), ψ)� = 0, ∀ψ ∈ W.

Using the divergence theorem, the weak form becomes

(∂t (μH), ψ)� + (ρ∇ × H,∇ × ψ)�

= −〈n × (ρ∇ × H), ψ〉�, ∀ψ ∈ W

where n is the outward unit normal to �.
Let us consider the case where we have the Dirichlet

boundary conditions (7) on all �. This leads us to work with

V = {H ∈ H (curl,�) : n × H = G1 on �}
where

H (curl,�) = {v ∈ [L2(�)]3 : ∇ × v ∈ [L2(�)]3}
and

W = {v ∈ H (curl,�) : n × v = 0 on �}.
We then have that

−〈n × (ρ∇ × H), ψ〉� =〈ρ∇ × H,n × ψ〉�=0, ∀ψ ∈ W.

The weak problem associated with the H formulation is then
find H ∈ V such that

(∂t (μH), ψ)� + (ρ∇ × H,∇ × ψ)� = 0,∀ψ ∈ W. (13)

Let us now define a discrete functional space Vh ⊂ V. The
discrete subspace associated with the Whitney element [27],
also known as an edge element to electrical engineers,
is a popular discrete subspace of H (curl,�) for the dis-
cretization of the H formulation [28]. It has been used
to model HTS problems [29]. The Whitney element shape
functions are locally divergence-free. The discrete magnetic
divergence-free constraint is therefore only satisfied locally on
each element [30].

The transient term ∂t (μH) is discretized using a
semi-discrete approach, where the second-order accurate
backward-differentiation formula (BDF) scheme is used. The
curl–curl matrix, given by the term (∇ × ψ,∇ × ψ)�,
is known to be singular with the Whitney element [22], [31].
Time discretization makes the assembly matrix invertible.
The discretization of problem (13) using the GFEM and the
second-order accurate BDF scheme with nonlinear electrical
resistivity is linearized using the following fixed-point iteration
scheme, for each time step:
(
Hn,k+1

h , ψh
)
�

+ 3�t

2μ

(
ρ
(∇ × Hn,k

h

) ∇ × Hn,k+1
h ,∇ × ψh

)
�

= 1

3

(
4 Hn−1

h − Hn−2
h , ψh

)
�

where Hn,k
h is the kth fixed-point iteration of the discrete

magnetic field at tn , �t is the time-step size, and ψh is a
discrete test function.

B. Local Discontinuous Galerkin Finite Element Method

Considering an initial condition of the magnetic field
that satisfies the divergence-free constraint, it can be shown
using Faraday’s law that the magnetic field remains at
divergence-free for all later time at the continuous level.
A local DG finite element method is then used to directly
discretize the first two equations of system (5). The system of
equations is discretized element by element. For two elements
K and K ∗ that share a common face, the jump of a variable
v across the boundary of these elements is defined as [[v]] =
v+ − v− where v+ belongs to element K and v− belongs
to K ∗. We then define the space of piecewise polynomials as

Dh = {w ∈ L2(�) : w|K ∈ Pr (K ),∀K ∈ �}
where Pr (K ) is the space of polynomials of degree r defined
on K , and Dh = [Dh ]3. For the Whitney element, we consider
the following space:

Dh = {w ∈ [L2(�)]3 : w|K ∈ N1(K ),∀K ∈ �}
where N1(K ) is the space spanned by the Whitney basis
functions defined on K .

Let us consider the system of equations made of the first
two equations of system (5) with a source term F. For HTS,
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the electrical resistivity is modeled using power law (9). The
continuous inverse function of

E = ρ(∇ × H)∇ × H = Ec

J p
c

‖∇ × H‖p−1
2 ∇ × H (14)

is given by

∇ × H = σ(E)E =

⎧⎪⎨
⎪⎩

Jc

E1/p
c

‖E‖
−p+1

p
2 E if ‖E‖2 �= 0

0 otherwise
(15)

where σ(E) = (Jc)/(E
1/p
c ) ‖E‖(−p+1)/(p)

2 is the nonlinear
conductivity, which goes to infinity as ‖E‖2 → 0. We,
therefore, have

∂t (μH)+ ∇ × E = F

σ(E)E − ∇ × H = 0. (16)

The discrete weak problem associated with system (16),
defined on each element K , is then given by

(∂t (μHh), vh)K +(∇ × Eh , vh)K = (F, vh)K , ∀vh ∈ Dh

(σ (Eh)Eh,wh)K −(∇ × Hh,wh)K = 0, ∀wh ∈ Dh (17)

where Hh is the discrete magnetic field, Eh is the discrete
electric field, and vh and wh are the associated discrete test
functions. Using the divergence theorem twice, we have the
additional terms

〈n × (Eh − E∗
h), vh〉∂K

and

−〈n × (Hh − H∗
h),wh〉∂K

defined on the boundary ∂K of K in the right-hand side of
weak form (17). The term[−n × E∗

h
n × H∗

h

]

is known as the numerical flux. The numerical flux is an
approximation of the flux at the interface between the ele-
ments. Since system (16) is not hyperbolic from the missing
transient term in the second equation of this system, an
upwind-like numerical flux is, therefore, used like it is done
for the discretization of the heat equation with a local DG
method [32].

To find the expression of this numerical flux, let us first
define U = [HT ET ]T and G = [FT 0T ]T . We then rewrite
system (16) as

Q ∂t U + A1 ∂x U + A2 ∂yU + A3 ∂zU + K U = G. (18)

We define the matrix

M =
3∑

i=1

ni Ai

where ni is the i th component of the outward unit normal n
to ∂K . To find an upwind-like numerical flux, the matrix M
is factorized as

M = R
 R−1

where the matrix 
 contains the eigenvalues of M and the
matrix R contains the eigenvectors of M . The matrix 
 can be
decomposed as 
 = 
+ +
−, where the diagonal matrices

+ and 
− contain the positive and negative eigenvalues.
Considering that the matrix 
− is responsible for making the
information enter the element, and the matrix 
+ is associated
with the information leaving the element, the upwind-like
numerical flux is chosen in such a way that[−n × E∗

h
n × H∗

h

]
= −R
+ R−1 U+

h − R
− R−1 U−
h

where U+
h and U−

h are the discrete-dependent variables that
belong, respectively, to K and K ∗. We also have[

n × (Eh − E∗
h)−n × (Hh − H∗
h)

]
= R
− R−1 [[Uh]] =

[
FE
FH

]

with

FE = 1

2
(n × [[Eh]] − [[Hh]] + (n · [[Hh]]) n)

FH = 1

2
(−n × [[Hh]] − [[Eh]] + (n · [[Eh]]) n) (19)

in a similar way to what is done in [33] and [32] for the first
two equations of Maxwell’s equations (1). The discrete weak
problem is then: for each element K , find (Hh,Eh) ∈ Dh ×Dh

such that

(∂t (μHh), vh)K + (∇ × Eh, vh)K

= (F, vh)K + 〈FE, vh〉∂K ,∀vh ∈ Dh

(σ (Eh)Eh ,wh)K − (∇ × Hh,wh)K

= 〈FH,wh〉∂K , ∀wh ∈ Dh . (20)

a) Better Conditioned Formulation Based on the Electri-
cal Resistivity: For HTS modeling, we do not use the weak
form (20) with the nonlinear conductivity to stay away from
any issue when ‖E‖2 → 0, such as ill-conditioned problem.
By (14) and (15), we have that

σ(E)E − ∇ × H = 0

and

E − ρ(∇ × H)∇ × H = 0.

Substituting the left-hand side of the second equation of
the discrete problem (20) by (Eh,wh)K − (ρ(∇ × Hh)∇ ×
Hh,wh)K gives the better conditioned discrete problem: for
each element K , find (Hh,Eh) ∈ Dh × Dh such that

(∂t (μHh), vh)K + (∇ × Eh , vh)K

= (F, vh)K + 〈FE, vh〉∂K , ∀vh ∈ Dh

(Eh,wh)K − (ρ(∇ × Hh)∇ × Hh,wh)K

= 〈FH,wh〉∂K , ∀wh ∈ Dh . (21)

The terms 〈FE, vh〉∂K and 〈FH,wh〉∂K can be seen as penal-
ization terms on the jump of the dependent variables at the
interface between the elements. Moreover, it can be shown
that weak formulation (21) is equivalent to (20) when applied
to H ∈ [W 1,1(�)]3 and E ∈ [W 1,1(�)]3, where

W 1,1(�) = {v ∈ L1(�) : ∂xv, ∂yv, ∂zv ∈ L1(�)}
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because we have [[H]] = [[E]] = 0 for all triangular faces
of the domain � (cf., Lemma 1.23 in [33]). The penalization
terms then become 0.

For non-superconducting material, one should also use weak
formulation (21). The electrical resistivity ρ is small for a
normal conducting material at HTS operating temperatures
(about 10−9 �m for copper). Considering that the conductivity
σ = ρ−1, the terms ∂t (μHh), ∇ × Eh , and ∇ × Hh may then
become negligible when compared to the term σ Eh in discrete
problem (20). This can also lead to an ill-conditioned problem.

Problem (21) discretized using the proposed local DG
method and the second-order accurate BDF scheme, with the
nonlinear electrical resistivity ρ(∇ × H), is linearized using
the following fixed-point scheme, for each time step and for
each element K :
(Hn,k+1

h , vh)K + 3�t

2μ
(∇ × En,k+1

h , vh)K

= 3�t

2
(Fn, vh)K + 3�t

2μ
〈Fn,k+1

E , vh〉∂K

+1

3
(4 Hn−1

h − Hn−2
h , vh)K

(En,k+1
h ,wh)K − (ρ(∇ × Hn,k

h )∇ × Hn,k+1
h ,wh)K

= 〈Fn,k+1
H ,wh〉∂K (22)

where Fn,k+1
E and Fn,k+1

H are the numerical flux evaluated
using the (k + 1)th iteration of the discrete magnetic field and
the discrete electric field at tn . A drawback of the DG methods
is the associated number of degrees of freedom (DOFs).
The total number of DOF associated with the proposed local
DG-based strategy is

2 × 6 × total number of element

when the Whitney element is used, and

2 × 3 × number of DOF on K × total number of element

when nodal elements are used. To overcome this issue, we
do not assemble the global matrix coming from (22). We
solve (22) on each element and use a Jacobi iterative method
to ensure the convergence of the global numerical solution.
We also take advantage of the natural parallelization of the
DG methods to reduce the computational time of simulations.

C. Divergence-Free Magnetic Field Constraint

The divergence-free magnetic field constraint is not satisfied
explicitly. As in [34], we expect that the order of convergence
of the divergence-free constraint to be r where r is the degree
of the piecewise polynomials used as shape functions. In
order to measure the global divergence, we use the semi-norm
‖H‖�,h as a norm of ∇ · H as proposed in [35]. For a vector
field H that is smooth in each element K of the discrete
domain, the norm of the divergence of H is given by

‖H‖�,h =
∑

f

∫
f
|[[H · n]]| ds +

∑
K

∫
K

|∇ · H| d K (23)

where f is the triangular faces of the discrete domain. The
norm (23) is used to verify the convergence of the divergence
of the discrete magnetic field.

IV. NUMERICAL EXAMPLES

A. Problem With a Manufactured Solution

In order to verify the order of convergence of the local
DG-based strategy using different elements, we use a constant
resistivity of one. In this case, the resulting system of equations
is a Friedrichs’ system and the theory of such systems can,
therefore, be used. To ease the computation of the error,
the manufactured solution technique is used. For a magnetic
field given by

H = (sin(3π (y + z)), cos(2π (x + z)), sin(π (x + y))) e−t

the corresponding source term F and the electric field E are
computed so that H is a solution of system (5). The magnetic
field H and the electric field E are imposed on all �. The
magnetic permeability μ is set to 1. The geometry is a unit
cube. Quasi-uniform meshes with tetrahedral elements are
used. The mesh grid size is denoted by h. The time interval is
I = [0, 0.1] and the time-step size is chosen between 0.0025
and 0.01 in such a way that the error associated with the
time scheme is dominated by the error associated with the
FEM discretization. The fixed-point iterations are considered
to converge when the Euclidean norm of the residual and of
the relative correction of the discrete problem are, respectively,
less than δr = 10−6 and δc = 10−5. The shape functions, for
each dependent variable, correspond to those associated with
the Whitney element (N1) or are either linear (P1) or quadratic
(P2) polynomials for nodal elements. The combinations of
shape functions used for the discretization of H−E are the
P1–P1, the P2–P2, and the N1–N1 elements.

The error on the discrete magnetic field and the discrete
electric field is computed using the vectorial L2-norm (12).
The convergence plots are shown in Fig. 1. The order
of convergence of Hh and Eh are r + 1, where r
is the degree of polynomials used as shape functions
(r = 1, 2 in our case), as expected for quasi-uniform meshes
(cf., [33, Theorem 7.19]). Using the norm ‖ · ‖�,h , we also
observe a linear and a quadratic convergence of the divergence
of the discrete magnetic field for P1–P1 element and for
P2–P2 element. For N1–N1 element, a linear convergence for
the discrete electric field Eh is observed as expected from the
error associated with the interpolation operator of the Whitney
element [36]. For the discrete magnetic field Hh , the observed
order of convergence is 1.5, which is better than expected, but
still in agreement with the theory. The convergence order of
the divergence of the discrete magnetic field is quadratic, but
we do not have theoretical results to support our numerical
results.

B. Magnetic Front Problem

For eddy currents problems, a variation of the magnetic
field induces an electric current. As mentioned earlier, these
problems are nonlinear when the exponent of power law (9) is
p > 1. To the best of our knowledge, no analytic solutions are
known for these problems in three space dimensions. However,
for Bean’s model, the magnetic field H and the current den-
sity J are known for cylindrical or rectangular geometries. In
cylindrical coordinates, the θ -component of H is a continuous
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Fig. 1. Convergence plots for the problem with a manufactured solution for
linear, quadratic, and the Whitney elements. (a) P1–P1. (b) P2–P2. (c) N1–N1.

Fig. 2. Geometry for the magnetic front problem where hz = 0.1 and r = 1.

piecewise linear function and the z-component of J contains a
Heaviside step function [37]. Both the magnetic field and the
current density penetrate the domain from the outside in. For
sufficiently large values of p, the analytic solution of Bean’s
model is used to verify the proposed numerical methodology
for nonlinear electrical resistivity (9). The magnetic front
problem is also used to compare the proposed numerical
strategy and the discretization of the H formulation using the
GFEM with the Whitney element. We assess the final time that
can be reached for a given time-step size for different values
of the exponent p.

The geometry under study consists of a cylindrical super-
conductor of radius r = 1 and height hz = 0.1, illustrated
in Fig. 2. Larger values of hz do not influence the observed
results. The physical parameters for this paper are μ = 1,
Ec = 1, and Jc = 1. Symmetric boundary conditions are
imposed on the top and bottom of the cylinder. For the electric
field, we also impose symmetric boundary conditions on the
lateral area of the cylinder. Dirichlet boundary conditions are
expressed in cylindrical coordinates to simplify their expres-
sion and are given by

H(r = 1, θ, z, t) = (Hr , Hθ , Hz) = (0,−t, 0)

TABLE I

NUMBER OF DOF FOR BOTH NUMERICAL STRATEGIES ASSOCIATED

WITH THE UNSTRUCTURED MESH COMPOSED OF 1 304 079 ELEMENTS

Fig. 3. x-component of the magnetic field for p = 10 at t = 0.34
using the proposed local DG-based strategy with the Whitney element
for the magnetic front problem. The color scale from blue to red is
[−0.35, 0.35]. (a) x-component of H in the cylindrical geometry. (b) Graph
of the x-component of H.

on the lateral area of the cylinder. The initial conditions are
given by H(x, 0) = 0 and E(x, 0) = 0.

We first compare the proposed local DG-based strategy with
the GFEM-based strategy. For a given time-step size �t , we
want to find the time tmax such that the convergence of the
fixed-point iteration scheme is lost for t > tmax. The unstruc-
tured mesh is composed of 1,304,079 elements. The mesh
grid size is 0.01. The nodal P1–P1 element and the Whitney
element N1–N1 are used for the local DG formulation (21)
and the Whitney element is used with the H formulation (6)
discretized with the GFEM. The number of DOF for both
numerical strategies associated with the unstructured mesh is
given in Table I. The tolerances are set to δr = δc = 10−4

(cf., Section IV-A). Table II gives the values of tmax for
which the convergence of the fixed-point iteration scheme
is lost for t > tmax for three different constant time-step
sizes (�t ∈ {5 × 10−3, 10−3, 10−4}) and different values of
the power-law’s exponent ( p ∈ {3, 10, 50}). As the exponent
increases, we see that a smaller time-step size allows the
different numerical strategies to converge for a longer time
interval. It is also observed that a larger time-step size can be
used over a longer time interval with the proposed DG-based
strategy, particularly, when we use the Whitney element. The
use of very small time-step size is a well-known limitation
of numerical codes used for modeling HTS and makes it
difficult to model industrial scale problems. From this point of
view, the proposed local DG-based strategy seems promising
to overcome this issue. However, the large number of DOF
makes unavoidable the use of a parallel implementation for
large-scale tridimensional problems.

Using the DG-based strategy with the Whitney element,
the x-component of the magnetic field Hx is illustrated for
p = 10 in Fig. 3. The y-component of H is similar to Hx but
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TABLE II

VALUES OF tmax FOR WHICH THE CONVERGENCE OF THE FIXED-POINT

ITERATION SCHEME IS LOST FOR t > tmax FOR THREE DIFFERENT

CONSTANT TIME-STEP SIZES AND DIFFERENT EXPONENTS FOR BOTH

NUMERICAL STRATEGIES, FOR THE MAGNETIC FRONT PROBLEM

with a rotation of 90◦ around the z-axis. Hz is of the order
of 10−3 and, therefore, not illustrated. As expected, H and J
are penetrating the cylinder from the outside in, in the radial
direction. The evolution of the z-component of the current
density Jz is shown in Fig. 4(a) and (c) for p = 10 and
p = 50 with a mesh grid size of h = 0.05. When p increases,
the variation of the current density J is sharper and closer to
the solution provided by Bean’s model. However, there are
spurious oscillations and over-shoots (values over 0) around
the sharp gradients of the current density. Fig. 4(b) illustrates
the z-component of the current density for p = 10 with a finer
mesh grid (h = 0.01). As the mesh is refined, we observe
that the spurious oscillations diminish and the sharp gradient
of the current density J is better captured. Fig. 5 illustrates
the order of convergence of the divergence of Hh using the
norm (23) for p = 3 and p = 10. For both values of the
exponent p, the time-step size is chosen such that we obtain
convergence until t = 0.5. The convergence of the divergence
of the discrete magnetic field does not guarantee that the
approximations converge to the “good” solution. However,
we do know that they converge to a divergence-free magnetic
field solution. The order of convergence of ∇ · Hh when we
use the Whitney element is 1.5 for p = 3 and p = 10. For

Fig. 4. Evolution of the z-component of the current density J at various
time steps for different mesh grid sizes and exponents p using the proposed
local DG-based strategy with the Whitney element for the magnetic front
problem. The color scale from blue to red is [−1, 0]. (a) p = 10, h = 0.05,
and �t = 0.125 × 10−3.(b) p = 10, h = 0.01, and �t = 10−4. (c) p = 50,
h = 0.05, and �t = 0.25 × 10−4.

Fig. 5. Convergence plot for the error of the divergence of the discrete
magnetic field using the proposed local DG strategy with the linear nodal
element and the Whitney element for the magnetic front problem. (a) P1–P1.
(b) N1–N1.

the local DG-based strategy with the linear nodal element,
we also observe the convergence of the divergence of the
discrete magnetic field. However, the order of convergence
is 0.5 for both exponents. For the local DG-based strategy,
the Whitney element seems to be more appropriate than the
nodal element P1–P1 since it has less DOF, allows the use of
a larger time-step size, and has a better convergence of the
divergence of the discrete magnetic field.

C. Magnetization of HTS Wires

The magnetization of a wire consists in exposing a wire
to an external magnetic field that varies with respect to time.
An electric current is then induced within the wire. In this
problem, we also consider air medium around the HTS wire.
Assuming that σ = 0 in air medium, we use the following
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Fig. 6. Geometry of the domain for the magnetization of a circular HTS
wire where hz = 0.5 mm, rext = 0.75 mm, and rint = 0.5 mm.

model:
μ∂t H + ∇ × E = 0

∇ × H = 0

∇ · H = 0

∇ · E = 0

which can be discretized with the proposed local DG formu-
lation (20) with σ(Eh) = 0. The assumption of σ = 0 in air
medium is not possible when the H formulation is discretized
using the GFEM with the Whitney element. We, therefore,
focus on the proposed local DG-based strategy.

1) Circular HTS Wire: The geometry of the domain � is a
cylinder of radius rext = 0.75 mm and height hz = 0.5 mm
containing another cylinder of radius rint = 0.5 mm, denoted
�2 (cf., Fig. 6). The inner cylinder is the conducting medium
and �1 = �\�2 is the surrounding medium, which is air
medium in our case. The properties of the MgB2 supercon-
ductor are characterized by μ = 4π × 10−7 N/A2, Ec =
10−4 V/m, Jc = 108 A/m2, and p = 50 [38]. The quantities of
reference used are E0 = 1 V/m, μ0 = 4π×10−7 N/A2, H0 =
(4π)−1 × 107 A/m, �0 = 10−3 m, and t0 = 10−3 s. In the
following, the dimensionless quantities are denoted with a tilde
(“ ˜ ”). The mesh is composed of 224 265 tetrahedral elements
and the dimensionless mesh grid size is h = 0.025. In order
to avoid interpolating material properties, the discretization
of � is such that each element K of the mesh belongs to
only one subdomain. The dimensionless time-step size used is
0.5×10−3. The tolerances are set to δr = δc = 10−4. We only
use the proposed local DG-based strategy with the Whitney
element for this problem.

An external magnetic field of amplitude 0.1 T with a
frequency of 50 Hz on the y-component of the magnetic field
Hy is applied. It induces an electric current in the z-direction.
The non-dimensional external magnetic field, given by

H̃(x̃, t̃) = (0, 0.1 sin(π 10−1 t̃), 0) (24)

is imposed on the lateral area of the outer cylinder �1.
Symmetry boundary conditions are imposed on the top and
bottom of the cylinder�. For the electric field, we also impose
symmetry boundary conditions on the lateral area of the outer
cylinder. The initial conditions are given by H̃(x̃, 0) = 0 and
Ẽ(x̃, 0) = 0.

The analytic solution provided by Bean’s model is used
to verify the proposed methodology for large values of p.
According to Bean’s model, the magnetic field H and the
current density J penetrate the wire from the outside in,

Fig. 7. Evolution of the Euclidean norm of the dimensionless magnetic
field H at various time steps along the x̃-axis at ỹ = 0 and z̃ = 0.25
using the proposed local DG-based strategy with the Whitney element for
the magnetization of a circular HTS wire.

along the r -axis [37]. The magnetic field and the current
density first get smaller as they penetrate further in the wire
until they reach zero. The magnetic field then increases and
penetrates further into the wire until the two fronts join at
the center of the superconductor. The value of the magnetic
field at the center of the wire then gets larger as illustrated
in Fig. 7(a) and (c). As the amplitude of the external magnetic
field decreases, we observe a remanent magnetic field in the
wire, as illustrated in Fig. 7(b) and (d). Fig. 8 illustrates the
dimensionless z-component of the current density at various
time steps along the x̃-axis. J̃z penetrates the wire until the
two fronts meet. Fig. 9 illustrates the graph of J̃z at z̃ = 0.25
when the two fronts form almost a discontinuity at the center
of the wire for the first and third quarter of the period of the
external magnetic field. The sharp gradients of J̃z are captured
with limited spurious oscillations. We also observe that the
order of magnitude of the dimensionless z-component of the
current density in air medium is about 10−4.

2) Rectangular HTS Wire: The geometry is a rectangu-
lar wire centered at (0, 0, 0) completely surrounded by air
medium, as illustrated in Fig. 10, to simulate the calibration
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Fig. 8. Evolution of the z-component of the dimensionless current density
J̃z at various time steps along the x̃-axis at ỹ = 0 and z̃ = 0.25 using
the proposed local DG-based strategy with the Whitney element for the
magnetization of a circular HTS wire.

Fig. 9. 2-D slice of the dimensionless z-component of the current density
J̃z at various time steps at z̃ = 0.25 with h = 0.025 and �t = 0.5 × 10−3

using the proposed local DG-based strategy with the Whitney element for the
magnetization of a circular HTS wire. The color scale from blue to red is
[−0.135, 0.135]. (a) t̃ = 5. (b) t̃ = 15.

Fig. 10. Geometry of the domain for the magnetization of a square HTS
wire where ha = 1.0 mm, hc = 0.5 mm, and �a = 1.5 mm.

free method that is used to measure the ac loss [39]. The
wire is composed of two materials: MgB2 and Nb (barrier) as
in [40]. We then have �Barrier = �2\�HTS. The dimensions
of the cross section of the wire are: 0.698 × 0.680 mm2

for the HTS and 1.170 × 1.140 mm2 for the barrier. We
consider the temperature at 27 K. The properties of Nb are then
μNb = 4π × 10−7 N/A2 and ρNb = 0.638 × 10−8 �m [41].
The MgB2 is characterized by the same properties than in
Section IV-C1, except for p = 109 and Jc = Ic

A , where
Ic = 177 A is the critical current and A is the surface
area of the cross section of the superconducting material in
the wire [38]. The quantities of reference are chosen as in
Section IV-C1. For Nb, we also choose ρ0 = ρNb.

The external magnetic field is given by

H(x, t) = (0, 0.1 sin(2π f t), 0)

where f = 144 Hz is the frequency and is imposed on
the faces of �1 that are parallel either to the xy plane or
yz plane. Symmetry boundary conditions are imposed on the

Fig. 11. Evolution of the Euclidean norm of the dimensionless magnetic
field H at various time steps along the x̃-axis at ỹ = 0.57 and z̃ = 0.25
using the proposed local DG-based strategy with the Whitney element for the
magnetization of a rectangular HTS wire.

Fig. 12. y-component of the dimensionless magnetic field H̃y on the xy plane
at z̃ = 0.25 and t̃ = 1.74 using the proposed local DG-based strategy with
the Whitney element for the magnetization of a rectangular HTS wire. The
color scale from blue to red is [0.02, 0.11].

Fig. 13. z-component of the dimensionless current density J̃z along the x̃-
axis at ỹ = 0.57, z̃ = 0.25, and t̃ = 1.74 using the proposed local DG-based
strategy with the Whitney element for the magnetization of a rectangular HTS
wire.

other faces for H. For the electric field, we impose symmetry
boundary conditions on all faces of �1. The initial conditions
are H(x, 0) = 0 A/m and E(x, 0) = 0 V/m. The mesh is
composed of 293 048 tetrahedral elements. The dimensionless
mesh grid size in �1 and in �2 are given, respectively,
by h�1 = 0.05 and h�2 = 0.025. As for the magnetization of a
circular HTS wire, the discretization of the domain is such that
each element K of the mesh belongs to only one subdomain.
The non-dimensional time-step size is �t = 0.1 × 10−3. The
tolerances are set to δr = δc = 10−4. Only the Whitney
element is used.

Figs. 11 and 12 illustrate, respectively, the norm of the
dimensionless magnetic field for various time steps in the
first half of the period of the external magnetic field, and
H̃y on the xy plane at z̃ = 0.25 and t̃ = 1.74. As for
the magnetization of a cylindrical HTS wire, the numerical
results are in agreement with Bean’s model solutions, which
are similar to what we describe in Section IV-C1, for a
rectangular HTS wire. Fig. 13 illustrates the z-component of
the dimensionless current density along the x̃-axis at ỹ = 0.57,
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z̃ = 0.25, and t̃ = 1.74. The sharp gradients of the current
density are captured with limited induced spurious oscillations
and the order of magnitude of J̃z in Nb and air medium are,
respectively, about 10−4 and 10−5. As expected, there are
strong eddy currents in the HTS.

V. CONCLUSION

A numerical strategy is proposed to use a local DG method
to discretize a low-frequency approximation to Maxwell’s
equations, with a nonlinear electrical resistivity, for mod-
eling high-temperature superconductor problems. A linear
upwind-like numerical flux is proposed using the inverse
function of Ohm’s law. In order to verify the implementation
of the local DG strategy with different elements, we use
a constant resistivity of one. The order of convergence of
the discrete-dependent variables for a problem with a known
solution is verified using either the theory of the DG method
applied on Friedrichs’ systems or the error associated with the
interpolation operator of the Whitney element. The magnetic
front problem with a nonlinear electrical resistivity is used
to verify the local DG-based strategy for HTS modeling. A
comparison between the proposed strategy and the H formu-
lation discretized using the GFEM with the Whitney element
is performed based on the final time that can be reached
for a given time-step size for different values of the power-
law’s exponent. For large values of the exponent p in the
power-law model of the electrical resistivity, the time-step size
must be smaller to reach a larger final time, but it is observed
that a larger time-step size can be used over a longer time
interval with the proposed DG-based strategy, particularly,
when we use the Whitney element. For the local DG-based
strategy with the Whitney element, the sharp gradients of the
current density have been captured with limited numerically
induced oscillations for both the magnetic front problem and
the magnetization of HTS wires.
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