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The Key Challenge

Key issue: causal conclusions from observational data

e Experimental studies:
» Treatment assigned by the researcher, independent of confounding factors;
> Causal statements possible.

e Observational studies:

» Treatment assignment dependent on confounding factors;
» Causal statements not possible ?



Module Content

The need for adjustment: confounding in observational studies.
Manufacturing balance: the propensity score.

Statistical tools utilizing the propensity score.

Ll

Examples and extensions.
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The central causal question

In many research domains, the objective of an investigation is to quantify
the effect on a measurable outcome of changing one of the conditions
under which the outcome is measured.

¢ in a health research setting, we may wish to discover the benefits
of a new therapy compared to standard care;

e in economics, we may wish to study the impact of a training pro-
gramme on the wages of unskilled workers;

e in transportation, we may attempt to understand the effect of em-
barking upon road building schemes on traffic flow or density in a
metropolitan area.

The central statistical challenge is that, unless the condition of interest
is changed independently, the inferred effect may be subject to the influ-
ence of other variables.

1.1: The central causal question 10



The central causal question

Example: The effect of nutrition on health

In a large cohort, the relationship between diet and health status is to be
investigated. Study participants are queried on the nutritional quality of
their diets, and their health status in relation to key indicators is assessed
via questionnaires.

For a specific outcome condition of interest, incidence of cardiovascular
disease (CVD), the relation to a specific dietary component, vitamin E
intake, is to be assessed.

In the study, both incidence of disease and vitamin E intake were di-
chotomized
¢ Exposure: Normal/Low intake of vitamin E.

¢ Outcome: No incidence/Incidence of CVD in five years from study
initiation.

1.1: The central causal question 11



The central causal question

Example: The effect of nutrition on health

Outcome
CVD | No CVD
e Normal | 27 8020
Low 86 1879

Question: does a diet lower in vitamin E lead to higher chance of devel-
oping CVD ? More specifically, is this a causal link ?

e that is, if we were to intervene to change an individual’s exposure
status, by how much would their risk of CVD change ?

1.1: The central causal question 12



The language of causal inference

We seek to quantify the effect on an outcome of changes in the value of
an exposure or treatment.
e Qutcome: could be
> Dbinary;
> integer-valued;
» continuous-valued.
e Exposure: could be
» binary;
> integer-valued;
» continuous-valued.
e Study: could be
» cross-sectional (single time point);
» longitudinal (multiple time points), with single or multiple exposures.

We consider an intervention to change exposure status.

1.1: The central causal question



We adopt the following notation: let
¢ | index individuals included in the study;
¢ Y; denote the outcome for individual i;
e Z; denote the exposure for individual i;
¢ X; denote the values of other predictors (or covariates).

For a cross-sectional study, Y; and Z; will be scalar-valued; for the longi-
tudinal case, Y; and Z; may be vector valued. X; is typically vector-valued
at each measurement time point.

We will treat these variables as random quantities, and regard them as
samples from an infinite population, rather than a finite population.

1.2: Notation 14



Graphical representation

Directed Acyclic Graph (DAG) for basic confounding set up in observational
studies.

DAGs are commonly used to clarify causal thinking and assumptions.

1.2: Notation 15



Graphical representation

¢ an inbound arrow indicates a causal relationship
» Xis adirect cause of Y and Z;
» Zis a direct cause of Y, but also a mediator of the indirect cause of X on Y;
e a variable (node) that has no inbound arrows can be considered a
‘founder’ variable;

¢ we must consider paths from the exposure Z to the outcome Y; there
are two

» the direct pathZ — Y,
» theindirect pathZ - X — Y

1.2: Notation 16



Structural modelling

We can think of the DAG as encapsulating the following equations:

Z= gZ(X7 52)

Y= gY(X7 27 €Y)
where €7 and €y are independent random perturbations, and gz and gy
are mapping functions.

That is,
¢ we take X and €z and combine them through gz to obtain Z;

e we combine Z with X and ey through gy to obtain Y.

1.2: Notation 17



Structural modelling

For example

Z:X+€Z

Y =2X+5Z+3XZ + ey

1.2: Notation 18



Causal goal

Our goal is to understand the unconfounded effect of Z on Y, that is,
where X is not treated as a cause of Z.

DAG with no confounding.

1.2: Notation 19



Causal goal

In the structural model, we imagine Z being fixed to some value, z say,
not generated by its structural model.

Y =2X + 5z + 3Xz + ey

1.2: Notation 20



Counterfactual or Potential Outcomes

In order to phrase causal questions of interest, it is useful to consider
certain hypothetical outcome quantities that represent the possible out-
comes under different exposure alternatives.

We denote by
Yi(z)
the outcome for individual i if we intervene to set exposure to z.

Yi(z) is termed a counterfactual or potential outcome.

1.2: Notation 21



Counterfactual or Potential Outcomes

If exposure is binary, the pair of potential outcomes

{1i(0),Yi(1)}

represent the outcomes that would result for individual i if that subject
was not exposed, or exposed, respectively.

The observed outcome, Y;, may be written in terms of the potential out-
comes and the observed exposure, Z;, as

Yi = (1 - 2)Yi(0) + Zivi(1).

1.2: Notation 22



Counterfactual or Potential Outcomes

That is, Y(0) and Y(1) are (potentially) caused by X, but not Z.

DAG with potential outcomes

1.2: Notation 23



Counterfactual or Potential Outcomes

If exposure is multi-valued, the potential outcomes

{Yi(zl)a Yi(22)7 s ?Yi(zd)}

represent the outcomes that would result for individual i if that subject
exposed to exposure level z1, 7y, . . ., z; respectively.

1.2: Notation 24



Counterfactual or Potential Outcomes

The observed outcome, Y;, may then be written in terms of the potential
outcomes and the observed exposure, Z;, as

d
Y=Y 143(Z)Yi(z).
=1

where 1 4(Z) is the indicator!!! for the set A, with 1 4(Z) = 1ifZ € A,
and zero otherwise.

M or ‘pick-off’ function

1.2: Notation 25



Counterfactual or Potential Outcomes

If exposure is continuous-valued, the potential outcomes
{Yi(2),z € Z}

represent the outcomes that would result for individual i if that subject
exposed to exposure level z which varies in the set Z.

1.2: Notation 26



Counterfactual or Potential Outcomes

Note 1.

It is rare that we can ever observe more than one of the potential out-
comes for a given subject in a given study, that is, for binary exposures
it is rare that we will be able to observe both

Y,(0) and ¥(1)
in the same study.

In the previous example, we cannot observe the CVD outcome under both
the assumption that the subject did and simultaneously did not have a low
vitamin E diet.

This is the first fundamental challenge of causal inference.

1.2: Notation 27



Causal Estimands

The central question of causal inference relates to comparing the (ex-
pected) values of different potential outcomes.

We consider the causal effect of exposure to be defined by differences in

potential outcomes corresponding to different exposure levels.

Note 2.

This is a statistical, rather than necessarily mechanistic, definition of
causality.

1.3: Causal estimands 28



Binary Exposures

For a binary exposure, we define the causal effect of exposure by consid-
ering contrasts between Y;(0) and Y;(1); for example, we might consider

o Additive contrasts
Yi(1) — vi(0)

e Multiplicative contrasts

Yi(1)/Yi(0)

1.3: Causal estimands



Continuous Exposures

For a continuous exposure, we might consider the path tracing how Y;(z)
changes as z changes across some relevant set of values.

This leads to a causal dose-response function.
Example: Occlusion Therapy for Amblyopia

We might seek to study the effect of occlusion therapy (patching) on vision
improvement of amblyopic children. Patching ‘doses’ are measured in
terms of time for which the fellow (normal functioning) eye is patched.

As time is measured continuously, we may consider how vision improve-
ment changes for any relevant dose of occlusion.

1.3: Causal estimands 30



Expected counterfactuals

In general, we are interested in population causal effects based on ex-

pected potential outcomes
E[vi(z)]

or contrasts of these quantities.

We might also consider subgroup-specific expected quantities
E[Yi(z)]i € Z]

where 7 is some stratum of interest in the general population.

1.3: Causal estimands



Expected counterfactuals: binary exposure

For a binary exposure, we might consider the average effect of exposure
(or average treatment effect, ATE) defined as

E[Y(1) - ¥i(0)] = E[¥i(1)] - E[t;(0)]
If the outcome is also binary, we note that
E[Y(2)] = Pr[¥i(z) = 1]
so may also consider odds or odds ratios quantities

Pr¥i(z) = 1] Pr{¥i(1) = 1)/ Pr[¥i(1)
Pr¥i(z) = 0] Pr(¥,(0) = 1]/ Pr{¥,(0) =

Il
o|o

1.3: Causal estimands



Expected counterfactuals: binary exposure

We may also consider quantities such as the
average treatment effect on the treated, ATT

defined as
E[Yi(1) — v;(0)|Z; = 1]

although such quantities can be harder to interpret.

1.3: Causal estimands



Example: antidepressants and autism

Example:

Antidepressants are quite widely prescribed for a variety of mental health
concerns. However, pregnant women may be reluctant to embark on a
course of antidepressants during pregnancy.

We might wish to investigate, in a population of users (and potential
users) of antidepressants, the incidence of autism-spectrum disorder in
early childhood and to assess the possibility of causal influence of antide-
pressant use on this incidence.

1.3: Causal estimands 34



Example: antidepressants and autism

Example:

e Outcome: binary, recording the a diagnosis of autism-spectrum dis-
order in the child by age 5;

e Exposure: antidepressant use during 2nd or 3rd trimester of preg-
nancy.

Then we may wish to quantity

E[Y;(antidepressant) — Y;(no antidepressant)|Antidep. actually used].

1.3: Causal estimands 35



Estimation of average potential outcomes

We wish to obtain estimates of causal quantities of interest based on the
available data, which typically constitute a random sample from the tar-
get population.

Typically, we will use sample mean type quantities: for a random sample
of size n, the sample mean
1 n
DN
n<
i=1

is an estimator of the population mean and so on.

1.4: Basics of estimation




Estimation of average potential outcomes

In a typical causal setting, we wish to perform estimation of
average potential outcome

(APO) values.

Consider first the situation where all subjects in a random sample receive
a given exposure z; we wish to estimate E[Y(z)].

1.4: Basics of estimation 37



Estimation of average potential outcomes

The intervention to set Z = z is done independently of X, so the arrow
X — Zis removed.

(X — o)

Z=z

DAG with exposure intervention Z = z

1.4: Basics of estimation



Estimation of average potential outcomes

As a mathematical calculation, we write the expected outcome as

B = [ v ®) &
which we read as

“average the collection of possible y values weighted by their
probability of being observed".

The quantity fy(,)(y) is the hypothetical distribution of the potential out-
come Y(z).

1.4: Basics of estimation



Estimation of average potential outcomes

We may also write this as

E[r(z)] = / Y Frierx (%) dy dx

which recognizes that in the population, the values of the predictors X
also vary randomly according to some probability distribution.

1.4: Basics of estimation



Estimation of average potential outcomes

The quantity fy(,) X(y, x) is the hypothetical joint distribution of the po-
tential outcome Y(z) and X

¢ this describes how these two quantities vary together.
> fy(z)(v) is the distribution of the potential outcome Y(.) when we set the
exposure to z.
> fy(2),x(¥, x) is the joint distribution of (Y(.), X) in the population where we
set the exposure to z.

1.4: Basics of estimation 41



Estimation of average potential outcomes

Note that we may also write

BIY()) = [ i@ frayn) v dz o

assuming an exposure distribution that sets z = z with probability one.

¢ the data are considered to be sampled from the distribution

111 (2) frz)x(V,X) = 153(2) frz)x WS (x).

1.4: Basics of estimation 42



Estimation of average potential outcomes

However, remembering the DAG for our intervention (p. 38) we can de-
duce that

frz)xWX) = frizx(Vz,%)

so that the population distribution becomes

1oy (2) fY|Z,X(y‘Zv X)fx(x).

Thus, for the APO we have

E[r(z)] = / V1032 froyx WD) dy dz dx

1.4: Basics of estimation 43



Estimation of average potential outcomes

Now, in our hypothetical sample, we have observed n data points

{(,y1,2),i=1,...,n}

from the joint distribution

11,3(2) frz) xS (%)

so that 2; = z for all i. We may estimate the relevant APO E[Y(z)] by

Elv()] = ;Y =7

1.4: Basics of estimation 44



Estimation of average potential outcomes

Note 3.
To estimate functions of the sample mean, we may use simple transforma-
tions of the estimator; for example, if the outcome is binary, we estimate
the odds

Fefiiz) 1)

Pr[Y;(z) = 0]

“<I

L b
0 i

1-y
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Side Note: Monte Carlo methods

Causal quantities are typically average measures across a given popula-
tion, hence we often need to consider integrals with respect to probability
distributions.

For any function g(.), we have

Elg(v)] = / o(y) fr(v) dy

- / a(y) Frx(y.x) dy dx

Rather than performing this calculation using integration, we approxi-
mate it numerically using Monte Carlo.

1.5: The Monte Carlo paradigm



Side Note: Monte Carlo methods

Monte Carlo calculations proceed as follows:

e generate a sample of size n from the density

fr(v)

to yield yy, . .., yn; there are standard techniques to achieve this.

* approximate E[g(Y)] by

o For large n, E[g(Y)] provides a good approximation to E[g(Y)].

1.5: The Monte Carlo paradigm 47



Side Note: Monte Carlo methods

This calculation is at the heart of frequentist methods in statistics:
® we collect a sample of data of size n,

® form estimates based on this sample (which often correspond to
sample averages),

® if our sample is large enough, we are confident in our results.

1.5: The Monte Carlo paradigm 48



Side Note: Monte Carlo methods

We have that

Elg(v)] = / 900) fely) dy = / o) gg;fi(y) ay

where f; (y) is some other density. Thus

By [o(Y)] = By, [gm j

1.5: The Monte Carlo paradigm



Side Note: Monte Carlo methods

This is known as importance sampling: we

e generate a sample of size n from the density

fr (v)

toyield y1, ..., ¥n;
* approximate E[g(Y)] by

1.5: The Monte Carlo paradigm



Side Note: Monte Carlo methods

This means that even if we do not have a sample from the distribution of
interest, fy, we can still compute averages with respect to fy if we have
access to a sample from a related distribution, f; .

Clearly, for the importance sampling computation to work, we need that

fr(vi)
fy ()

is finite for the required range of Y, which means that we must have

fy(y) >0 whenever fy(y) > 0.

1.5: The Monte Carlo paradigm 51



Side Note: Marginal and conditional measures of effect

Many of the causal measures described above are marginal measures.

That is, they involve averaging over the distribution of X: as we have seen

BY(2)) = [ 3 fax(vlz 0fi) dy dx

This is sometimes known as a G-computation formula.

1.6: Collapsibility



Side Note: Marginal and conditional measures of effect

Marginal measures are not typically the same as the equivalent measure
defined for the conditional model

fY|Z,X(y|Z> X)

Marginal measures that do not have the same interpretation in the con-
ditional model are termed non-collapsible.

1.6: Collapsibility



Side Note: Marginal and conditional measures of effect

Example: Logistic regression

Consider the binary response, binary exposure regression model, where

B B o exp{fo+ fiz+ Box} .
Pr[Y_ ]'lZ_Z?X_X] - 1+eXp{,80+/812+,82X} _/“[/(XVZ?B)

say. We then have that in this conditional (on x) model, the parameter

Prly=1Z=1,X=x]/Pr[y =0|Z=1,X :x])

—1
fr = log (Pr[Y: 11Z=0,X = x]/Pr[Y = 0]Z = 0,X = x|

is the log odds ratio comparing outcome probabilities with for Z = 1 and
Z = 0 respectively.

1.6: Collapsibility 54



Side Note: Marginal and conditional measures of effect

Example: Logistic regression

In the marginal model, we wish to consider
Pr[Y = 1|Z = 7]
directly, and from the specified conditional model we have
Prly =1|1Z=2] = /Pr[Y =1|Z = 2,X = x|fx(x) dx

assuming that Z and X are independent. Explicitly,

Prly =1|Z=2] = /u(x,z; B)fx(x) dx

1.6: Collapsibility



Side Note: Marginal and conditional measures of effect

Example: Logistic regression

Typically, the integral that defines Pr[Y = 1|Z = 2] in this way is not
tractable. However, as, Y is binary, we may still consider a logistic re-
gression model in the marginal distribution, say parameterized as

o 1 exp{fy + 01z}
Prly =1z =2 = - oo {Ont 6,7]

where 60; is the marginal log odds ratio.

In general, 81 # 6.

1.6: Collapsibility



The randomized study

The approach that intervenes to set exposure equal to z for all subjects,
however, does not facilitate comparison of APOs for different values of z.

Therefore consider a study design based on randomization; consider from
simplicity the binary exposure case. Suppose that a random sample of
size 2n is obtained, and split into two equal parts.

o the first group of n are assigned the exposure and form the ‘exposed’
or ‘treated’ sample,

e the second group are left ‘untreated’.

1.7: The randomized study 57



The randomized study

For both the treated and untreated groups we may use the previous logic,
and estimate the ATE

E[(1) - %(0)] = E[%,(1)] - E[t(0)]

by the difference in means in the two groups, that is

The key idea here is that the two halves of the original sample are ex-
changeable with respect to their properties:

¢ the only systematic difference between them is due to exposure
assignment.

1.7: The randomized study 58



The randomized study

In a slightly modified design, suppose that we obtain a random sample of
size n from the study population, but then assign exposure randomly to
subjects in the sample: subject i receives treatment with probability p.

e if p = 1/2, there is an equal chance of receiving treatment or not;
¢ we may choose any value of 0 < p < 1.

In the final sample, the number treated, nj, is a realization of a random
variable N; where
N; ~ Binomial(n, p).

1.7: The randomized study 59



The randomized study

This suggests the estimators!?’

Z:l ]l{z}(zi)Yi

E[v(z)] = EL z2=0,1 (1)
i:le ]]-{z}(zi)

where the indicator 1,,(Z;) identifies individuals that received treat-
ment z.

2 Formula (1) just says to take the mean in each treatment group !

1.7: The randomized study



The randomized study

Note that for the denominator,
n
Z 141}(Zi) ~ Binomial(n, p)
so we may consider replacing the denominators by their expected values
np and n(l—p)
respectively for z = 0, 1. This yields the estimators

1 n
= n_pzl{l}(zi)yi E[Y( Z]l{o}
i—1

(2)

1.7: The randomized study 61



The randomized study

Note 5.

The estimators in (1) are more efficient than the estimators in (2), that is,
they have lower variances.

It is more efficient to use an estimated value of p

~ M
p:—
n

than p itself.

1.7: The randomized study 62



The randomized study

We have that
/ V103 @) frzxOl (0 (2) dy dz dx

Bly(2)] =
/ Loy (f(2) dz

and have data which are a random sample from the joint density

fY|z,X(y|Za X)fx ()fz(2)

which demonstrates that the estimators in (1) are akin to Monte Carlo
estimators.

1.7: The randomized study



The challenge of confounding

The second main challenge of causal inference is that for observational
(or non-experimental) studies, exposure is not necessarily assigned inde-
pendently of other variables.

¢ it may be that exposure is assigned dependent on one or more of
the measured predictors;

¢ if these predictors also predict outcome, then there is the possibil-
ity of confounding of the causal effect of exposure by those other
variables;

o this is the set up in the DAG on p. 15.

1.8: Confounding 64



The challenge of confounding

Specifically, in terms of densities, if predictor(s) X

¢ predicts outcome Y in the presence of Z:

fY|Z,X(y|Z= x) # fY\z(Y|Z)

and

o predicts exposure Z:
fzx(2lx) # fz(2)

then X is a confounder.

1.8: Confounding 65



Confounding: example

Example: The effect of nutrition on health: revisited

The relationship between low vitamin E diet and CVD incidence may be
confounded by socio-economic status (SES); poorer individuals may have
worse diets, and also may have higher risk of cardiovascular incidents via
mechanisms other than those determined by diet:

e smoking;
¢ pollution;
e access to preventive measures/health advice.

1.8: Confounding 66



Confounding

Confounding is a central challenge as it renders the observed sample
unsuitable for causal comparisons unless adjustments are made:

e in the binary case, if confounding is present, the treated and un-
treated groups are not directly comparable;

¢ the effect of confounder X on outcome is potentially different in the
treated and untreated groups.

e direct comparison of sample means does not yield valid insight into
average treatment effects;

Causal inference is fundamentally about comparing exposure subgroups
on an equal footing, where there is no residual influence of the other
predictors. This is possible in the randomized study as randomization
breaks the association between Z and X.

1.8: Confounding 67



Confounding and collapsibility

Confounding is not the same as non-collapsibility.
® Non-collapsibility concerns the measures of effect being reported,
and the parameters being estimated; parameters in a marginal
model do not in general correspond to parameters in a conditional
model.

Non-collapsibility is a property of the model, not the study design.
It may be present even for a randomized study.

® Confounding concerns the inter-relationship between outcome, ex-
posure and confounder. It is not model-dependent, and does depend
on the study design.

1.8: Confounding
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Simple confounding example

Suppose that Y, Z and X are all binary variables. Suppose that the true
(structural) relationship between Y and (Z, X) is given by

E[Y|Z=2X=x] =Pr[y =1|Z =2,X =x] = 0.2 + 0.2z — 0.1x
with Pr[X = 1] = q. Then, by iterated expectation
E[Y(z)] =0.2+0.2z —0.1q

and
E[Y(1) — Y(0)] = 0.2.
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Simple confounding example

Suppose also that in the population from which the data are drawn

po x=0
Prz=1X=x] = = (1 —x)po + xp1.
pr x=1

in which case
Pr[Z =1] = (1 - q)po + qp1-

1.8: Confounding 70



Simple confounding example

If we consider the estimators in (2)

N 1 <& N 1 n

ElY(1)]= =) 1 (Z)Y:  E[Y(0)]=———) 1/n(Z)Y;
[Y(1)] np; m(Z1) [Y(0)] n(l—p); 03(Zi)

and set p = (1 — q)po + qp1, we see that for the first term

Eyzx[1(1}(2)Y] = Ezx[111}(Z)Eyzx[Y|Z, X]]
= Ezx[1{13(2)(0.2 4 0.2Z — 0.1X)]
= 0.2Ex[Ezx[1(1;(2)[X]]
+ 0.2Ex[Egx[1{1}(2)Z[X]]
— 0.1Ex[XEyx[1{11(Z)|X])]

1.8: Confounding 71



Simple confounding example

Now

]Ez|x[]1{1}(z) |X] = ]EZ|X[]I{1}(Z)Z|X]
=Priz=1X] = (1 — X)po + Xp1

and
]EX[]EZ|X[]1{1}(Z) IX]] = (1 —q)po +aqp1 =p
Ex[Ezx[1{1}(Z2)Z|X]] = (1 — @)po + qp1 = P
Ex[XEzx[111}(2)X])] = ap

and therefore
Eyzx[111}(Z2)Y] = 0.4p — 0.1qp;.
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Simple confounding example

1 <& 0.4p — 0.1py
— § 1 (Z)Y| = ———"—
np w(@) ’] p

By a similar calculation, as 1(o(Z) =1 — 1(1;(Z),
EX[EZ|X[]1{0}(Z) ’XH =1-p
EX[EZ|X[1{O} (2)z)x]] =0
Ex[XEzx[110} (2)[X])] = a(1 — 1)
S

1 - 0.2(1 —p) — 0.1¢(1 — py)
E|—) 1;n2Z)Y| =
n(l—p); {0y(Zi) I~
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Simple confounding example

Finally, therefore ATE estimator
E[y(1)] — E[Y(0)]
has expectation

0.4p—0.1gp; 0.2(1 —p) —0.1q(1 — p1)
p 1—p

1_
0.2—0.1q{&— pl}
p 1-p

and therefore the unadjusted estimator based on (2) is biased.

which equals

1.8: Confounding 74



Simple confounding example

The bias is caused by the fact that the two subsamples with
Z=0 and Z=1

are not directly comparable - they have a different profile in terms of X;
by Bayes theorem

p1q

Pr[X:1|Z:1]:7 Prix =1z =0] = (1—p)q

1—-p

so, here, conditioning on Z = 1 and Z = 0 in turn in the computation of
(2), leads to a different composition of X values in the two subsamples.

As X influences Y, the resulting Y values not directly comparable.
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If predictor z predicts Z, but does not predict Y in the presence of Z, then
Z is termed an instrument.

Example: Non-compliance

In a randomized study of a binary treatment, if Z; records the treatment
actually received by individual i, suppose that there is non-compliance
with respect to the treatment; that is, if Z- records the treatment assigned
by the experimenter, then possibly

51'7521-

Then Z predicts Z;, but is not associated with outcome Y; given Z;.
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Instruments

DAG with instrument Z.

1.8: Confounding 77



Instruments are not confounders as they do not predict outcome once the
influence of the exposure has been accounted for.

Suppose in the previous confounding example, we had
EYZ=2,X=0=Pr[Yy=11Z=2X=1]=0.2+0.22
for the structural model, but
Pr[Z = 1|X] = (1 — X)po + Xp1.

Then X influences Z, and there is still an imbalance in the two subgroups
indexed by Z with respect to the X values, but as X does not influence Y,
there is no bias if the ATE estimator based on (2) is used.
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Critical Assumption

An important assumption that is commonly made is that of
No unmeasured confounding

that is, the measured predictors X include (possibly as a subset) all vari-
ables that confound the effect of Zon Y.
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Critical Assumption

DAG with unmeasured confounder U.
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Critical Assumption

We must assume that all variables that simultaneously influence exposure
and outcome have been measured in the study.

e This is a strong (and possibly unrealistic) assumption in practical
applications;

o [t is the assumption made in standard regression analysis !

e It may be relaxed, and the influence of unmeasured confounders
studied in sensitivity analyses.
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Model-based analysis

So far, estimation based on the data via (1) and (2) has proceeded in a
non-parametric or model-free fashion.

¢ models such as
fr(z)x (v, %)
have been considered, but not modelled parametrically.

We now consider semiparametric specifications, where parametric mod-
els for example for
E[Y(z)[X]

are considered but no distributional assumptions are made.
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Correct model specification

We propose an outcome mean model
E[Y|X,z] = u(X,Z)
that may be parametric in nature, say

E[Y|Xa Z; /8] = IU’(X7 Z; /B)
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The importance of ‘no unmeasured confounders’

An important consequence of the no unmeasured confounders assump-
tion is that we have the equivalence of the conditional mean structural
and observed-data outcome models, that is

E[Y(z)x] and B[Y|X,Z = 7]

when this model is correctly specified.
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Inference under correct specification

We might (optimistically) assume that the model E[Y|Z,X] is correctly
specified, and captures the true relationship.

If this is, in fact, the case, then

No special techniques are needed to estimate the causal effect.

We may simply use regression of Y on (X, Z) using mean model E[Y|X, Z].
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Inference under correct specification

To estimate the APO, we simply set

n

-~ 1
E[Y(z)| = - w(Xi, z 3)
@] =53 2)
and derive other estimates from this: if u(x, z) correctly captures the
relationship of the outcome to the exposure and confounders, then the
estimator of the APO in (3) is consistent (gives the correct answer as the
sample size increase to infinity).
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Inference under correct specification

By conditioning on X in the regression model, we block the indirect (con-
founding) path between Z and Y:

DAG with confounding path Z — X — Y blocked by conditioning on X
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Inference under correct specification

The third challenge of causal inference is that

correct specification cannot be guaranteed.

* we may not capture the relationship between Y and (Z, X) correctly.

1.9: Statistical modelling






Constructing a balanced sample

Recall the randomized trial setting in the case of a binary exposure.

¢ we obtain a random sample of size n of individuals from the target
population, and measure their X values;

e according to some random assignment procedure, we intervene to
assign treatment Z to individuals, and measure their outcome Y;

¢ the link between X and Z is broken by the random allocation.

Recall that this procedure led to the valid use of the estimators of the
ATE based on (1) and (2).

2.1: Manufacturing balance




Constructing a balanced sample

The important feature of the randomized study is that we have, for con-
founders X (indeed all predictors)

friz(x|1) = fxiz(x[0) forall x,
or equivalently, in the case of a binary confounder,
Prix=1Zz=1]=PrX=11Z=0).

The distribution of X is balanced across the two exposure groups; this
renders direct comparison of the outcomes possible.

Probabilistically, X and Z are independent.
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Constructing a balanced sample

In an observational study, there is a possibility that the two exposure
groups are systematically not balanced

fxiz(X[1) # fxjz(x[0)  for some x,
or in the binary case
Prix=1Z=1] #PrX=1Z=0].

If X influences Y also, then this imbalance renders direct comparison of
outcomes in the two groups impossible.
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Constructing a balanced sample

Whilst global balance may not be present, it may be that ‘local’ balance,
within certain strata of the sample, may be present.

e Let S be some identified stratum in the sample space for X;

e suppose for x € S, we have balance; that is, within S, X is indepen-
dent of Z;

frizs(x|1 1 x € S) = fxz(x[0 : x € S);

¢ for individuals who have X values in S, there is the possibility of
direct comparison of the treated and untreated groups.

We might then restrict attention to causal statements within stratum S.
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Constructing a balanced sample

Note 7.

In an extreme yet trivial case, consider a confounder X that takes only a
single value, xq say, for all individuals.

Then it is clear that any systematic differences in outcomes must be due
to exposure.
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Constructing a balanced sample

For discrete confounders,
e we can consider defining strata where the X values are precisely
matched,
e then compare the outcomes for treated and untreated individuals
within those strata;
¢ we can then extend this comparison to multiple strata, and combine.
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Constructing a balanced sample

Consider matching strata Sy, . . . , Sx. We would then be able to compute
the ATE by noting that

E[Y(1) => E[¥(1) - Y(0))X € ] Pr[x € &
k=1

e E[Y(1) — Y(0)|X € S] may be estimated non-parametrically from
the data by using (1) or (2) for data restricted to have x € S.

e Pr[X € Sk] may be estimated using the empirical proportion of x
that lie in Sy.
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Constructing a balanced sample

For continuous confounders, we might consider the same strategy: con-
sider matching strata Sy, . . ., Sk. Then the formula

E[Y(1) — Y(0)] = EKZ]E[Y(l) —Y(0)|X € S PriX € &]

k=1

still holds. However

 we must assume a model for how E[Y(1) — Y(0)|X € Sk] varies
with x for x € Sy.

In both cases, inference is restricted to the set of X space contained in

K
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Constructing a balanced sample

In the continuous case, the above calculations depend on the assumption
that the treatment effect is similar for x values that lie ‘close together’ in
predictor (confounder) space. However

I. Unless we can achieve exact matching, then the term ‘close to-
gether’ needs careful consideration.

II. If X is moderate or high-dimensional, there may be insufficient data
to achieve adequate matching to facilitate the estimation of

E[Y(1) — Y(0)|X € &J;

recall that we need a large enough sample of treated and untreated
subjects in stratum S.

Nevertheless, matching in this fashion is an important tool in causal com-
parison.

2.1: Manufacturing balance 98



Balance via the propensity score

We now introduce the important concept of the propensity score that
facilitates causal comparison via a balancing approach.

Recall that our goal is to mimic the construction of the randomized study
that facilitates direct comparison between treated and untreated groups.
We may not be able to achieve this globally, but possibly can achieve it
locally in strata of X space.

The question is how to define these strata.

2.2: The propensity score for binary exposures



Balance via the propensity score

Recall that in the binary exposure case, balance corresponds to being
able to state that within S, X is independent of Z:

frizs(x[1 :x € S) = fyz(x[0 : x € S)

This can be achieved if S is defined in terms of a statistic, e(X)!*! say.
That is, we consider the conditional distribution

fx|z,e(x) (x|z,e)

so that, given e(X) = e, Z is independent of X, so that within strata of
e(X), the treated and untreated groups are directly comparable.

B3} note the sans serif font e(.), distinct from e which indicates a numerical value.
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Balance via the propensity score

For conditional independence, we require that

fxizex)(X|z,€) = fziex)(2]le)  forallx,z,e. (4)
Now, as Z is binary, we must be able to write

fre()(2le) = p(e)*(1 —p(e))'™*  z€0,1

where p(e) is a probability, and a function of the fixed value e.
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Balance via the propensity score

But e(X) is a function of X, so automatically we have that
fzixex) (21X, ) = fzx(2]x)  provided e = e(x).
Therefore, we require that
fz|X(Z|X) = fz|x,e(x)(l|xa e) =p(e)*(1— P(e))l_z

for all relevant z, x, with e = e(x).
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Balance via the propensity score

This can be achieved by choosing the statistic!*!
e(x) = fzix(1x) = Przx[Z = 1|X = x|
and setting p(.) to be the identity function, so that
fzx(zlx) = €*(1 — e)'™F 2=0,1,e = e(x).

The random variable e(X) defines the strata via which the causal calcu-
lation can be considered.

)" Choosing e(x) to be some monotone transform of f|x(1|x) would also achieve the

same balance.
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Balance via the propensity score

The function e(x) defined in this way is the propensity scorel®!. It has the
following important properties:

(i) itisabalancing score; conditional on e(X), X and Z are independent;
(ii) it is a scalar quantity, irrespective of the dimension of X;

(iii) in noting that for balance we require that

f2ix(2]X) = fzjex)(2le),

the above construction demonstrates that if €(X) is another balanc-
ing score, then e(X) is a function of €(X);

> thatis, (X) is the ‘coarsest’ balancing score.

5] see Rosenbaum & Rubin (1983), Biometrika
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Balance via the propensity score

e(X)

DAG with confounding path Z — X — Y blocked by conditioning on e(X)
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Evaluating the propensity score

To achieve balance we must ensure that
e(X) = Pr[Z = 1|X]

is correctly specified.

o If X comprises entirely discrete components, then we may be able to
estimate Pr[Z = 1|X] entirely non-parametrically, and satisfactorily
if the sample size is large enough.

e If X has continuous components, it is common to use parametric

modelling, with
e(X;a) = Pr[Z = 11X; a.

Balance then depends on correct specification of this model.
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Unconfoundedness given the propensity score

The assumption of no unmeasured confounders’ amounts to assuming
that the potential outcomes are jointly independent of exposure assign-
ment given the confounders, that is

{r(0),Yy(1)} Lz [x
that is, in terms of densities
fr(z),zix(Vs 21%) = fr(2)x VPO fzx (2]%)

= frizx Wz, )fzjx (2]%)-
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Unconfoundedness given the propensity score

Directed Acyclic Graph (DAG) with potential outcomes and e(X)
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Unconfoundedness given the propensity score

We have by factorization that

1
= — d
fr(z) zle(x) (> 2]e) fen (@ /s frz),zx (¥, 2,x) dx
where S, is the set of x values
Se={x:e(x) =e}

that yield a propensity score value equal to the value e.
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Unconfoundedness given the propensity score

Now we have by unconfoundness given X that
fY(z),Z,X(yv z,x) = fY(z)|X(.V|X)fZ|X(Z|X)fX(X)
and on the set S,, we have

fzx(zlx) = €*(1 — e)' ™ = fz1ex) (2]e).
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Unconfoundedness given the propensity score

Therefore, recalling the S, is defined via the fixed constant e,

/SfY(z),Z,X(y:ZyX) dx = /s Frax e (1 —e) " fx(x) dx

=e°(1— 9)12/8 frz)x WPOfx (x) dx

= fzlex) (2l€)fy(2) e(x) (V]e)-

Hence

fr(z),zlex) W, 21€) = ——~fzex) (2]@)fy(2)le(x) (V]€)

1
fe(X) (e)

and so
Y(z) LZ]e(X) forallz.
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Estimation using the propensity score

We now consider the same stratified estimation strategy as before, but
using e(X) instead X to stratify.

Consider strata Sy, . . ., Sk defined via e(X). In this case, recall that
0<eX) <1

so we might consider an equal quantile partition, say using quintiles.

Then we have
E[Y(1) - Y(0)] = Y E[Y(1) — Y(0)[e(X) € S Prle(X) € S
k=1

still holds approximately if the Sy are small enough.
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Estimation using the propensity score

This still requires us to be able to estimate
E[Y(1) —Y(0)[e(X) € S]

so we need a sufficient number of treated and untreated individuals with
e(X) € Sk to facilitate the ‘direct comparison’ within this stratum.

If the expected responses are constant across the stratum, the formulae
(1) and (2) may be used.
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The derivation of the propensity score indicates that it may be used to
construct matched individuals or groups that can be compared directly.

e if two individuals have precisely the same value of e(x), then they
are exactly matched;

¢ if one of the pair is treated and the other untreated, then their out-
comes can be compared directly, as any imbalance between their
measured confounder values has been removed by the fact that they
are matched on e(x);

e this is conceptually identical to the standard procedure of matching
in two-group comparison.

2.3: Matching via the propensity score



For an exactly matched pair (i1, o), treated and untreated respectively,
the quantity

Yir — Vi
is an unbiased estimate of the ATE
E[y(1) —Y(0)];
more typically we might choose m such matched pairs, usually with dif-

ferent e(x) values across pairs, and use the estimate

m

% Z(yil - yio)

i=1
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Exact matching is difficult to achieve, therefore we more commonly at-
tempt to achieve approximate matching

e May match one treated to M untreated (1 : M matching)
o caliper matching;

¢ nearest neighbour/kernel matching;

e matching with replacement.

Most standard software packages have functions that provide automatic
matching using a variety of methods.
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Beyond binary exposures

The theory developed above extends beyond the case of binary exposures.

Recall that we require balance to proceed with causal comparisons; es-
sentially, with strata defined using X or e(X), the distribution of X should
not depend on Z.

We seek a scalar statistic such that, conditional on the value of that statis-
tic, X and Z are independent. In the case of general exposures, we must
consider balancing scores that are functions of both Z and X.

2.4: The Generalized Propensity Score



Beyond binary exposures

For a balancing score b(Z, X)®!, we require that
X L Z|b(z,X).

We denote B = b(Z, X) for convenience.

Consider the conditional distribution fzx g(2|x, b): we wish to demon-
strate that

fzix,p(2]x,b) = fzp(2|b) ~ forallz,x,b.

That is, we require that B completely characterizes the conditional dis-
tribution of Z given X.

) note the sans serif font b(.), distinct from b which indicates a numerical value.
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Beyond binary exposures

This can be achieved by choosing the statistic

b(z,x) = fzx(z[x)
in line with the choice in the binary case.
The balancing score defined in this way is termed the
Generalized Propensity Score

which is a balancing score for general exposures.
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Beyond binary exposures

Note, however, that this choice that mimics the binary exposure case is
not the only one that we might make. The requirement

fzix,8(2|x, b) = fzi5(2|b)

for all relevant z, x is met if we define b(Z, X) to be any sufficient statistic
that characterizes the conditional distribution of Z given X.

It may be possible, for example, to choose functions purely of X.

2.4: The Generalized Propensity Score



Beyond binary exposures

Example: Normally distributed exposures

Suppose that continuous valued exposure Z is distributed as
Z|X = x ~ Normal(xa, o%)

for row-vector confounder X. We have that

1 1
fzix(2|x) = Varo? exp {—m(z - m)z}
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Beyond binary exposures

Example: Normally distributed exposures

We might therefore choose

b(z,X) = \/2;7 exp {—%‘Z(z —Xa)z} .

However, the linear predictor

b(X; o) = X

also characterizes the conditional distribution of Z given X; if we know
that xa« = b, then

Z|X = x = Z|B = b ~ Normal(b, 0?).

In both cases, parameters « are to be estimated.
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Beyond binary exposures

The generalized propensity score inherits all the properties of the stan-
dard propensity score;

e it induces balance;

o if the potential outcomes and exposure are independent given X
under the unconfoundeness assumption, they are also independent
given b(Z, X).

However, how exactly to use the generalized propensity score in causal
adjustment for continuous exposures is not clear.
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Propensity Score Regression

Up to this point we have considered using the propensity score for strat-
ification, that is, to produce directly comparable groups of treated and
untreated individuals.

Causal comparison can also be carried out using regression techniques:
that is, we consider building an estimator of the APO by regressing the
outcome on a function of the exposure and the propensity score.

Regressing on the propensity score is a means of controlling the con-
founding.
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Propensity Score Regression

If we construct a model
E[Y|X =x,Z = 2,b(Z,X) = b] = u(x,z,b)
then by the unconfoundedness result that

]E[Y(Z)] = ]EX[]E[YlX7Z =z, b(Z’X)] = ]EX[:U’(XvL b(27X)>]'
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Propensity Score Regression

That is, to estimate the APO, we might
» fit the propensity model b(Z, X) by regressing Z on X;
« fit the conditional outcome model pi(x, z, b) using the fitted values
b(Zj, Xj);

e for each z of interest, estimate the APO by
1 « ~
H Z //Z(Xia Z, b(Z, Xi))‘
i=1

If, more simply, we have b(Z,X) = b(X) (as for the propensity score) we
proceed as above.
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Propensity Score Regression

Example: Binary exposure

* e(x;a) = Pr[Z = 1|X = x; o then regress Z on X to obtain & and
fitted values €(x) = e(x; @).

o E[Y|X =x,Z =2z,e(X) = e; 5] = u(x, z,e; 3) and estimate this
model by regressing y; on z; and e; = €(x;).

For example, we might have that
E[Y|X; = x,Z = zi,e(X;) = e; 8] = Bo + Brzi + [aei.

We then average the model predictions to obtain the APO estimate

E[Y(z)] = %ZN(X”Z,E(XI‘)SB)-
i=1
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Propensity Score Regression

Example: Continuous exposure

We propose a parametric probability density for the exposure
b(z,x; a) = fZ\X(Z|X§ @)

for which we estimate « by regressing Z on X to obtain a and fitted values
b(z,x) = b(z, x; @). Then we specify

E[Y‘X =04 =174 b(X7Z) = b;/B] = ,U(X,Z,b;/B)

and estimate this model by regressing y on z and B(z, X).

For example,

E[Y|X; = x;,Z = 2;,b(zi,x;) = bs; B] = Bo + Przi + Babi.
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Propensity Score Regression

Example: Continuous exposure

We then compute the predictions under this model, and average them to
obtain the APO estimate

-~

BIr()] = - > a2, bz, ); B)
=il

Note that here the propensity terms that enter into 1 are computed at
the target z values

not the observed exposure values.
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Propensity Score Regression

These procedures require us to make two modelling choices:
* the propensity model, b(z, x) or b(x);

* the outcome mean model x(x, z, b).

For consistent inference for the ATE, we need
¢ the propensity model, and
¢ the dependence of the outcome mean model on 2

to be correctly specified.

2.5: Propensity score regression



Propensity Score Regression

Example: Binary exposure

Suppose that the true (data generating) model can be written
E[Y|X = x,Z = 2] = fi(x,2) = Fo(x) + 271 (x).
Then the propensity score regression model
E[Y|X = x,Z = 2,b(X) = b] = pto(x) + 21 (x) + b1 (x)
is sufficient to give consistent estimation of the ATE

E[Y(1) = Y(0)] = Ex[/u (X)].

2.5: Propensity score regression



Propensity Score Regression

Example: Binary exposure

That is, we may mis-specify the component

fio(x)

provided we correctly specify the propensity model b(x).
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Weighting approaches

We focus on the APO
BIY()) = [ yhia0) dyx

and utilize the propensity model in a different fashion;

¢ instead of accounting for confounding by balancing through match-
ing or regression, we aim to achieve balance via weighting

2.6: Adjustment by weighting



Average potential outcome

Recall that intervening to set Z = z leads to the calculation

BY()) = [ ¥2)(2)frop () dy dz .
We take a random sample from the population with density

]l{z} (2) fY(z),X(y, x) = ]l{z} (2) fY\z,X(Y|Za X)fx (x).

and construct the usual estimator
E[Y(z)] =-) Y

as Z; = z for all i.
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Average potential outcome: Experimental study

In a randomized (experimental) study, suppose that exposure Z = z is
assigned with probability determined by fz(z).

Then we have the estimators

2”: ]l{z}(Z,-)Yl- R 1 n
= o E[Y(2)]=—— Z]l{z}(zi)yi-

E[Y(2)] = 5
i:Z:l ]l{z}(zi) an(Z) i—1
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Average potential outcome: Observational study

Denote by P¢ the probability distribution for samples drawn under the
experimental design corresponding to the density

oz x W1z )fE (Of (2)-

If the data arise from the observational (non-experimental) distribution
Po( dy, dz, dx). We have by the importance sampling argument

[ 1@ Pe(ay. az. e

Pg(dy, dz, dx)
= 1 ———————~Pp(dy, dz, dx).
/y {Z}(z) 1:)(9(dy7 d.z, d.X) O( y? Z? X)
N—_———

@
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Average potential outcome: Observational study

In terms of densities (1) becomes

RizaxWeff @K () Rgxblex)  £E) K
fix W2 g @RS () i xWlzx) — f(zh) — £ (%)

o for the first term, we have that

£ Olz,%)

=1 for all y, 2, x;
£ <0l x)

under the no unmeasured confounders assumption.

e the third term equals 1 by assumption.
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Experimental vs observational sampling

The second term

fz (2)

fi(#lx)

constitutes a weight that appears in the integral that yields the desired
APO; the term .
fi(2lx)

accounts for the imbalance that influences the confounding and measures
the difference between the observed sample and a hypothetical idealized
randomized sample.
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This suggests the (non-parametric) estimators

_ " 1 (Z)Y
ElY(2)] = % ; fz({%{}(% (IPWO)
which is unbiased, or
n 1,y (Z)Yq
E[Y(2)] = % (IPW)

which is consistent, each provided fz(|9X(' |.) correctly specifies the condi-
tional density of Z given X for all (2, x).

2.6: Adjustment by weighting



Inverse weighting and the propensity score

Inverse weighting constructs a pseudo-population in which there are no
imbalances on confounders between the exposure groups. The pseudo-
population is balanced, as required for direct comparison of treated and
untreated groups.

The term in the denominator, fZ(?X(zi\x,-), is the exposure model. If Z; is
binary, this essentially reduces to

e(x)" (1 — e(x;))' ™™

where ¢(.) is the propensity score as defined previously.
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Positivity

Note 10.

We must have
O
fzix(2lx) >0

for all x, 2.

This is termed the positivity assumption or
experimental treatment assignment

assumption.
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Estimation via augmentation

We may write

where u(x,2) = E[Y|X = x,Z = z2|.

We then have the alternate estimator

=~ 1K Iy (@) (Y- X, Z) 1 '
EY(2)] = ; 9.2I%) + - ;u(x,, z) (AIPW)
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Estimation via augmentation

Then, if both
fon(zx) and  p(x2)

are correctly specified, we have
VarAlpW S Varlpw.

Furthermore, (AIPW) is doubly robust

e consistent even if one of fz(?x(z]x) and (x, z) is mis-specified.

2.7: Augmentation and double robustness



Properties under mis-specification

Suppose that, in reality, the correct specifications are
fzx(zlx)  fi(x,2).
Then the bias of (AIPW) is

(i 21X) = (X)) (u(X, 2) — filX, 2))
fon(zIX)

(5)

which is zero if

fZ(|9X = 72|X or ,LL(X,Z) = ZZ(X, Z)'
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Properties under mis-specification

Asymptotically, for estimators that are sample averages, the variance of
the estimator converges to zero under standard conditions.

Therefore in large samples it is the magnitude of the bias as given by (5)
that determines the quality of the estimator.

e equation (5) demonstrates that mis-specification in the functions
w(x,z) and fZ(|9X play equal roles in the bias.
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Parametric modelling: two-stage approach

In the formulation, parametric models

(e a)  plxz8)
are typically used.
Parameters («, (3) are estimated from the observed data by regressing
e Stage I: Z on X using (z;,x;),i = 1,...,n,
e Stage II: Y on (Z,X) using (yi, 2, X),i =1,...,n
and using plug-in version of (IPW) and (AIPW).
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The estimated propensity score

Note 11.

It is possible to conceive of situations where the propensity-type model
O O .
fZ|X(Z|X) o fz|x(z‘xa @)

is known precisely and does not need to be estimated.

This is akin to the randomized study where the allocation probabilities are
fixed by the experimenter. It can be shown that using estimated quanti-
ties R

fz(|gx(z|x) or fz(|gx(z‘x§ )
yields lower variances for the resulting estimators than if the known
quantities are used.
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Alternative view of augmentation

We may write the estimating equation yielding (AIPW) as

2 L@ (i z) + > Anxi2) = p(2)} =0

2 5 2ix)
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Alternative view of augmentation

The first summation is a component of the score obtained when perform-
ing OLS regression for Y with mean function

_ 1 (2)
1(x,z) = po(x,z) + 6fz(|9X(z’X)

and p(x, 2) is a conditional mean model, and € is a regression coefficient
associated with the derived predictor

]l{z}(z)

fan (%)’
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Alternative view of augmentation

Therefore, an estimator equivalent to (AIPW) can be obtained by regress-
ing Y on (X, Z) for fixed z using p(x, z), and forming the estimator

1 {z}( )
Z{”‘) *u2) fZ|X(Z|X)}

In a parametric model setting, this becomes
1¢ P ()
- Z {MO(Xi>Zi§/8) + L}
n Z‘X(Z IXi; @)

where « is estimated from Stage (I), and [ is estimated along with € in
the secondary regression.
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Augmentation and contrasts

The equivalent to (AIPW) for estimating the ATE for binary treatment
E[Y(1)] — E[y(0)]

is merely E[Y(1)] — E[Y(0)] or

T2 B oy (e + L0

X) fz(?x(0|X1) n i=1

where
3(x) = p(x,1) — plx, 0).
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Augmentation and contrasts

Therefore we can repeat the above argument and base the contrast esti-
mator on the regression of Y on (X, Z) using the mean specification

1, (2) 1o(2) ]

19100 72 (0

N(sz) = IU’O(X’ Z) +e

or

M(X,Z) = /,L()(X,Z) + | €

1, (2) 1o(2) ]
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Statistical modelling tools

Causal inference typically relies on reasonably standard statistical tools:

1. Standard distributions:

» Normal;
» Binomial;
» Time-to-event distributions (Exponential, Weibull etc.)

2. Regression tools:

» linear model/ordinary least squares;
» generalized linear model, typically linear regression;
» survival models.
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Pooled logistic regression

For a survival outcome, pooled logistic regression is often used.
The usual continuous survival time outcome is replaced by a discrete,
binary outcome;

e this is achieved by partitioning the outcome space into short
intervals,

(Oatl]a (tl,tz], .

and assuming that the failure density is approximately constant in
each interval.

¢ using a hazard parameterization, we have that
Pr(Failure in (t;_1, t;]|No failure before t;_1] = g;

which converts each single failure time outcome into a series of
binary responses, with 0 recording ‘no failure’ and 1 recording
‘failure’.
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Semiparametric estimation

Semiparametric models based on estimating equations are typically used:

¢ such models make no parametric assumptions about the
distributions of the various quantities, but instead make moment
restrictions;

e resulting estimators inherit good asymptotic properties;

¢ variance of estimators typically estimated in a ‘robust’ fashion
using the sandwich estimator of the asymptotic variance.
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Key considerations

In light of the previous discussions, in order to facilitate causal compar-
isons, there are several key considerations that practitioners must take
into account.

1. The importance of no unmeasured confounding.

When considering the study design, it is essential for valid
conclusions to have measured and recorded all confounders.
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Key considerations

2. Model construction for the outcome regression.

> ideally, the model for the expected value of Y given Z and X, u(x, z), should
be correctly specified, that is, correctly capture the relationship between
outcome and the other variables.

» if this can be done, then no causal adjustments are necessary.

» conventional model building techniques (variable selection) can be used;
this will prioritize predictors of outcome and therefore will select all
confounders;

» however, in finite sample, this method may omit weak confounders that
may lead to bias.
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Key considerations

3. Model construction for the propensity score.
Ideally, the model for the (generalized) propensity score, e(x) or
b(z,x), should be correctly capture the relationship between the
exposure and the confounders. We focus on

>
| 4

identifying the confounders;

ignoring the instruments: instruments do not predict the outcome, there-
fore cannot be a source of bias (unless there is unmeasured confounding) -
however they can increase the variability of the resulting propensity score
estimators.

the need for the specified propensity model to induce balance;

ensuring positivity: strata constructed from the propensity score must have
sufficient data within them to facilitate comparison;

effective model selection.

3.2: Key considerations



Key considerations

DAG with predictors classified by their effects.

X are confounders; X; are instruments; Xo are pure predictors of
outcome.
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Key considerations

Note 12.

Conventional model selection techniques (stepwise selection, selection
via information criteria, sparse selection) should not be used when con-
structing the propensity score.

This is because such techniques prioritize the accurate prediction of ex-
posure conditional on the other predictors; however, this is not the goal
of the analysis.

These techniques may merely select strong instruments and omit strong
predictors of outcome that are only weakly associated with exposure.
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Key considerations

Note 13.

An apparently conservative approach is to build rich (highly parameter-
ized) models for both pi(x, z) and e(x).

This approach prioritizes

bias elimination

at the cost of
variance inflation.
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Key considerations

4. The required measure of effect.
Is the causal measure required
» arisk difference ?
» arisk ratio ?
» an odds ratio ?
» an ATT, ATE or APO ?
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Key considerations

Example: NHANES Analysis
See knitr sheet.

Example: Simulation study

Comparison of different adjustment methods.
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Longitudinal studies

It is common for studies to involve multiple longitudinal measurements
of exposure, confounders and outcomes.

In this case, the possible effect of confounding of the exposure effect by
the confounders is more complicated.
Furthermore, we may be interested in different types of effect:

o the direct effect: the effect of exposure in any given interval on the
outcome in that interval, or the final observed outcome;

o the total effect: the effect of exposure aggregated across intervals
final observed outcome;
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[llustration

Possible structure across five intervals:

X X X3 4

N4\ N2 N
NYAANVARNVARNYARNY

Y, Y3
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Mediation and time-varying confounding

o The effect of exposure on later outcomes may be mediated through
variables measured at intermediate time points

» for example, the effect of exposure Z; may have a direct effect on Y; that is
confounded by Xi; however, the effect of Z; on Y, may also be
non-negligible. This effect is mediated via X,.

e There may be time-varying confounding;
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Multivariate versions of the propensity score

The propensity score may be generalized to the multivariate setting. We
consider forj =1,...,m,

e exposure: Zj = (Z, . . ., Zj);
* outcome: ?Ij = (Y, ... »Yij)i
o confounders: X; = (X1, ..., X;).

Sometimes the notation
Zim = (Zla o va)

will be useful.
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Multivariate versions of the propensity score

We consider vectors of potential outcomes corresponding to these ob-
served quantities, that is, we consider a potential sequence of interven-
tions up to time j

EU = (Zila . ,Zij)
and then the corresponding sequence of potential outcomes

Y(zy) = (Y(zin), - -, Y(zy))-
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Multivariate versions of the propensity score

We define the multivariate (generalized) propensity score by

bj(z,x) = fzj|Xj,Zj_1,)~(j_1 (2[x,Zj-1,%-1)

that is, using the conditional distribution of exposure at interval j, given
the confounder at interval j, and the historical values of exposures and
confounders.

Under the sequential generalizations of the no unmeasured confounders
and positivity assumptions, this multivariate extension of the propensity
score provides the required balance, and provides a means of estimating
the direct effect of exposure.
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The use of mixed models

The multivariate generalization above essentially builds a joint model for
the sequence of exposures, and embeds this in a full joint distribution for
all measured variables.

An alternative approach uses mixed (or random effect) models to capture
the joint structure.
e such an approach is common in longitudinal data analysis;

e here we consider building a model for the longitudinal exposure
data that encompasses a random effect.
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The use of mixed models

Suppose first we have a continuous exposure: we consider the mixed
effect model where for time point j

Z,’j :X-joz—kz-d-_lﬁ—kfi + eij

where

o )?ya captures the fixed effect contribution of past and current
confounders;

. Nl- j—10 captures the fixed effect contribution of past exposures;
e ¢ is a subject specific random effect;

* ¢ is a residual error.
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The use of mixed models

The random effect & helps to capture unmeasured time-invariant con-
founding.

The distributional assumption made about €;; determine the precise form
of a generalized propensity score that can again be used to estimate the
direct effect of exposure.
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The use of mixed models

For binary or other discrete exposures, the random effect model is built
on the linear predictor scale, with say

ny = Xyo + Zij_10 + &

determining the required conditional mean for the exposure at interval j.

Full-likelihood based inference may be used, but also generalized esti-
mating approaches may be developed.
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Estimation of Total Effects

The estimation of the total effect of exposure is more complicated as the
need to acknowledge mediation and time-varying confounding renders
standard likelihood-based approaches inappropriate.

The Marginal Structural Model is a semiparametric inverse weighting
methodology designed to estimate total effects of functions of aggregate
exposures that generalizes conventional inverse weighting.

4.2: The Marginal Structural Model (MSM)



The Marginal Structural Model

We observe for each individual i a sequence of exposures
Zin, Zigy - - - Zim

and confounders
Xi17Xi2a LR aXim

along with outcome Y; = Y;,, measured at the end of the study.
Intermediate outcomes Yj;, Y, ..., Y; n_1 also possibly available.
We might also consider individual level frailty variables {v;}, which are

determinants of both the outcome and the intermediate variables, but
can be assumed conditionally independent of the exposure assignments.
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The Marginal Structural Model

For example, with m = 5:

X1 X2 X3 X4 X5

Common example: pooled logistic regression

Ys

e discrete time survival outcome
e outcome is binary, intermediate outcomes monotonic

¢ length of follow-up is random, or event time is censored.
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The Marginal Structural Model

We seek to quantify the causal effect of exposure pattern
Ai - (217227 T 7Zm)
on the outcome. If the outcome is binary, we might consider!”!
f(Yim = 1]z; 0)) "
IOg (—~ = 90 + 01 Zj
f(Yim = 0]z;0) J:Zl J

as the true (structural) model. Note that this is a marginal model.

' We might also consider structural models in which the influence of covariates/con-

founders is recognized.
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The Marginal Structural Model

However, this model is expressed for data presumed to be collected under
an experimental design, &.

In reality, it is necessary to adjust for the influence of

e time-varying confounding due to the observational nature of expo-
sure assignment

e mediation as past exposures may influence future values of the con-
founders, exposures and outcome.

The adjustment can be achieved using inverse weighting via a marginal
structural model.
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The Marginal Structural Model

Causal parameter # may be estimated via the weighted pseudo-likelihood
n
L(6:%,y,2,7,0) = [[Fi | 2:0)™,
i=1

where

=

f(zj | Zi—1); o)

Il
N

w; =

A:S [

1f(Zij | Zigj—1), X5 )

J

defines stabilized inverse weights.
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The Marginal Structural Model: The logic

Inference is required under hypothetical population &;

» in population &, the conditional independence z; L X; | Zjj—1) holds true.

Samples from observational population O are available.

The weights w; convey information on how much O resembles &:
this information is contained in the parameters +.

& has the same marginal exposure assignment distribution as O.

Inference using the weighted likelihood typically proceeds using ro-
bust (sandwich) variance estimation, or the bootstrap.
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Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

Antiretroviral therapy (ART) has reduced morbidity and mortality due
to nearly all HIV-related illnesses, apart from mortality due to end-
stage liver disease, which has increased since ART treatment became
widespread.

In part, this increase may be due to improved overall survival com-
bined with Hepatitis C virus (HCV) associated hepatic liver fibrosis, the
progress of which is accelerated by immune dysfunction related to HIV-
infection.
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Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

The Canadian Co-infection Cohort Study is one of the largest projects set
up to study the role of ART on the development of end-stage liver disease
in HIV-HCV co-infected individuals.

Given the importance of ART in improving HIV-related immunosuppres-
sion, it is hypothesized that liver fibrosis progression in co-infected indi-
viduals may be partly related to adverse consequences of ART interrup-
tions.
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Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals
Study comprised

e N = 474 individuals with at least one follow-up visit (scheduled at
every six months) after the baseline visit,

e 2066 follow-up visits in total (1592 excluding the baseline visits).

e The number of follow-up visits m; ranged from 2 to 16 (median 4).
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Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

We adopt a pooled logistic regression approach:
¢ a single binary outcome (death at study termination)
¢ longitudinal binary exposure (adherence to ART)

¢ possible confounders

» bhaseline covariates: female gender, hepatitis B surface antigen (HBsAg) test
and baseline APRI, as well as

» time-varying covariates: age, current intravenous drug use (binary), cur-
rent alcohol use (binary), duration of HCV infection, HIV viral load, CD4 cell
count, as well as ART interruption status at the previous visit.

¢ need also a model for informative censoring.
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Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

¢ Analysis includes co-infected adults who were not on HCV treatment
and did not have liver fibrosis at baseline.

e The outcome event was defined as aminotransferase-to-platelet ra-
tio index (APRI), a surrogate marker for liver fibrosis, being at least
1.5 in any subsequent visit.

¢ Included visits where the individuals were either on ART or had in-
terrupted therapy (Z; = 1), based on self-reported medication in-
formation, during the 6 months before each follow-up visit.

4.2: The Marginal Structural Model (MSM) 187



Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

¢ Individuals suspected of having spontaneously cleared their HCV
infection (based on two consecutive negative HCV viral load mea-
surements) were excluded as they are not considered at risk for
fibrosis progression.

¢ In the treatment assignment model all time-varying covariates (x;),
including the laboratory measurements (HIV viral load and CD4 cell
count), were lagged one visit.

¢ Individuals starting HCV medication during the follow-up were cen-
sored.
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Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals
We considered the structural model

log (f(Yzjzlﬁij;e)

— =0 0,z
f(y; = 0|ZU;9)) 00z

0, measures the total effect of exposure in the most recent interval, al-
lowing for mediation.
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Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

Results:

Estimator é1 SE z

Unadjusted 4.616 0.333 13.853

MSM 0.354 0.377 0.937
Bootstrap 0.308 0.395 0.780

After adjustment for confounding and effects of mediation, we can con-
clude that the marginal effect of exposure is non-significant.
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New challenges

The main challenge for causal adjustments using the propensity score is
the nature of the observational data being recorded.

The data sets and databases being collected are increasingly complex
and typically originate from different sources. The benefits of ‘Big Data’
come with the costs of more involved computation and modelling.

There is always an important trade off between the sample size n and the
dimension of the confounder (and predictor) set.
Examples

¢ pharmacoepidemiology;
e electronic health records and primary care decision making;

¢ real-time health monitoring;

5.1: New challenges 192



Data synthesis and combination

For observational databases, the choice of inclusion/exclusion criteria for
analysis can have profound influence on the ultimate results:

o different databases can lead to different conclusions for the same
effect of interest purely because of the methodology used to con-
struct the raw data, irrespective of modelling choices.

o the key task of the statistician is to report uncertainty in a coherent
fashion, ensuring that all sources of uncertainty are reflected. This
should include uncertainty introduced due to lack of compatibility
of data sources.
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Classic challenges

Modern quantitative health research also has conventional challenges:

e missing data: many causal procedures are adapted forms of proce-
dures developed for handling informative missingness (especially
inverse weighting);

e length-bias and left truncation in prevalent case studies: selection
of prevalent cases is also a form of ‘selection bias’ that causes bias
in estimation if unadjusted;

e non-compliance: in randomized and observational studies there is
the possibility of non- or partial compliance which is again a poten-
tial source of selection bias.
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The Bayesian version

The Bayesian paradigm also provides a framework for decision-making
under uncertainty.

Much of the reasoning on causal inference, and many of the modelling
choices we must make for causal comparison and adjustment, are iden-
tical under Bayesian and classical (frequentist, semiparametric) reason-
ing.

5.2: Bayesian approaches



The advantages of Bayesian thinking

With increasingly complex data sets in high dimensions, Bayesian meth-
ods can be useful as they

e provide a means of informed and coherent decision making in the
presence of uncertainty;

¢ yield interpretable variability estimates in finite sample at the cost
of interpretable modelling assumptions;

¢ allow the statistician to impose structure onto the inference problem
that is helpful when information is sparse;

¢ naturally handle prediction, hierarchical modelling, data synthesis,
and missing data problems.

Typically, these advantages come at the cost of more involved computa-
tion.

5.2: Bayesian approaches



Bayesian causal inference: recent history

¢ D.B. Rubin formulated the modern foundations for causal
inference from a largely Bayesian (missing data) perspective:
» revived potential outcome concept to define causal estimand
» inference through Bayesian (model-based) predictive formulation
» focus on matching
e Semiparametric frequentist formulation pre-dominant from mid
80s

¢ Recent Bayesian approaches largely mimic semiparametric
approach, but with explicit probability models.
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Bayesian inference for two-stage models

¢ Full Bayes: full likelihood in two parametric models
» needs correct specification;
» two component models are treated independently.
¢ Quasi-Bayes: use semiparametric estimating equation approach for
Stage II, with Stage I parameters treated in a fully Bayesian fashion.
» possibly good frequentist performance;
» difficult to understand frequentist properties.
e Pseudo-Bayes: use amended likelihood to avoid feedback between
Stage I and Stage II

» not fully Bayesian, no proper probability model

5.2: Bayesian approaches



Five Considerations

The causal contrast
Do we really need potential outcomes ?
‘Observables’ implies ‘Prediction’

The Fundamental Theory of Bayesian Inference.

oo W=

The Bayesian Causal Specification

5.2: Bayesian approaches






Conclusions

Causal inference methods provide answers to important questions
concerning the impact of hypothetical exposures;

Standard statistical methods are used;
Balance is the key to accounting for confounding;

The propensity score is a tool for achieving balance;
The propensity score can be used for
» matching,
» weighting, and
» as part of regression modelling.
Bayesian methods are not widely used, but are generally
applicable.



Key remaining challenges

e Model selection;

e Scale and complexity of observational data;
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