Propensity Score Matching Methods in SAS®

Nianping Hu
Health Quality Council
Confounding Bias is Responsible for Treatment and Outcome. Confounding can Decrease, Increase, or even Change the Direction of Relation.
Strategies to Control the Confounding

- **Design Stage**
 - Randomization
 - Restriction
 - Matching

- **Analysis Stage**
 - Standardisation
 - Stratification
 - Matched analysis
 - Adjustments (regression analysis)
Propensity Score (Why)

- If there are multiple confounders in the model, control the confounders becomes complicated and impossible.

- Propensity score is generated to convert multiple confounders in a single dimension (score) to reduce the confounding bias.
Propensity Score (When)

Strategies to control the confounding

Measured confounders
- Design
 - Restriction
 - Matching
- Analysis
 - Standardization
 - Stratification
 - Multivariate Regression

Unmeasured confounders
- Design
- Analysis

Unmeasured but measurable in a validation study
- Unmeasurable
 - Design
 - Analysis
 - Two-stage sampling
 - External adjustment

Amenable to Propensity technique

• Crossover designs
• Active comparison group (restriction)
• Instrumental Variables
• Sensitivity analysis
Introduction

- Propensity score is predicted probability of treatment.
- The range for propensity score is from 0 to 1.
- Propensity score is a balancing score for observed covariates.
Introduction

- A Extensive selection of treatment
- B Moderate selection of treatment
- C Little preference for treatment
Propensity Score (How)
STEP 1

- **Demographic covariates**
 - Include basic demographic information (age, sex, race, etc)

- **Additional covariates**
 - can then be identified from the various data dimensions (Such as inpatients and outpatients files).
STEP 2

- **Identify empirical candidate covariates**
 - Identify the n most prevalent codes within each data dimension.
 - The top n most prevalent codes were identified as candidate empirical covariates. If fewer than 100 patients were identified with a covariate, the covariate was dropped.
* within a data source, calculate how frequently a code occurs; * then rank by frequency and add the variables to the output dataset.

%macro hdps_get_var_frequencies(type, source_table, source_field, source_type_field);
*---;
proc sort data = &source_table out = t_unique_by_pat (keep = &var_patient_id &source_field)nodupkey;
 by &var_patient_id &source_field; where &source_field is not null;
run;
proc freq data = t_unique_by_pat noprint; table &source_field / out = t_frequency;
run;
***;
* require at least 100 instances
***;
data t_newvar;
 set t_frequency(rename = (Count = frequency)); where frequency >= 100;
 length item $50; %if &source_type_field = C %then Item = &source_field;;
 %if &source_type_field = N %then Item = compress(put(&source_field,32.));;
 Temp_id = RANUNI(-1); Type = "&type";
 Source_table = "&source_table"; Source_field = "&source_field";
 consider_for_ps = 0; drop Percent &source_field;
run;
***;
* create the new variables!
***;
data &result_diagnostic; set &result_diagnostic t_newvar;
run;
%mend;
***;
* remove any variables that aren't in the top N most frequent
***;
%macro hdps_filter_top_n;
*------------------;
%macro hdps_filter_top_n;
STEP 3

• **Assess code recurrence and create**

 • indicator variables for each patient, for each identified code, address frequency by creating 3 variables:

 • Once \(= 1 \) if that code appeared at least once within 180 days.

 • Sporadic \(= 1 \) if code appeared at least more than the median.

 • Frequent \(= 1 \) if code appeared at least more than the 75\(^{th}\) percentile.
Example

• proc means data = &&Name&&_Codes noprint;
 • var %do J = 1 %to &NCodes; I_&&VarId&J %end;;
 • output out = Median Median = %do J = 1 %to &NCodes; M_&&VarId&J %end;
 • Q3 = %do J = 1 %to &NCodes; Q3_&&VarId&J %end;;
 • run;
• data _null_; set Median;
 • %do J = 1 %to &NCodes;
 • call symput("Median" || compress(put(&J,8.)), compress(put(M_&&VarId&J,8.)));
 • call symput("Q3_" || compress(put(&J,8.)), compress(put(Q3_&&VarId&J,8.)));
 • %end;
 • run;
• data &&Name&&_Codes; set &&Name&&_Codes;
 • %do J = 1 %to &NCodes; select;
 • when (I_&&VarId&J = .) do; I_&&VarId&J = 0; I_&&eval(&&VarId&J+1) = 0; I_&&eval(&&VarId&J+2) = 0; I_&&eval(&&VarId&J+3) = 0; end;
 • when (I_&&VarId&J >= &&Q3_&J) do; I_&&VarId&J = 1; I_&&eval(&&VarId&J+1) = 1; I_&&eval(&&VarId&J+2) = 1; I_&&eval(&&VarId&J+3) = 1; end;
 • when (I_&&VarId&J >= &&Median&J) do; I_&&VarId&J = 1; I_&&eval(&&VarId&J+1) = 1; I_&&eval(&&VarId&J+2) = 1; I_&&eval(&&VarId&J+3) = 0; end;
 • when (I_&&VarId&J >= 1) do; I_&&VarId&J = 1; I_&&eval(&&VarId&J+1) = 1; I_&&eval(&&VarId&J+2) = 0; I_&&eval(&&VarId&J+3) = 0; end;
 • end;
• if I_&&VarId&J ^= 0 then do;
• if &&Median&J = &&Q3_&J then I_&&eval(&&VarId&J+3) = .; if &&Median&J = 1 then I_&&eval(&&VarId&J+2) = .; end;
• %end;
• keep &var_patient_id %do J = 1 %to &NCodes; I_&&VarId&J I_&&eval(&&VarId&J+1) I_&&eval(&&VarId&J+2) I_&&eval(&&VarId&J+3) %end;;
• run;
• %end;
• data &result_diagnostic; set &result_diagnostic; array FType{3} $ 20;
• FType1 = "once"; FType2 = "sporadic"; FType3 = "frequent"; output;
• do I = 1 to 3; id = id + 1; frequency_type = FType(I); consider_for_ps = 1; output; end; drop FType1 - FType3 I;
• run;
STEP 4

- **Prioritize covariates**

 - Patient characteristics related to the exposure but not outcome might cause variance and doesn’t improve confounding control, sometimes maybe even introduce confounding.

 - We chose prioritize covariates depending on multiplicative bias assessment within data dimensions base on their potential for controlling confounding, not on exposure and other covariates.
%macro hdps_CalcBias;

 data Bias; set &output_detailed end = eof; retain %do I = 1 %to &NItem;
 %do J = 0 %to 3;
 Count%eval(&I*10+&J)_c0e0 Count%eval(&I*10+&J)_c0e1 Count%eval(&I*10+&J)_c1e0 Count%eval(&I*10+&J)_c1e1
 Count%eval(&I*10+&J)_c0d0 Count%eval(&I*10+&J)_c0d1 Count%eval(&I*10+&J)_c1d0 Count%eval(&I*10+&J)_c1d1
%end; %end;

.....

**;
* capture the prevalence of the confounder in the exp and unexp ;
**;
 if Exposed = 0 then do; %do I = 1 %to &NItem; %do J = 0 %to 3;
 if I_%eval(&I*10+&J) = 0 then Count%eval(&I*10+&J)_c0e0 + 1; if I_%eval(&I*10+&J) = 1 then Count%eval(&I*10+&J)_c1e0 + 1;
%end; %end; end;

.....

**;
* calculate parameters about each variable, including its bias ;
**;
 if eof then do; %do I = 1 %to &NItem; %do J = 0 %to 3; do I = 1 to 16; Temp(I) = .; end;

.....

**;
* calculate the Schelesselman bias *; * Biasmult = [PC1(RRCD-1)+1]/[PC0(RRCD-1)+1] ;
**;
 bias_num = (pc_exp * (rr_cd - 1)) + 1; bias_denom = (pc_unexp * (rr_cd - 1)) + 1; bias_mult = bias_num / bias_denom;
 bias_add = rd_ce * rd_cd; abs_log_bias_mult = ABS(LOG(bias_mult)); abs_bias_add = ABS(bias_add);

run;
%mend;
STEP 5

• **Select covariates**

 • We included covariates from step 1, the top k covariates from step 4, which could be as large as p^*n^*3 when including all candidate covariates.

 • $p = 8$ and $n = 200$ resulting in 4,800 candidate covariates. We selected the top $k = 500$ binary empirical covariates.
* only consider variables with the most bias on the mult. scale *

proc rank data = t_ps_calc descending out = t_ps_calc;
 var abs_log_bias_mult;
 ranks ps_rank;
run;

* take out the vars below the ranking threshold *

data t_ps_calc;
 set t_ps_calc;
 where ps_rank <= &k;
run;

data _null_
 set t_ps_calc end = eof;
 call symput ("ps_vars" || compress(put(_n_,8.)),"_" || compress(put(id,8.)));
 if eof then call symput ("NVars",compress(put(_n_,8.)));
run;
STEP 6

- Estimate propensity score (the hd-PS)
 - Estimate propensity score using multivariate logistic regression, including all investigator-defined covariates and the k hd-PS-selected covariates.
Example

**;
* calculate the propensity score *
**;
ods listing close;
ods output Association = C ParameterEstimates = Estimate_PS;
proc logistic data = &output_detailed(keep = exposed %do I = 1 %to &NClass; &ClassVar&i %end;
 %do l = 1 %to &NVars; &ps_vars&l %end;
 %do l = 1 %to &NFix; &FixVar&l %end; outcome &var_patient_id)
descending;
class %do I = 1 %to &NClass; &ClassVar&i %end;;
model exposed = %do I = 1 %to &NFix; &FixVar&I %end;
 %do l = 1 %to &NVars; &ps_vars&l %end;
output out = &output_scored_cohort(drop = %do l = 1 %to &NVars; &ps_vars&l %end;)
pred=p pbeta=logit_ps;
run;
ods listing;

STEP 7

• Use the hd-PS

• Use the hd-PS in an outcome model as any PS would be used (matching, deciling, trimming, etc.)
Example

%%RunHighDimPropScore {
 var_patient_id = key_hsn,
 var_exposure = exposed,
 var_outcome = outcome,
 vars_demographic = age sex race,
 vars_force_categorical =,
 vars_ignore =,
 vars_predefined =,
 top_n = 200,
 k = 500,
 input_cohort = specific cohort
 input_dim1 = drug_claims generic_name,
 input_dim2 = outpatient_diagnoses icd9_dx,
 input_dim3 = inpatient_diagnoses icd9_dx,
 input_dim4 = inpatient_procedures icd9_proc,
 input_dim5 = outpatient_procedures cpt,
 output_scored_cohort = scored_cohort,
 output_detailed = detailed_cohort,
 results_diagnostic = variable_info
};
Figure 1

histogram for propensity score

count

propensity score

Unexposed Exposed

c stat from the propensity score model is XX
Figure 2

Histogram for propensity score

Thanks