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Module Content

1. Probability distributions for observed data.
2. Independence and conditional independence.
3. Graphical modelling.
4. Cause and effect: structural models.
5. Paths and how to block them.
6. d-separation.
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Key Challenge in Epidemiological Research

Key objective: causal conclusions from observational data

• Experimental studies:
• Treatment assigned by the researcher, independent of con-

founding factors;
• Causal statements possible.

• Observational studies:
• Treatment assignment dependent on confounding factors;
• Causal statements not possible ?
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Causal inference

The objective of causal inference is to quantify the effect of an interven-
tion: in a multi-variable system
• suppose we are able tomanipulate (i.e. alter the value of) one of the

variables separately from all other variables;
• we wish to report the impact of that manipulation on one or more

of the other variables.
In many scientific enterprises, this is a primary objective.
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Data

We will collect data

{(xi, yi, zi), i = 1, . . . , n}

which are observed values of the variables X, Y and Z.

• X – predictors, covariates, confounders

• Y – outcome, response

• Z – treatment, exposure
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Causal Effects and Counterfactual Outcomes

The causal effect of Z on Y is the amount to which an intervention to
change Z from z0 to z1 modifies Y.

• The potential or counterfactual outcome is denoted Y(z), and is the
outcome after an intervention to set Z = z.

For example, if Z ∈ {0, 1}, then

Y(0) : outcome if intervention sets z = 0 (‘Untreated’)

Y(1) : outcome if intervention sets z = 1 (‘Treated’)

• The observed outcome Y is then

Y = (1− Z)Y(0) + ZY(1) =
{

Y(0) Z = 0
Y(1) Z = 1

.
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Causal Effects and Counterfactual Outcomes

Hypothetical data generating mechanism:

• individual brings their characteristics X;

• for each z, the outcome Y(z) is determined by X;

• for observed treatment Z = z, we observe Y = Y(z).
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Experimental studies

In an experimental study precisely the right kind of ‘intervention’ to study
causal contrasts is made:

• we randomly assign Z, independently of X;

• we compare the outcomes in the different groups indexed by differ-
ent Z values.

Example: randomized controlled trials.
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Observational studies

In an observational study we do not intervene to assign treatments, we
observe it as part of the data collection process.

• we cannot treat Z as if it were independent of X;

• groups with different Z may have different distributions of X, so
these groups are not directly comparable.

To study cause and effect, we need to have an understanding of the prob-
abilistic relationship between all the variables we observe.

To gain statistical insights, we need to build probability models.
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Observational studies

Example: HIV Study

• C – CD4 count (continuous)
• D – assignment of new HIV drug (binary)
• H – underlying HIV severity (binary)
• S – symptoms (binary)
• U – follow up indicator (binary, U = 0 implies loss to follow-up)

We wish to examine the impact of the new drug on CD4 count:

Does intervening to change D affect outcome C ?

We need to describe how these variables vary jointly in the study.
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Probabilistic models

A joint probability distribution

fX,Y,Z(x, y, z)

describes how the data are generated. This model specifies
• the marginal distributions

fX(x) fY(y) fZ(z)

that describe how the variables behave individually,
• the conditional distributions such as

fX|Y(x|y) fX|Z(x|z) fY|X(y|x) fY|X,Z(y|x, z) fY,Z|X(y, z|x)

etc. that describe how the variables behave when one or more vari-
able is fixed
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Probabilistic models

We have the possible decompositions

fX,Y,Z(x, y, z) = fX(x)fZ|X(z|x)fY|X,Z(y|x, z)

fX,Y,Z(x, y, z) = fZ(z)fY|Z(y|z)fX|Y,Z(x|y, z)

and so on, for any ordering of the variables.

We can always consider this kind of sequential decomposition, which is
termed a chain rule factorization.
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Independence

Two random variables X, Z are independent

X ⊥⊥ Z

if and only if, for all values (x, z),

fX,Z(x, z) = fX(x)fZ(z)
fZ|X(z|x) = fZ(z)

fX|Z(x|z) = fX(x)

i.e. knowledge of X does not influence our assessment of Z.
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Independence

We can consider conditional independence: say

Y ⊥⊥ Z | X

if and only if, for all (x, z, y)

fY,Z|X(y, z|x) = fZ|X(z|x)fY|X(y|x)

i.e. if we fix X = x
• knowledge of Y does not influence our assessment of Z:

fZ|X,Y(z|x, y) = fZ|X(z|x).

• knowledge of Z does not influence our assessment of Y:

fY|X,Z(y|x, z) = fY|X(y|x)
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Example

Three variables

• X and Y vary continuously,

• Z is binary.

We can study the distribution of the data for X and Y

• for each level of Z separately,

• pooled over Z levels.
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Example

−4 −2 0 2 4

−
4

−
2

0
2

4

X

Y

Z=0

Cor. :  −0.0238

2. Probabilistic models 16



Example
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Example
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Example
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Example

We see that

• for Z = 0 and Z = 1 separately, X and Y are uncorrelated;

• overall X and Y are positively correlated.

Thus X and Y are

conditionally unrelated given Z

but are
unconditionally related.

This illustrates that conditioning can remove (or block) dependence.
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Causal Graphs

We have a chain rule factorization

fX,Y,Z(x, y, z) = fX(x)fY|X(y|x)fZ|X,Y(z|x, y).

We might then assume the conditional independence

Z ⊥⊥ Y|X

so that
fZ|X,Y(z|x, y) = fZ|X(z|x)

and so
fX,Y,Z(x, y, z) = fX(x)fY|X(y|x)fZ|X(z|x)
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Causal Graphs

We can depict the conditional independence using a graph:

Z

X

Y

Z X Y

This type of graph is sometimes called a fork.
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Causal Graphs

The other common type of graph component is a chain

Z X Y

which implies the factorization

fZ(z)fX|Z(x|z)fY|X(y|x)

and the conditional independence

Y ⊥⊥ Z|X
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Causal Graphs

That is, there are two ways the conditional independence

Y ⊥⊥ Z|X

could be represented

Z X Y

Chain

fZ(z)fX|Z(x|z)fY|X(y|x)

Z X Y

Fork

fX(x)fZ|X(z|x)fY|X(y|x)
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Causal Graphs

• Nodes X , Y , Z denote the variables;

• Edges with arrows indicate the nature of dependence in the chain
rule factorization;

• Directed arrows specify the conditional independence assumptions;
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Causal Graphs

• Nodes without incoming edges are founders;

X Y

corresponds to
fX(x)fY|X(y|x)
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Causal Graphs

• Nodes with only outgoing edges act to block dependence.

For example, in

Z X Y

so that
fX,Y,Z(x, y, z) = fX(x)fY|X(y|x)fZ|X(z|x)

it follows that
Z ⊥⊥ Y|X.

However, it also follows that, in general

Y /⊥⊥Z

(recall the earlier scatterplots)
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Causal Graphs

• Nodes or vertices, V1, V2, . . ., represent variables.

• Edges, E1,E2, . . ., represent dependencies.

• Two nodes are adjacent if there is an edge between them.
• edges can be directed, denoted using arrows, or undirected;
• if all edges are directed, the graph is directed.

Note: we can use ‘bidirected’ (edges with an arrow at each end) to
indicate general dependence between two variables

X Y

although these will be less important in causal settings.
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Causal Graphs

• A path is a sequence of edges that connects two nodes;
• a directed path is a path where the directions of arrows on

edges are obeyed

V1 V2 V3 V4

Directed path from V1 to V4

whereas an undirected path is a path that is not directed.

V1 V2 V3 V4

Undirected path from V1 to V4

• two nodes are connected if a path exists between them, and
disconnected otherwise.
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Causal Graphs

In general, a graph may contain cycles, that is, directed paths that start
and end at the same node.

V3

V1

V2

V3 V1 V2

Directed acyclic graph (DAG): a directed graph with no cycles.
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Causal Graphs

Colliders: Suppose we have the DAG

X Y

Z

PARENTS

CHILD

fX,Y,Z(x, y, z) = fX(x)fY(y)fZ|X,Y(z|x, y)

3. Causal graphs 31



Causal Graphs

In this DAG, we have X ⊥⊥ Y:

fX,Y(x, y) = fX(x)fY(y)

e.g. X and Y represent the scores on two dice rolled independently, Z is
the total score

Z = X + Y.

We might observe

X = 2, Y = 3 =⇒ Z = 5.
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Causal Graphs

However, conditioning on Z = z

fX,Y|Z(x, y|z) ̸= fX(x|z)fY(y|z)

in general. Equivalently
fY|Z,X(y|z, x)

depends on the value of x.

For example, if we observe Z = 5, and we know X = 2, then we know
with certainty that Y = 3.
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Causal Graphs

That is,
X ⊥⊥ Y

but
X /⊥⊥Y | Z

Conditioning on Z induces dependence; the node is termed a collider.
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Causal Graphs

Example: Factorization

X1

X2

X3

X4 X5

fX1(x1)fX2|X1(x2|x1)fX3|X1(x3|x1)fX4|X2,X3(x4|x2, x3)fX5|X4(x5|x4)
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Structural models and equations

When we write

X

Y

Z

what precisely does the symbol mean ?
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Structural models and equations

A structural interpretation states that we

• generate X independently,

• generate Y and Z independently as functions of the realized X, for
example

Y = 3X
Z = 4X + 9
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Structural models and equations

UY

X

UZ

Y

Z

X,UZ,UY
independent

Y = g1(X,UY)

Z = g2(X,UZ)

For example

Y = X + UY

Z = X + UZ
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Structural models and equations

X

Y

Z

Y = g(X, Z)

Fixing X = x and Z = z fixes Y = g(x, z).
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Structural models and equations

X

Y

Z

UX

UZ

X = g1(UX)

Z = g2(UZ)

Y = g(X, Z)

If we know X = x and Z = z, then we do not need to know the values of
UX and UZ to determine Y. That is

Y ⊥⊥ (UX,UZ) | (X, Z).

We can interpret causation in terms of these functions.
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Structural models and equations

• X causes Y if it appears in the function, g, that assigns Ys value;

• X causes Y if, in the graph representing the joint distribution, there
is a directed path from X to Y;

• X is a direct cause of Y if there is an arrow from X to Y.
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Structural models and equations

Note

X

Y

Z

UX

UZ

X = g1(UX)

Z = g2(UZ)

Y = g(X, Z)

so that
Y = g(X, Z) = g(g1(UX), g2(UZ))

so both (X, Z) and (UX,UY) can be interpreted as causes of Y.
• X and Z are direct causes,
• UX and UY are indirect causes.
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Structural models and equations

Note
We will proceed by assuming that in a practical setting, the structural
relationship and the corresponding causal graph is known before any
analysis can be carried out.
• Usually in practice this requires expert knowledge;
• Learning the causal graph from data is a hard problem.
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Structural models and equations

Note
If we obtain all variables simultaneously, it is not possible to learn which
of the possible factorizations is the data generating one.

For example, if we simply observe (X, Y) jointly, we cannot distinguish

fX(x)fY|X(y|x) from fY(y)fX|Y(x|y)

i.e. does X cause Y or does Y cause X ?
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Structural models and equations

Note
In order for X to cause Y, we must have that X precedes Y temporally.

The structural equations form the variables on the left hand side from
the variables on the right hand side

Y = g(X, Z)

that is, we first generate X and Z, and then generate Y.

That is, there must be a temporal ordering.
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d-separation

To assess whether

Y ⊥⊥ Z or Y ⊥⊥ Z | X

for any distribution compatible with the DAG, we must assess whether
there is any way for ‘information’ to ‘flow’ between Z and Y, maybe once
X has been accounted for.
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d-separation

First, recall the collider graph

Z YX

X is a collider on the path between Z and Y. Therefore

Y ⊥⊥ Z but Y /⊥⊥Z | X

Note that a directed path from one node to another cannot contain a
collider.
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d-separation

The notion of being a collider is path-specific: for example

Z

YX

U

• X is a collider on path Z → X → U

• X is not a collider on path Z → X → Y.
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Unconditional d-separation

Consider a general path (directed or undirected) between Z and Y.

The path is open (or unblocked) if there is no collider on the path;

• if there is a collider, the path is closed (blocked).

Z and Y are d-separated if there is no open path between them;

If there is an open path, Z and Y are d-connected.

• this path must comprise chains or forks only

5. d-separation 49



Unconditional d-separation

Example: Diabetes example (Rothman et al. p 188)

• X1 family income
• X2 genetic risk
• W parental diabetes
• Z low educational attainment
• Y diabetes of subject

X1 X2

Z

W

Y
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Unconditional d-separation

Example: Diabetes example (Rothman et al. p 188)

Z and Y are d-separated; there is one path between Z and Y, but it is
blocked by the collider W.

fX1(x1)fX2(x2)fW|X1,X2(w|x1, x2)fZ|X1(z|x1)fY|X2(y|x2)

and Z and Y are independent.
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Conditional d-separation

For a non-collider X: conditioning on X:

Z YX Z ⊥⊥ Y | X

Z YX Z ⊥⊥ Y | X

Conditioning blocks the path.
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Conditional d-separation

For a collider X: conditioning on X opens the path

Z YX Z /⊥⊥Y | X
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Conditional d-separation

Consider the following DAG:

Z YX

W

and conditioning on a descendant, W, of X:

fZ,Y,W(x, y,w) = fZ(z)fY(y)
∫

fX|Z,Y(x|z, y)fW|X(w|x) dx

= fZ(z)fY(y)fW|Z,Y(w|z, y)
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Conditional d-separation

Therefore we have that

Z YW Z /⊥⊥Y | W

and so W is a collider in the reduced graph.
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Conditional d-separation

Therefore

(i) conditioning on a non-collider X blocks the path at X;

(ii) conditioning on
• a collider X or
• a descendant W of X

opens the path at X;

5. d-separation 56



Conditional d-separation

Consider two nodes X and Y with possibly several open paths connecting
them. Suppose S is a set of variables.

• S blocks a path if, after conditioning on S, the path is closed;

• S unblocks a path if after conditioning the path is open;

• If S blocks every path, then X and Y are d-separated by S.
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Conditional d-separation

• If S d-separates X and Y, then

X ⊥⊥ Y | S,

so that
fX|Y,S(x|y, s) ≡ fX|S(x|s) ∀(x, y, s).

X and Y are conditionally independent given S.
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Conditional d-separation

Example:

X1

X2

X3

X4 X5

{X2} and {X3} are d-separated by {X1}, and X2 ⊥⊥ X3 | X1.
• there are two paths between X2 and X3;

• X2 → X1 → X3: blocked by conditioning on X1.
• X2 → X4 → X3: blocked by the collider at X4, and X4 /∈ {X1}.
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Conditional d-separation

Example:

X1

X2

X3

X4 X5

{X2} and {X3} are not d-separated by {X1, X5}:
• X2 /⊥⊥X3 | (X1, X5).
• X5 is a descendant of collider X4;
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Selection bias

Conditioning on the common effect of two causes renders the two causes
dependent;

• this is known as selection bias or Berkson bias

• it is the effect we observe in the collider graph

Z1 Z2

Y
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Selection bias

Z1

X

W Z2

Here Z1 ⊥⊥ Z2: there are two paths to consider

• Z1 → X → W → Z2
• Z1 → W → Z2

both blocked by collider W. Therefore Z1 /⊥⊥Z2 | {W}.
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Selection bias

Z1

X V W

Z2

Here Z1 ⊥⊥ Z2: there are two paths to consider

• Z1 → X → V → W → Z2 is blocked by the collider X.

• Z1 → X → W → Z2 is blocked by the colliders X and W.

Therefore Z1 /⊥⊥Z2 | {X,W}.

6. Selection bias 63



d-separation implication

If X and Y are d-separated by S then

X ⊥⊥ Y | S

for all distributions compatible with the graph; conversely, if they are
not d-separated, then X and Y are dependent given S for at least one
distribution compatible with the graph.
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Interventions

Intervening set the level of Z to z has the effect of

• removing all incoming arrows to Z

• switching the marginal for Z to the degenerate distribution f∗Z (.)

f∗Z (z) = 1{z}(z) z ∈ R.

That is, Z takes the value z with probability 1.
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Interventions

In this example

X

Y

Z

fX(x)fZ|X(z|x)fY|X,Z(y|x, z)

X

Y

Z z

fX(x)f∗Z (z)fY|X,Z(y|x, z)
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Interventions

Consider the DAG

X1

X2

X3

X4 X5

fX1(x1)fX2|X1(x2|x1)fX3|X1(x3|x1)fX4|X2,X3(x4|x2, x3)fX5|X4(x5|x4)

7. Interventions 67



Interventions

Suppose we intervene to set X3 = x3. The relevant DAG is

X1

X2

X3

X4 X5

x3

fX1(x1)fX2|X1(x2|x1)f
∗
X3(x3)fX4|X2,X3(x4|x2, x3)fX5|X4(x5|x4)

and X1 is no longer a cause of X3.
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Graphical representation of bias

We aim to understand the effect of Z on Y.

• An open undirected path between Z and Y allows for the association
between Z and Y to be modified by the presence of other variables.

This is known as a biasing path.

• By ‘association’, we mean some form of correlation.

• Usually association is estimated using regression,
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Graphical representation of bias

• The association between Z and Y is unbiased for the effect of Z on
Y if the only open paths between them are directed paths.

Z Y

Z X Y

Z

X1

X2

Y
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Graphical representation of bias

Consider a set of nodes S:

• S is sufficient to control bias in the association between Z and Y if
after conditioning on S the remaining open paths between Z and Y
are precisely the directed paths between Z and Y;

• S is minimally sufficient if it is the smallest sufficient set.
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Graphical representation of bias

Note: Conditioning on descendants of Z

(i) blocks directed paths

Z X Y

Z ⊥⊥ Y | X but Z /⊥⊥Y
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Graphical representation of bias

(ii) may create paths that lead to biasing of the effect of Z on Y.

Z X Y

V

In this graph,
• the only open path between Z and Y is the direct path;
• conditioning on X opens a biasing path.
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Graphical representation of bias

(iii) may be unnecessary in statistical terms: for example

Z

X

Y

In this graph, conditioning on X will not affect bias.
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Graphical representation of bias

Undirected paths from Z to Y are termed backdoor paths (relative to Z)
if they start with an arrow pointing into Z.

X1 X2

Z

W

Y

The only path from Z to Y is a backdoor path; however, it is not open
because of the collider W.
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Graphical representation of bias

Before conditioning

• all biasing paths in a DAG are backdoor paths, and

• all open backdoor paths are biasing paths.

To obtain an unbiased estimate of the effect of Z on Y, all backdoor paths
between Z and Y must be blocked.
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Graphical representation of bias

Set S satisfies the backdoor criterion with respect to Z and Y if

(i) S contains no descendant of Z, and

(ii) there is no open backdoor path from Z to Y after conditioning on S.

8. Bias 77



Confounding

A confounding path between Z and Y is

(i) a biasing path (that is, an undirected open path) that

(ii) ends with an arrow into Y.
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Confounding

Variables on a confounding path are termed confounders.

Z

X

Y

Z

X

Y

X is a confounder in both cases.
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Confounding

X1 X2

Z

W

Y

W is a collider on the undirected path from Z to Y

Path 1: Z → X1 → W → X2 → Y

and hence this path is blocked.
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Confounding

However unconditional on W, the effect of Z on Y is confounded by the
backdoor path

Path 2: Z → X1 → W → Y.

Conditioning onW alone opens Path 1, therefore to block both paths, we
need to condition on

S ≡ {W, X2}.

9. Confounding 81



Confounding

X1 X2

Z

W

Y

Conditioning on W opens the confounding path. Therefore Z ⊥⊥ Y (as
there is no open path between them), but

Z /⊥⊥Y | W

Further conditioning on either {X1} or {X2} blocks the path.
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Confounding

X1 X2

Z

W

Y

Conditioning on W blocks the confounding path. Therefore conditioning
on any one of

{X1}, {W}, {X2}

will block the path.
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Direct and indirect effects

For the effect of Z on Y relative to X:

• Direct effect: A direct effect of Z on Y is the effect captured by a
directed path from Z to Y that does not pass through X.

• Indirect effect: An indirect effect of X on Y that is captured by di-
rected paths that pass through X.
• X is termed an intermediate or mediator variable.
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Direct and indirect effects

Z X Y

Indirect effect

Z

X

Y
(D)

Direct (D) & Indirect effect

X is a mediator of the indirect effect
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Direct and indirect effects

Z

X Y

U

(D)

No indirect effect

Direct effect is not confounded

X is a collider, so there is no other open path from Z to Y.
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Unmeasured confounding

Suppose that in reality there is a further variable U that is a confounder,
but is unmeasured in the observed data.

Z Y

X

U

There is a hidden confounding path Z → U → Y. Conditioning on U is
not possible, as we are unaware of its existence.
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Unmeasured confounding

With two unmeasured confounders:

U1 U2

Z

X

Y

We have that X, Y and Z are independent; the (true but hidden) path
between Z and Y is blocked at collider X.
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Unmeasured confounding

Suppose we condition on X:

U1 U2

Z

X

Y

In the modelled DAG, Y ⊥⊥ Z | X; however, conditioning on X opens the
hidden path through U1 and U2, so there is now an open biasing path.

This is sometimes referred to as the M-bias phenomenon.
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Implications for Statistical Modelling

We have seen that conditioning on variables can close biasing paths, al-
lowing an unbiased assessment of the causal effect of Z on Y.

Z

X

Y

The open, undirected path

Z → X → Y

can be blocked by conditioning on X.
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Implications for Statistical Modelling

If all the variables are jointly Normally distributed, then this conditioning
can be achieved by including X as a predictor in a linear regression model
of Y on Z.

That is, we can fit the linear model where

E[Y|X = x, Z = z] = β0 + β1x+ ψz

and estimate the direct effect of Z on Y by estimating ψ.
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Implications for Statistical Modelling

Note
Blocking confounding paths (e.g. by conditioning) is not quite the end of
the story.

Typically we need to utilize parametric inference, and there is usually a
requirement that certain parametric models are correctly specified.
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Summary

In a statistical formulation of a causal inference problem

1. We identify treatment Z and outcome Y

2. We form the DAG representing the relationships between Z and Y
which contains other measured variables X.

3. The causal effect of Z on Y flows down open and directed paths from
Z to Y;
• there may be a direct effect if there is an arrow from Z into Y;
• there may also be indirect effects if the directed path passes

through mediating variables.
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Summary

4. If there are undirected paths from Z to Y that are open, then these
paths may induce bias in estimation of the effect of Z on Y.

5. In order to obtain unbiased estimation, the open undirected (bias-
ing) paths must be blocked; typically this is done by conditioning on
variables on those paths.

6. A collider node blocks a path; however, conditioning on the collider
opens the path at that node.
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