nreps<-5000 library(MASS) set.seed(423) n<-1000 k<-3 p<-k+1 Sig<-rWishart(1,k+3,diag(5,k)/(k+3))[,,1] X<-mvrnorm(n,mu=rep(0,k),Sigma=Sig) be<-rep(0,p) be[1:3]<-c(2,1.2,-3) mean.vec<-cbind(rep(1,n),X)%*%be fitted.vals1<-fitted.vals2<-fitted.vals3<-matrix(0,nreps,n) sigma.ests<-matrix(0,nreps,3) for(i in 1:nreps){ Y<-mean.vec+rnorm(n) fit1<-lm(Y~X[,1:2]) fitted.vals1[i,]<-fitted(fit1) sigma.ests[i,1]<-summary(fit1)$sigma^2 fit2<-lm(Y~X) fitted.vals2[i,]<-fitted(fit2) sigma.ests[i,2]<-summary(fit2)$sigma^2 fit3<-lm(Y~X[,1]) fitted.vals3[i,]<-fitted(fit3) sigma.ests[i,3]<-summary(fit3)$sigma^2 } pdf('FittedBoxes.pdf',paper='USr',width=11,height=9) for(i in 1:n){ #fmat<-cbind(fitted.vals1[,i],fitted.vals2[,i],fitted.vals3[,i]) #boxplot(fmat,names=c('Correct','Largest','Incorrect'));abline(h=mean.vec[i],col='red') fmat<-cbind(fitted.vals1[,i],fitted.vals2[,i]) boxplot(fmat,names=c('Correct','Largest'));abline(h=mean.vec[i],col='red') eff<-var(fitted.vals1[,i])/var(fitted.vals2[,i]) title(paste('Data point ',as.character(i),'\n (Efficiency', round(eff,4), ')')) } dev.off() var.mat1<-apply(fitted.vals1,2,var) var.mat2<-apply(fitted.vals2,2,var) plot(mean.vec,var.mat1/var.mat2)