
MODEL SELECTION CRITERIA IN R:
1. R2 statistics: We may use

R2 =
SSR

SST
= 1− SSRes

SST
or R2

Adj = 1− SSRes/(n− p)
SST/(n− 1)

= 1−
(
n− 1

n− p

)
(1−R2).

where p is the total number of parameters. R2 does not take into account model complexity (that is, the
number of parameters fitted), whereas R2

Adj does.

2. Mean Square Residual: We consider

MSRes =
SSRes

(n− p)
and note that

R2
Adj = 1−

(
n− 1

n− p

)(
1− SSRes

SST

)
= 1− MSRes

SST/(n− 1)

so that maximizing R2
Adj corresponds exactly to minimizing MSRes.

3. Mallows’s Cp statistic: Let µi = EYi|Xi
[Yi|xi] and µ̂i = EY|X[Ŷi|xi] be the modelled and fitted expected

values of response Yi at predictor values xi respectively. The expected (or mean) squared error (MSE) of
the fit for datum i is

EY|X[(Ŷi − µi)
2|xi]

which can be decomposed

EY|X[(Ŷi − µi)
2|xi] = EY|X[(Ŷi − µ̂i)

2|xi] + (µ̂i − µi)
2 = VarY|X[Ŷi|xi] + (µ̂i − µi)

2

= variance for datum i+ (bias for datum i)2

Let

SSB =

n∑
i=1

(µ̂i − µi)
2 = (µ− µ̂)>(µ− µ̂) = µ>(In −H)µ

say, denote the total squared bias, aggregated across all data points, and

FMSE =
1

σ2

n∑
i=1

[
VarY|X[Ŷi|xi] + (µ̂i − µi)

2
]
=

1

σ2

n∑
i=1

VarY|X[Ŷi|xi] +
SSB

σ2
.

Recall that if H is the hat matrix H = X(X>X)−1X> then

VarY|X[Ŷ|x] = VarY|X[HY|x] = σ2H>H = σ2H

and so
n∑

i=1

VarY|X[Ŷi|xi] = Trace(σ2H) = σ2Trace(H) = pσ2

Also by previous results for quadratic forms

EY|X[SSResX] = EY|X

[
Y>(In −H)Y

∣∣∣∣X]
= µ>(In −H)µ+ Trace(σ2(In −H))

= (µ− µ̂)>(µ− µ̂) + (n− p)σ2

= SSB + (n− p)σ2.

1



Therefore we may rewrite

FMSE =
1

σ2

[
pσ2 + EY|X[SSRes|X]− (n− p)σ2

]
=
EY|X[SSRes|X]

σ2
− n+ 2p

An estimator of this quantity is

Cp =
SSRes

σ̂2
− n+ 2p

where σ̂2 is some estimator of σ2 derived, say, from the the ‘largest’ model that is being considered.

Cp is Mallows’s statistic. We choose the model that minimizes Cp. We have that

EY|X[Cp|X] = p.

4. Akaike’s Information Criterion (AIC): We define for a probability model with parameters θ

AIC = −2`(θ̂) + 2dim(θ)

where `(θ) is the log-likelihood function, θ̂ is the maximum likelihood estimate of the parameter θ, and
dim(θ) is the dimension of θ.

For linear regression models under a normality assumption, we have that θ = (β, σ2) with

`(β, σ2) = −n
2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(yi − xiβ)
2

Plugging in β̂ and σ̂2
ML, we obtain

`(β̂, σ̂2
ML) = −

n

2
log(2π)− n

2
log

(
SSRes

n

)
− nSSRes

2SSRes

so therefore, writing
c(n) = n log(2π) + n

for the constant function of n, we have

AIC = c(n) + n log

(
SSRes

n

)
+ 2(p+ 1).

This is Akaike’s Information Criterion: we choose the model with the lowest value of AIC. The constant
c(n) need not be included in the calculation as it is constant across all models considered.

5. Bayesian Information Criterion (BIC): The Bayesian Information Criterion (BIC) is a modification of AIC.
We define

BIC = n log

(
SSRes

n

)
+ (p+ 1) log(n).

and again choose the model with the smallest BIC.
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SIMULATION STUDY

We have the model for three continuous predictors X1, X2, X3

Yi = 2 + 2xi1 + 2xi2 − 2xi1xi2 + εi

with σ2 = 1. We have n = 200. Here is the simulation code:

set.seed(798)
n<-200; p<-3
Sig<-rWishart(1,p+2,diag(1,p)/(p+2))[,,1]
library(MASS)
x<-mvrnorm(n,mu=rep(0,p),Sigma=Sig)
be<-c(2,2,2,0,-2)
xm<-cbind(rep(1,n),x,x[,1]*x[,2])
Y<-xm %*% be + rnorm(n)

x1<-x[,1]
x2<-x[,2]
x3<-x[,3]

fit0<-lm(Y~1)
fit1<-lm(Y~x1)
fit2<-lm(Y~x2)
fit3<-lm(Y~x3)
fit12<-lm(Y~x1+x2)
fit13<-lm(Y~x1+x3)
fit23<-lm(Y~x2+x3)
fit123<-lm(Y~x1+x2+x3)
fit12i<-lm(Y~x1*x2)
fit13i<-lm(Y~x1*x3)
fit23i<-lm(Y~x2*x3)
fit123i<-lm(Y~x1*x2*x3)

criteria.eval<-function(fit.obj,nv,bigsig.hat){
cvec<-rep(0,5)
SSRes<-sum(residuals(fit.obj)^2)
p<-length(coef(fit.obj))
cvec[1]<-summary(fit.obj)$r.squared
cvec[2]<-summary(fit.obj)$adj.r.squared
cvec[3]<-SSRes/bigsig.hat^2-n+2*p

#AIC in R computes
# n*log(sum(residuals(fit.obj)^2)/n)+2*(length(coef(fit.obj))+1)+n*log(2*pi)+n
cvec[4]<-AIC(fit.obj)

#BIC in R computes
# n*log(sum(residuals(fit.obj)^2)/n)+log(n)*(length(coef(fit.obj))+1)+n*log(2*pi)+n
cvec[5]<-BIC(fit.obj)

return(cvec)
}

bigs.hat<-summary(fit123i)$sigma
cvals<-matrix(0,nrow=12,ncol=5)
cvals[1,]<-criteria.eval(fit0,n,bigs.hat)
cvals[2,]<-criteria.eval(fit1,n,bigs.hat)
cvals[3,]<-criteria.eval(fit2,n,bigs.hat)
cvals[4,]<-criteria.eval(fit3,n,bigs.hat)
cvals[5,]<-criteria.eval(fit12,n,bigs.hat)
cvals[6,]<-criteria.eval(fit13,n,bigs.hat)
cvals[7,]<-criteria.eval(fit23,n,bigs.hat)
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cvals[8,]<-criteria.eval(fit123,n,bigs.hat)
cvals[9,]<-criteria.eval(fit12i,n,bigs.hat)
cvals[10,]<-criteria.eval(fit13i,n,bigs.hat)
cvals[11,]<-criteria.eval(fit23i,n,bigs.hat)
cvals[12,]<-criteria.eval(fit123i,n,bigs.hat)

Criteria<-data.frame(cvals)
names(Criteria)<-c('Rsq','Adj.Rsq','Cp','AIC','BIC')

rownames(Criteria)<-c('1','x1','x2','x3','x1+x2','x1+x3','x2+x3','x1+x2+x3',
'x1*x2','x1*x3','x2*x3','x1*x2*x3')

round(Criteria,4)

: Rsq Adj.Rsq Cp AIC BIC
: 1 0.0000 0.0000 799.1174 875.3679 881.9646
: x1 0.2505 0.2467 551.3719 819.7068 829.6018
: x2 0.5189 0.5164 283.7367 731.0417 740.9366
: x3 0.1196 0.1151 681.8659 851.8930 861.7880
: x1+x2 0.7055 0.7026 99.6020 634.8392 648.0325
: x1+x3 0.3890 0.3828 415.2121 780.8275 794.0208
: x2+x3 0.5239 0.5190 280.7558 730.9543 744.1476
: x1+x2+x3 0.7058 0.7013 101.3825 636.6897 653.1813
: x1*x2 0.8032 0.8001 4.2736 556.2961 572.7877
: x1*x3 0.4074 0.3983 398.9377 776.7363 793.2279
: x2*x3 0.5240 0.5167 282.6702 732.9183 749.4098
: x1*x2*x3 0.8074 0.8004 8.0000 559.8933 589.5782

This reveals the model X1 ∗X2 = X1 +X2 +X1 : X2 as most appropriate model.

summary(fit12i)

:
: Call:
: lm(formula = Y ~ x1 * x2)
:
: Residuals:
: Min 1Q Median 3Q Max
: -2.43675 -0.68819 -0.01849 0.68452 2.18404
:
: Coefficients:
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 2.02079 0.06895 29.310 <2e-16 ***
: x1 1.91766 0.12823 14.954 <2e-16 ***
: x2 2.05010 0.10398 19.717 <2e-16 ***
: x1:x2 -1.91633 0.19438 -9.859 <2e-16 ***
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
:
: Residual standard error: 0.9578 on 196 degrees of freedom
: Multiple R-squared: 0.8032,Adjusted R-squared: 0.8001
: F-statistic: 266.6 on 3 and 196 DF, p-value: < 2.2e-16

The parameter estimates are therefore

β̂0 = 2.0208 β̂1 = 1.9177 β̂2 = 2.0501 β̂12 = −1.9163

which are close to the data generating values.
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For an equivalent ANOVA test to the one in the summary output:

anova(fit12,fit12i)

: Analysis of Variance Table
:
: Model 1: Y ~ x1 + x2
: Model 2: Y ~ x1 * x2
: Res.Df RSS Df Sum of Sq F Pr(>F)
: 1 197 268.98
: 2 196 179.81 1 89.166 97.193 < 2.2e-16 ***
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

par(mfrow=c(2,2),mar=c(4,2,1,2))
plot(x1,residuals(fit12i),pch=19,cex=0.75)
plot(x2,residuals(fit12i),pch=19,cex=0.75)
plot(x1*x2,residuals(fit12i),pch=19,cex=0.75)
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Finally, for an incorrect model we obtain misleading results:

summary(fit13i)

:
: Call:
: lm(formula = Y ~ x1 * x3)
:
: Residuals:
: Min 1Q Median 3Q Max
: -5.3750 -1.0790 0.0121 0.9794 4.5081
:
: Coefficients:
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 2.0229 0.1186 17.057 < 2e-16 ***
: x1 2.0842 0.2193 9.503 < 2e-16 ***
: x3 0.9138 0.1337 6.834 1.02e-10 ***
: x1:x3 -0.5377 0.2184 -2.462 0.0147 *
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
:
: Residual standard error: 1.662 on 196 degrees of freedom
: Multiple R-squared: 0.4074,Adjusted R-squared: 0.3983
: F-statistic: 44.91 on 3 and 196 DF, p-value: < 2.2e-16

par(mfrow=c(2,2),mar=c(4,2,1,2))
plot(x1,residuals(fit13i),pch=19,cex=0.75)
plot(x3,residuals(fit13i),pch=19,cex=0.75)
plot(x1*x3,residuals(fit13i),pch=19,cex=0.75)
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