Math 533 Extra Hour Material

A JUSTIFICATION FOR REGRESSION

It is well-known that if we want to predict a random quantity Y using some quantity m according to a mean-squared error MSE, then the optimal predictor is the expected value of Y, μ ;

$$\mathbb{E}[(Y-m)^2] = \mathbb{E}[(Y-\mu+\mu-m)^2]$$

= $\mathbb{E}[(Y-\mu)^2] + \mathbb{E}[(\mu-m)^2] + 2\mathbb{E}[(Y-\mu)(\mu-m)]$
= $\mathbb{E}[(Y-\mu)^2] + (\mu-m)^2 + 0$

which is minimized when $m = \mu$.

The Justification for Regression (cont.)

Now suppose we have a joint distribution between Y and X, and wish to predict the Y as a function of X, m(X) say. Using the same MSE criterion, if we write

$$\mu(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

to represent the conditional expectation of *Y* given X = x, we have

$$\mathbb{E}_{X,Y}[(Y - m(X))^2] = \mathbb{E}_{X,Y}[(Y - \mu(X) + \mu(X) - m(X))^2]$$

= $\mathbb{E}_{X,Y}[(Y - \mu(X))^2] + \mathbb{E}_{X,Y}[(\mu(X) - m(X))^2]$
+ $2\mathbb{E}_{X,Y}[(Y - \mu(X))(\mu(X) - m(X))]$
= $\mathbb{E}_{X,Y}[(Y - \mu(X))^2] + \mathbb{E}_X[(\mu(X) - m(X))^2] + \mathbb{C}_{X,Y}[(\mu(X) - \mu(X))^2]$

The cross term equates to zero by noting that by iterated expectation

$$\begin{split} \mathbb{E}_{X,Y}[(Y-\mu(X))(\mu(X)-m(X))] &= \mathbb{E}_X[\mathbb{E}_{Y|X}[(Y-\mu(X))(\mu(X)-m(X))]]\\ \text{and for the internal expectation}\\ \mathbb{E}_{Y|X}[(Y-\mu(X))(\mu(X)-m(X))|X] &= (\mu(X)-m(X))\mathbb{E}_{Y|X}[(Y-\mu(X))|X]\\ \text{and} \end{split}$$

$$\mathbb{E}_{Y|X}[(Y-\mu(X))|X] = 0 \quad \text{a.s.}$$

The Justification for Regression (cont.)

This the MSE is minimized over functions m(.) when

$$\mathbb{E}_X[(\mu(X) - m(X))^2]$$

is minimized, but this term can be made zero by setting

$$m(x) = \mu(x) = \mathbb{E}_{Y|X}[Y|X = x].$$

Thus the MSE-optimal prediction is made by using $\mu(x)$.

Note: Here X can be a single variable, or a vector; it can be random or non-random – the result holds.

The Justification for Linear Modelling

Suppose that the true conditional mean function is represented by $\mu(x)$ where x is a single predictor. We have by Taylor expansion around x = 0 that

$$\mu(x) = \mu(0) + \sum_{j=1}^{p-1} \frac{\mu^{(j)}(0)}{j!} x^{j} + O(x^{p})$$

where the remainder term $O(x^p)$ represents terms of x^p in magnitude or higher order terms, and

$$\mu^{(j)}(\mathbf{0}) = \left. \frac{d^{j} \mu(x)}{dx^{j}} \right|_{x=\mathbf{0}}$$

The derivatives of $\mu(x)$ at x = 0 may be treated as unspecified constants, in which case a reasonable approximating model takes the form

$$\beta_0 + \sum_{j=1}^{p-1} \beta_j x^j$$

where
$$\beta_j \equiv \mu^{(j)}(0)$$
 for $j = 0, 1, ..., p - 1$.

Similar expansions hold if x is vector valued.

Finally, if *Y* and *X* are jointly normally distributed, then the conditional expectation of *Y* given X = x is linear in *x*.

• see Multivariate Normal Distribution handout.

The General Linear Model

The linear model formulation that assumes

$$\mathbb{E}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y}|\mathbf{X}] = \mathbf{X}\beta \qquad \mathbb{V}\mathrm{ar}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y}|\mathbf{X}] = \sigma^2 \mathbf{I}_n$$

is actually quite a general formulation as the rows \mathbf{x}_i of \mathbf{X} can be formed by using general transforms of the originally recorded predictors.

- multiple regression: $\mathbf{x}_i = [1 x_{i1} x_{i2} \cdots x_{ik}]$
- polynomial regression: $\mathbf{x}_i = [1 x_{i1} x_{i1}^2 \cdots x_{i1}^k]$

• harmonic regression: consider single continuous predictor *x* measured on a bounded interval.

Let
$$\omega_j = j/n, j = 0, 1, \dots, n/2 = K$$
, and then set

$$\mathbb{E}_{Y_i|X}[Y_i|x_i] = \beta_0 + \sum_{j=1}^J \beta_{j1} \cos(2\pi\omega_j x_i) + \sum_{j=1}^J \beta_{j2} \sin(2\pi\omega_j x_i)$$

If J = K, we then essentially have an $n \times n$ matrix **X** specifying a linear transform of **y** in terms of the derived predictors

$$(\cos(2\pi\omega_j x_i), \sin(2\pi\omega_j x_i)).$$

- the coefficients

$$(\beta_0,\beta_{11},\beta_{12},\ldots,\beta_K)$$

form the discrete Fourier transform of y

In this case, the columns of X are orthogonal, and

$$\mathbf{X}^{\top}\mathbf{X} = \operatorname{diag}(n, n/2, n/2, \dots, n/2, n)$$

that is, $\mathbf{X}^{\top}\mathbf{X}$ is a **diagonal** matrix.

- basis functions:
 - truncated spline basis: for $x \in \mathbb{R}$, let

$$x_{i1} = \begin{cases} (x - \eta_1)^{\alpha} & x > \eta_1 \\ 0 & x \le \eta_1 \end{cases} = (x - \eta_1)^{\alpha}_+$$

for some fixed η_1 , and $\alpha \in \mathbb{R}$. More generally,

$$\mathbb{E}_{Y_i|X}[Y_i|x_i] = \beta_0 + \sum_{j=1}^J \beta_j (x_i - \eta_j)_+^{\alpha}$$

for fixed $\eta_1 < \eta_2 < \cdots < \eta_J$.

• piecewise constant: : for $x \in \mathbb{R}$, let

$$x_{i1} = \begin{cases} 1 & x \in A_1 \\ 0 & x \notin A_1 \end{cases} = \mathbb{1}_{A_1}(x)$$

for some set A_1 . More generally,

$$\mathbb{E}_{Y_i|X}[Y_i|x_i] = \beta_0 + \sum_{j=1}^J \beta_j \mathbb{1}_{A_j}(x)$$

for sets A_1, \ldots, A_J . If we want to use a partition of \mathbb{R} , we may write this

$$\mathbb{E}_{Y_i|X}[Y_i|x_i] = \sum_{j=0}^J \beta_j \mathbb{1}_{A_j}(x).$$

where

$$A_0 = \left(\bigcup_{j=1}^J A_j\right)'$$

piecewise linear: specify

$$\mathbb{E}_{Y_i|X}[Y_i|x_i] = \sum_{j=0}^J \mathbb{1}_{A_j}(x)(\beta_{j0} + \beta_{j1}x_i)$$

piecewise linear & continuous: specify

$$\mathbb{E}_{Y_i|X}[Y_i|x_i] = \beta_0 + \beta_1 x + \sum_{j=1}^J \beta_{j1}(x_i - \eta_j)_+$$

for fixed η₁ < η₂ < ··· < ηJ.
higher order piecewise functions (quadratic, cubic etc.)
splines

```
1 library(MASS)
2 #Motorcycle data
3 plot(mcycle,pch=19,main='Motorcycle accident data')
4
5 x<-mcycle$times
6 y<-mcycle$accel</pre>
```


Motorcycle accident data

Example: Piecewise constant fit

```
#Knots
 1
2
   K<-11
3
    kappa<-as.numeric(quantile(x,probs=c(0:K)/K))</pre>
4
5
    X<-(outer(x,kappa,'-')>0)^2
6
    X<-X[,-12]
7
8
    fit.pwc<-lm(v \sim X)
9
    summary(fit.pwc)
10
    newx<-seg(0, max(x), length=1001)</pre>
11
12
    newX<-(outer(newx,kappa,'-')>0)^2
13
    newX<-cbind(rep(1,1001),newX[,-12])</pre>
14
15
    yhatc<-newX %*% coef(fit.pwc)</pre>
16
    lines(newx, yhatc, col='blue', lwd=2)
```

Fit: Piecewise constant

Motorcycle accident data

Example: Piecewise linear fit

```
17
    X1<-(outer(x,kappa,'-')>0)^2
    X1<-X1[,-12]
18
19
20
    X2<- (outer(x, kappa, '-')>0) *outer(x, kappa, '-')
21
    X2<-X2[,-12]
22
23
    X<-cbind(X1,X2)
24
25
    fit.pwl<-lm(v \sim X)
26
    summary(fit.pwl)
27
    newx<-seq(0, max(x), length=1001)</pre>
28
29
    newX1 < -(outer(newx, kappa, '-') > 0)^2
30
    newX2<-(outer(newx,kappa,'-')>0) *outer(newx,kappa,'-')
31
32
    newX<-cbind(rep(1,1001),newX1[,-12],newX2[,-12])
33
34
    yhatl<-newX %*% coef(fit.pwl)</pre>
35
    lines(newx, yhat1, col='red', lwd=2)
```

Fit: ... + piecewise linear

Motorcycle accident data

Example: Piecewise linear fit

```
36
    X<-(outer(x, kappa, '-')>0) *outer(x, kappa, '-')
37
    X<-X[,-12]
38
39
    fit.pwcl<-lm(v \sim X)
40
    summary(fit.pwcl)
41
    newx<-seg(0,max(x),length=1001)</pre>
42
43
    newX<- (outer (newx, kappa, '-')>0) *outer (newx, kappa, '-')
44
45
    newX<-cbind(rep(1,1001),newX[,-12])</pre>
46
47
    vhatcl<-newX %*% coef(fit.pwcl)</pre>
48
    lines(newx, yhatcl, col='green', lwd=2)
```

Fit: ... + piecewise continuous linear

50 0 accel -50 -100 50 10 20 30 40

Motorcycle accident data

Fit: ... + piecewise continuous quadratic

Motorcycle accident data

Fit: ... + piecewise continuous cubic

50 0 accel -50 -100 50 10 20 30 40

Motorcycle accident data

Motorcycle accident data

Reparameterization

For any model

$$\mathsf{E}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y}|\mathbf{X}] = \mathbf{X}\beta$$

we might consider a reparameterization of the model by writing

$$\mathbf{x}_i^{\text{new}} = \mathbf{x}_i \mathbf{A}^{-1}$$

for some $p \times p$ non-singular matrix **A**. Then

$$\mathbb{E}_{Y_i|X}[Y_i|\mathbf{x}_i] = \mathbf{x}_i\beta = (\mathbf{x}_i^{\text{new}}\mathbf{A})\beta = \mathbf{x}_i^{\text{new}}\beta^{(\text{new})}$$

where

$$\beta^{(\text{new})} = \mathbf{A}\beta$$

Reparameterizing the model (cont.)

Then

 $\mathbf{X}^{\text{new}} = \mathbf{X}\mathbf{A}^{-1} \qquad \Longleftrightarrow \qquad \mathbf{X} = \mathbf{X}^{\text{new}}\mathbf{A}$

and we may choose A such that

$$\{\mathbf{X}^{\text{new}}\}^{\top}\{\mathbf{X}^{\text{new}}\} = \mathbf{I}_n$$

to give an orthogonal (actually, orthonormal) parameterization.

Recall that if the design matrix \mathbf{X}^{new} is orthonormal, we have for the OLS estimate

$$\widehat{\beta}^{(\text{new})} = \{\mathbf{X}^{\text{new}}\}^\top \mathbf{y}.$$

Note however that the "new" predictors and their coefficients may not be readily interpretable, so it may be better to reparameterize back to β by defining

$$\widehat{\beta} = \mathbf{A}^{-1} \widehat{\beta}^{(\mathrm{new})}$$

Coordinate methods for inversion

To find the ordinary least squares estimates, we solve the normal equations to obtain

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

which requires us to invert the $p \times p$ matrix

 $\mathbf{X}^{\top}\mathbf{X}.$

This is the minimum norm solution to

$$\beta = \arg\min_{b} ||\mathbf{y} - \mathbf{X}\mathbf{b}||^2 = \arg\min_{b} \sum_{i=1}^{n} (y_i - \mathbf{x}_i\mathbf{b})^2$$
We may solve this problem using *coordinate descent* rather than direct inversion; if b_2, \ldots, b_p are fixed, then the minimization problem for b_1 becomes

$$\widehat{b}_1 = \arg\min_{b_1} S(b_1|b_2, \dots, b_p) = \arg\min_{b_1} \sum_{i=1}^n (y_i - b_1 x_{i1} - c_{i1})^2$$

where

$$c_{i1} = \sum_{j=2}^p b_j x_{ij}.$$

Coordinate methods for inversion (cont.)

Writing $y_i^* = y_i - c_{i1}$, and the sum of squares as

$$\sum_{i=1}^{n} (y_i^* - b_1 x_{i1})^2,$$

we have that

$$\widehat{b}_1 = rac{\sum\limits_{i=1}^n x_{i1} y_i^*}{\sum\limits_{i=1}^n x_{i1}^2}.$$

We may solve recursively in turn for each b_j , that is, after initialization and at step t, update

$$\widehat{b}_{j}^{(t)} \longrightarrow \widehat{b}_{j}^{(t+1)}$$

by minimizing

$$\min_{b_j} S(b_j | b_1^{(t+1)}, b_2^{(t+1)}, \dots, b_{j-1}^{(t+1)}, b_{j+1}^{(t)}, \dots, b_p^{(t)})$$

which does not require any matrix inversion.

DISTRIBUTIONAL RESULTS

Some distributional results

Distributional results using the Normal distribution are key to many inference procedures for the linear model. Suppose that

$$X_1,\ldots,X_n \sim \operatorname{Normal}(\mu,\sigma^2)$$

are independent.

Z_i = (X_i - μ)/σ ~ Normal(0, 1);
 Y_i = Z_i² ~ χ₁²;
 U = Σ_{i=1}ⁿ Z_i² ~ χ_n²;
 If U₁ ~ χ_{n1}² and U₂ ~ χ_{n2}² are independent, then

$$V = \frac{U_1/n_1}{U_2/n_2} \sim \text{Fisher}(n_1, n_2)$$

and

$$\frac{1}{V} \sim \operatorname{Fisher}(n_2, n_1)$$

Some distributional results (cont.)

5. If $Z \sim \text{Normal}(0, 1)$ and $U \sim \chi^2_{\nu}$, then

$$T = \frac{Z}{\sqrt{U/\nu}} \sim \mathrm{Student}(\nu)$$

6. If

$$\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$$

where

then

$$\mathbf{Y} \sim \operatorname{Normal}(\mathbf{b}, \sigma^2 \mathbf{A} \mathbf{A}^{\top}) \equiv \operatorname{Normal}(\mu, \Sigma)$$

say, and

$$(\mathbf{Y} - \mu)^{\top} \Sigma^{-1} (\mathbf{Y} - \mu) \sim \chi_n^2.$$

Some distributional results (cont.)

7. Non-central Chi-squared distribution: If $X \sim \text{Normal}(\mu, \sigma^2)$, we find the distribution of X^2/σ^2 .

$$Y = \frac{X}{\sigma} \sim \text{Normal}(\mu/\sigma, 1)$$

By standard transformation results, if $Q = Y^2$, then

$$f_{\rm Q}(y) = \frac{1}{\sqrt{y}} \left[\phi(\sqrt{y} - \mu/\sigma) + \phi(-\sqrt{y} - \mu/\sigma) \right]$$

This is the density of the non-central chi-squared distribution with 1 degree of freedom and non-centrality parameter $\lambda = (\mu/\sigma)^2$, written

 $\chi_1^2(\lambda).$

The non-central chi-squared distribution has many similar properties to the standard (central) chi-squared distribution. For example if X_1, \ldots, X_n are independent, with $X_i \sim \chi_1^2(\lambda_i)$, then

$$\sum_{i=1}^{n} X_i \sim \chi_n^2 \left(\sum_{i=1}^{n} \lambda_i \right).$$

The non-central chi-squared distribution plays a role in testing for the linear regression model as it characterizes the distribution of various sums of squares terms.

Some distributional results (cont.)

8. Quadratic forms: If **A** is a square symmetric idempotent matrix, and $Z = (Z_1, \ldots, Z_n)^\top \sim \text{Normal}(0, \mathbf{I}_n)$, then

$$\mathbf{Z}^{\top}\mathbf{A}\mathbf{Z}\sim\chi^2_{\nu}$$

where $\nu = \operatorname{Trace}(A)$.

To see this, use the singular value decomposition

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$$

where U is an orthogonal matrix with $U^{\top}U = I_n$, and D is a diagonal matrix. Then

 $Z^\top A Z = Z^\top U D U^\top Z = (Z^\top U) D (U^\top Z) = \{Z^*\}^\top D \{Z^*\}$ say. But

$$\mathbf{U}^{\top} \mathbf{Z} \sim \operatorname{Normal}(\mathbf{0}, \mathbf{U}^{\top} \mathbf{U}) = \operatorname{Normal}(\mathbf{0}, \mathbf{I}_n)$$

Some distributional results (cont.)

Therefore

$$\mathbf{Z}^{\top}\mathbf{A}\mathbf{Z} = \{\mathbf{Z}^*\}^{\top}\mathbf{D}\{\mathbf{Z}^*\}.$$

But A is idempotent, so

 $\mathbf{A}\mathbf{A}^{\top} = \mathbf{A}$

that is,

 $\mathbf{U}\mathbf{D}\mathbf{U}^{\top}\mathbf{U}\mathbf{D}\mathbf{U}^{\top}=\mathbf{U}\mathbf{D}\mathbf{U}^{\top}.$

The left hand side simplifies, and we have

 $UD^2U^\top = UDU^\top.$

Thus, pre-multiplying by $\mathbf{U}^{\top},$ and post-multiplying by $\mathbf{U},$ we have

$$\mathbf{D}^2 = \mathbf{D}$$

and the diagonal elements of D must either be zero or one, so

$$\mathbf{Z}^{\top}\mathbf{A}\mathbf{Z} = \{\mathbf{Z}^*\}^{\top}\mathbf{D}\{\mathbf{Z}^*\} \sim \chi_{\nu}^2$$

where $\nu = \text{Trace}(\mathbf{D}) = \text{Trace}(\mathbf{A})$.

Some distributional results (cont.)

9. If A_1 and A_2 are square, symmetric and orthogonal, and

$$A_1A_2 = \texttt{O}$$

then

$Z^{\top}A_1Z$ and $Z^{\top}A_2Z$

are independent. This result again uses the singular value decomposition; let

$$\mathbf{V}_1 = \mathbf{D}_1 \mathbf{U}_1^\top \mathbf{Z} \qquad \mathbf{V}_2 = \mathbf{D}_2 \mathbf{U}_2^\top \mathbf{Z}.$$

We have that

$$Cov_{\mathbf{V}_1,\mathbf{V}_2}[\mathbf{V}_1,\mathbf{V}_2] = \mathbb{E}_{\mathbf{V}_1,\mathbf{V}_2}[\mathbf{V}_2\mathbf{V}_1^\top]$$
$$= \mathbb{E}_{\mathbf{Z}}[\mathbf{D}_2\mathbf{U}_2^\top\mathbf{Z}\mathbf{Z}^\top\mathbf{U}_1\mathbf{D}_1]$$
$$= \mathbf{D}_2\mathbf{U}_2^\top\mathbf{U}_1^\top\mathbf{D}_1 = \mathbf{0}$$

as if \mathbf{A}_1 and \mathbf{A}_2 are orthogonal, then $\mathbf{U}_2^\top \mathbf{U}_1^\top = \mathbf{0}$.

BAYESIAN REGRESSION AND PENALIZED LEAST SQUARES

Under a Normality assumption

$$\mathbf{Y}|\mathbf{X}, \beta, \sigma^2 \sim \operatorname{Normal}(\mathbf{X}\beta, \sigma^2 \mathbf{I}_n)$$

which defines the likelihood $\mathcal{L}(\beta, \sigma^2; \mathbf{y}, \mathbf{X})$, we may perform Bayesian inference by specifying a joint prior distribution

$$\pi_{\mathsf{O}}(\beta,\sigma^2) = \pi_{\mathsf{O}}(\beta|\sigma^2)\pi_{\mathsf{O}}(\sigma^2)$$

and computing the posterior distribution

$$\pi_n(\beta, \sigma^2 | \mathbf{y}, \mathbf{X}) \propto \mathcal{L}(\beta, \sigma^2; \mathbf{y}, \mathbf{X}) \pi_0(\beta, \sigma^2)$$

The Bayesian Linear Model (cont.)

Prior specification:

• $\pi_0(\sigma^2) \equiv \text{InvGamma}(\alpha/2, \gamma/2)$, that is, by definition, $1/\sigma^2 \sim \text{Gamma}(\alpha/2, \gamma/2)$

$$\pi_{0}(\sigma^{2}) = \frac{(\gamma/2)^{\alpha/2}}{\Gamma(\alpha/2)} \left(\frac{1}{\sigma^{2}}\right)^{\alpha/2-1} \exp\left\{-\frac{\gamma}{2\sigma^{2}}\right\}$$

 π₀(β|σ²) ≡ Normal(θ, σ²Ψ), that is, β is conditionally Normally distributed in p dimensions,

where parameters

$$\alpha, \gamma, \theta, \Psi$$

are fixed, known constants ('hyperparameters')

In the calculation of $\pi_n(\beta, \sigma^2 | \mathbf{y}, \mathbf{X})$, we have after collecting terms

$$\pi_n(\beta, \sigma^2 | \mathbf{y}, \mathbf{X}) \propto \left(\frac{1}{\sigma^2}\right)^{(n+\alpha+p)/2-1} \exp\left\{-\frac{\gamma}{2\sigma^2}\right\} \exp\left\{-\frac{Q(\beta, \mathbf{y}, \mathbf{X})}{2\sigma^2}\right\}$$

where

$$Q(\beta, \mathbf{y}, \mathbf{X}) = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta) + (\beta - \theta)^{\top} \Psi^{-1} (\beta - \theta).$$

By completing the square, may write

$$Q(\beta, \mathbf{y}, \mathbf{X}) = (\beta - \mathbf{m})^{\top} \mathbf{M}^{-1} (\beta - \mathbf{m}) + c$$

where

•
$$\mathbf{M} = (\mathbf{X}^{\top}\mathbf{X} + \Psi^{-1})^{-1};$$

• $\mathbf{m} = (\mathbf{X}^{\top}\mathbf{X} + \Psi^{-1})^{-1}(\mathbf{X}^{\top}\mathbf{y} + \Psi^{-1}\theta);$
• $c = \mathbf{y}^{\top}\mathbf{y} + \theta^{\top}\Psi^{-1}\theta - \mathbf{m}^{\top}\mathbf{M}^{-1}\mathbf{m}$

The Bayesian Linear Model (cont.)

From this we deduce that

$$\pi_n(\beta, \sigma^2 | \mathbf{y}, \mathbf{X}) \propto \left(\frac{1}{\sigma^2}\right)^{(n+\alpha+p)/2-1} \exp\left\{-\frac{(\gamma+c)}{2\sigma^2}\right\}$$
$$\exp\left\{-\frac{1}{2\sigma^2}(\beta-\mathbf{m})^\top \mathbf{M}^{-1}(\beta-\mathbf{m})\right\}$$

that is

$$\pi_n(\beta, \sigma^2 | \mathbf{y}, \mathbf{X}) \equiv \pi_n(\beta | \sigma^2, \mathbf{y}, \mathbf{X}) \pi_n(\sigma^2 | \mathbf{y}, \mathbf{X})$$

The Bayesian posterior mean/modal estimator of β based on this model is

$$\widehat{\beta}_B = \mathbf{m} = (\mathbf{X}^\top \mathbf{X} + \Psi^{-1})^{-1} (\mathbf{X}^\top \mathbf{y} + \Psi^{-1} \theta)$$

Ridge Regression

If, in the Bayesian estimation, we choose

$$\theta = \mathbf{0}$$
 $\Psi^{-1} = \lambda \mathbf{I}_p$

we have

$$\widehat{\beta}_B = \mathbf{m} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^\top \mathbf{y}.$$

If

Note that to make this specification valid, we should place all the predictors (the columns of X) on the same scale.

Ridge Regression (cont.)

Consider the constrained least squares problem

minimize
$$S(\beta) = \sum_{i=1}^{n} (y_i - \mathbf{x}_i \beta)^2$$
 subject to $\sum_{j=1}^{k} \beta_j^2 \le t$

We solve this problem after centering the predictors

$$x_{ij} \longrightarrow x_{ij} - \overline{x}_j$$

and centering the responses

$$y_i \longrightarrow y_i - \overline{y}.$$

After this transformation, the intercept can be omitted.

Suppose that therefore there are precisely $p\ \beta$ parameters in the model.

We solve the constrained minimization using Lagrange multipliers: we minimize $S_{\lambda}(\beta)$

$$S_{\lambda}(\beta) = S(\beta) + \lambda \left(\sum_{j=1}^{p} \beta_j^2 - t\right)$$

We have that

$$rac{\partial S_{\lambda}(eta)}{\partial eta} = rac{\partial S(eta)}{\partial eta} + 2\lambdaeta$$

– a $p \times 1$ vector.

Ridge Regression (cont.)

By direct calculus, we have

$$rac{\partial \mathcal{S}_{\lambda}(eta)}{\partial eta} = -2 \mathbf{X}^{ op} (\mathbf{y} - \mathbf{X}eta) + 2\lambda eta$$

and equating to zero we have

$$\mathbf{X}^{\top}\mathbf{y} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})\beta$$

so that

$$\widehat{\beta}_{B} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

For statistical properties, we have

$$\mathbb{E}_{\mathbf{Y}|\mathbf{X}}[\widehat{\beta}_{B}|\mathbf{X}] = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{X}\beta \neq \beta$$

so the ridge regression estimator is biased. However the mean squared error (MSE) of $\hat{\beta}_{B}$ can be smaller than that of $\hat{\beta}$.

If the columns of matrix \mathbf{X} is orthogonal, so that

$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$$

then

$$\widehat{\beta}_{Bj} = \frac{1}{1+\lambda} \widehat{\beta}_j < \widehat{\beta}_j.$$

In general the ridge regression estimates are 'shrunk' towards zero compared to the least squares estimates.

Ridge Regression (cont.)

Using the singular value decomposition, write

 $\mathbf{X} = \mathbf{U} \mathbf{D} \mathbf{V}^\top$

where

• U is $n \times p$, columns of U are an orthonormal basis for the column space of X, and

$$\mathbf{U}^{\top}\mathbf{U}=\mathbf{I}_{p}.$$

• V is *p* × *p*, columns of V are an orthonormal basis for the row space of X;

$$\mathbf{V}^{\top}\mathbf{V}=\mathbf{I}_{p}.$$

• D is diagonal with elements

$$d_1 \ge d_2 \ge \cdots \ge d_p \ge 0.$$

Least squares: Predictions are

$$\begin{split} \widehat{\mathbf{Y}} &= \mathbf{X} \widehat{\boldsymbol{\beta}} &= \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} \\ &= (\mathbf{U} \mathbf{D} \mathbf{V}^{\top}) (\mathbf{V} \mathbf{D} \mathbf{U}^{\top} \mathbf{U} \mathbf{D} \mathbf{V}^{\top})^{-1} \mathbf{V} \mathbf{D} \mathbf{U}^{\top} \mathbf{y} \\ &= \mathbf{U} \mathbf{U}^{\top} \mathbf{y}. \end{split}$$

as

$$\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}_p \quad \Longrightarrow \quad \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_p$$

(to see this pre-multiply both sides by $\mathbf{V}^{\!\top})$ so that

$$(\mathbf{V}\mathbf{D}\mathbf{U}^{\top}\mathbf{U}\mathbf{D}\mathbf{V}^{\top})^{-1} \equiv (\mathbf{V}\mathbf{D}^{2}\mathbf{V}^{\top})^{-1} = \mathbf{V}\mathbf{D}^{-2}\mathbf{V}^{\top}$$

Ridge regression: Predictions are

$$\begin{aligned} \widehat{\mathbf{Y}} &= \mathbf{X} \widehat{\beta}_{\mathrm{B}} &= \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{p})^{-1} \mathbf{X}^{\top} \mathbf{y} \\ &= \mathbf{U} \mathbf{D} (\mathbf{D}^{2} + \lambda \mathbf{I}_{p})^{-1} \mathbf{D} \mathbf{U}^{\top} \mathbf{y} \\ &= \sum_{j=1}^{p} \mathbf{u}_{j} \left(\frac{d_{j}^{2}}{d_{j}^{2} + \lambda} \right) \mathbf{u}_{j}^{\top} \mathbf{y} \end{aligned}$$

where $\underline{\mathbf{u}}_{j}$ is the *j*th column of **U**.

Ridge Regression (cont.)

Ridge regression transforms the problem to one involving the orthogonal matrix \mathbf{U} instead of \mathbf{X} , and the shrinks the coefficients by

$$\frac{d_j^2}{d_j^2 + \lambda} \le 1.$$

For ridge regression, the hat matrix is

$$\begin{aligned} \mathbf{H}_{\lambda} &= \mathbf{X}(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{p})^{-1}\mathbf{X}^{\top} \\ &= \mathbf{U}\mathbf{D}(\mathbf{D}^{2} + \lambda\mathbf{I}_{p})^{-1}\mathbf{D}\mathbf{U}^{\top} \end{aligned}$$

and the 'degrees of freedom' of the fit is

$$\operatorname{Trace}(\mathbf{H}_{\lambda}) = \sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda}$$

The LASSO penalty is

$$\lambda \sum_{j=1}^{p} |\beta_j|$$

and we solve the minimization

$$\min_{\beta} (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta) + \lambda \sum_{j=1}^{p} |\beta_j|.$$

No analytical solution is available, but the minimization can be achieved using coordinate descent.

In this case, the minimization allows for the optimal value $\hat{\beta}_j$ to be precisely zero for some *j*.

A general version of this penalty is

$$\lambda \sum_{j=1}^p |\beta_j|^q$$

and if $q \leq 1$, there is a possibility of an estimate being shrunk exactly to zero.

For $q \ge 1$, the problem is convex; for q < 1 the problem is non-convex, and harder to solve.

However, if $q \leq 1$, the shrinkage to zero allows for variable selection to be carried out automatically.

MODEL SELECTION USING INFORMATION CRITERIA

Suppose we wish to choose one from a collection of models described by densities f_1, f_2, \ldots, f_K with parameters $\theta_1, \theta_2, \ldots, \theta_K$. Let the true, data generating model be denoted f_0 .

We consider the KL divergence between f_0 and f_k :

$$KL(f_0, f_k) = \int \log\left(\frac{f_0(x)}{f_k(x; \theta_k)}\right) f_0(x) dx$$

and aim to choose the model using the criterion

$$\widehat{k} = \arg\min_k KL(f_0, f_k)$$

In reality, θ_k are typically unknown, so we consider estimating them using maximum likelihood procedures. We consider

$$\mathit{KL}(f_0,\widehat{f}_k) = \int \log\left(rac{f_0(x)}{f_k(x;\widehat{ heta}_k)}
ight) f_0(x) \mathrm{d}x$$

where $\hat{\theta}_k$ is obtained by maximizing the likelihood under model k, that is maximizing

$$\sum_{i=1}^n \log f_k(y_i;\theta)$$

with respect to θ for data y_1, \ldots, y_n .

Selection using Information Criteria (cont.)

We have that

$$KL(f_0, f_k) = \int \log f_0(x) f_0(x) dx - \int \log f_k(x; \theta_k) f_0(x) dx$$

so we then may choose k by

$$\widehat{k} = \arg\max_k \int \log f_k(x; \theta_k) f_0(x) \mathrm{d}x$$

or if the parameters need to be estimated

$$\widehat{k} = \arg \max_{k} \int \log f_k(x; \widehat{\theta}_k(y)) f_0(x) \mathrm{d}x.$$

Asymptotic results for estimation under misspecification
Maximum likelihood as minimum KL

We may seek to define θ_k directly using the entropy criterion

$$\theta_k = \arg\min_{\theta} KL(f_0, f_k(\theta)) = \arg\min_{\theta} \int \log\left(\frac{f_0(x)}{f_k(x;\theta)}\right) f_0(x) dx$$

and solve the problem using calculus by differentiating $KL(f_0, f_k(\theta))$ with respect to θ and equating to zero.

Note that under standard regularity conditions

$$\frac{\partial}{\partial \theta} \left\{ \int \log \left(\frac{f_0(x)}{f_k(x;\theta)} \right) f_0(x) dx \right\} = -\frac{\partial}{\partial \theta} \left\{ \int \log f_k(x;\theta) f_0(x) dx \right\}$$
$$= -\int \left\{ \frac{\partial}{\partial \theta} \log f_k(x;\theta) \right\} f_0(x) dx$$
$$= -\mathbb{E}_X \left[\frac{\partial}{\partial \theta} \log f_k(X;\theta) \right]$$

Therefore θ_k solves

$$\mathbb{E}_{X}\left[\frac{\partial}{\partial\theta}\log f_{k}(X;\theta)|_{\theta=\theta_{k}}\right]=0.$$

Under identifiability assumptions, we assume that is that there is a single θ_k which solves this equation.

The sample-based equivalent calculation dictates that for the estimate $\widehat{\theta}_k$

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\partial}{\partial\theta}\log f_{k}(x_{i};\theta)|_{\theta=\theta_{k}}=0$$

which coincides with ML estimation.

Under identifiability assumptions, as

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\partial}{\partial\theta}\log f_{k}(X_{i};\theta)|_{\theta=\theta_{k}}\longrightarrow0,$$

by the strong law of large numbers we must have that

$$\widehat{\theta}_k \longrightarrow \theta_k$$

with probability 1 as $n \longrightarrow \infty$.

Maximum likelihood as minimum KL (cont.)

Let

$$\mathcal{I}(\theta_k) = \mathbb{E}_X \left[-\frac{\partial^2 \log f_k(X; \theta)}{\partial \theta \partial \theta^\top} \Big|_{\theta = \theta_k}; \theta_k \right]$$

be the Fisher information computed wrt $f_k(x; \theta_k)$, and

$$I(\theta_k) = \mathbb{E}_X \left[-\frac{\partial^2 \log f_k(X; \theta)}{\partial \theta \partial \theta^\top} \bigg|_{\theta = \theta_k} \right]$$

be the same expectation quantity computed wrt $f_0(x)$. The corresponding *n* data versions, where $\log f_k(X; \theta)$ is replaced by

$$\sum_{i=1}^{n} \log f_k(X_i;\theta)$$

are

$$\mathcal{I}_n(\theta_k) = n\mathcal{I}(\theta_k) \qquad \qquad I_n(\theta_k) = nI(\theta_k)$$

The quantity $\widehat{I}_n(\theta_k)$ is the sample based version

$$\widehat{I}_n(\theta_k) = -\left\{\sum_{i=1}^n \frac{\partial^2}{\partial \theta \partial \theta^{\top}} \log f_k(X_i; \theta)\right\}_{\theta=\theta_k}$$

This quantity is evaluated at $\theta_k = \widehat{\theta}_k$ to yield $\widehat{I}_n(\widehat{\theta}_k)$; we have that

$$\widehat{I}_n(\widehat{\theta}_k) \longrightarrow I_n(\theta_k)$$

with probability 1 as $n \longrightarrow \infty$.

Maximum likelihood as minimum KL (cont.)

Another approach that is sometimes used is to uses the equivalence between expressions involving the first and second derivative versions of $\mathcal{I}(\theta)$; we have also that

$$\mathcal{I}(\theta_k) = \mathbb{E}_X \left[\frac{\partial \log f_k(X; \theta)}{\partial \theta} \Big|_{\theta = \theta_k}^{\bigotimes 2}; \theta_k \right] = \mathcal{J}(\theta_k)$$

with the expectation computed wrt $f_k(x; \theta_k)$, where for vector U

$$U^{\bigotimes 2} = UU^{\top}.$$

Let

$$J(\theta_k) = \mathbb{E}_X \left[\frac{\partial \log f_k(X; \theta)}{\partial \theta} \Big|_{\theta = \theta_k}^{\bigotimes 2} \right]$$

be the equivalent calculation with the expectation computed wrt $f_0(x)$.

Now by a second order Taylor expansion of the first derivative of the loglikelihood, if

$$\dot{\ell}_k(\theta_k) = \frac{\partial \log f_k(x;\theta)}{\partial \theta} \bigg|_{\theta = \theta_k} \qquad \ddot{\ell}_k(\theta_k) = \frac{\partial^2 \log f_k(x;\theta)}{\partial \theta \partial \theta^\top} \bigg|_{\theta = \theta_k}$$

at $\theta = \theta_k$, we have

$$\dot{\ell}_{k}(\theta_{k}) = \dot{\ell}_{k}(\widehat{\theta}_{k}) + \ddot{\ell}_{k}(\widehat{\theta}_{k})(\theta_{k} - \widehat{\theta}_{k}) + \frac{1}{2}(\theta_{k} - \widehat{\theta}_{k})^{\top} \ddot{\ell}_{n}(\theta^{*})(\theta_{k} - \widehat{\theta}_{k})$$

$$= \ddot{\ell}_{k}(\widehat{\theta}_{k})(\theta_{k} - \widehat{\theta}_{k}) + R_{n}(\theta^{*})$$

$$\dot{\ell}_{n}(\widehat{\theta}) = 2 ||\widehat{\theta}_{k} - \theta^{*}||_{\infty} \leq ||\widehat{\theta}_{k}$$

as $\dot{\ell}_k(\hat{\theta}_k) = 0$, $||\hat{\theta}_k - \theta^*|| < ||\hat{\theta}_k - \theta_k||$, and where the remainder term is being denoted $R_n(\theta^*)$.

Maximum likelihood as minimum KL (cont.)

We have by definition that

$$-\ddot{\ell}_k(\widehat{\theta}_k) = \widehat{I}_n(\widehat{\theta}_k).$$

and in the limit

$$\frac{R_n(\theta^*)}{n} \xrightarrow{p} 0$$

that is, $R_n(\theta^*) = o_p(n)$, and

$$\frac{1}{n}\,\widehat{I}_n(\widehat{\theta}_k)\stackrel{a.s.}{\longrightarrow}I(\theta_k)$$

as $n \longrightarrow \infty$.

Rewriting the above approximation, we have

$$\sqrt{n}(\widehat{\theta}_k - \theta_k) = \left\{\frac{1}{n}\,\widehat{I}_n(\widehat{\theta}_k)\right\}^{-1} \left\{\frac{1}{\sqrt{n}}\dot{\ell}_k(\theta_k)\right\} + \left\{\frac{1}{n}\,\widehat{I}_n(\widehat{\theta}_k)\right\}^{-1} \left\{\frac{R_n(\theta^*)}{n}\right\}$$

Maximum likelihood as minimum KL (cont.)

By the central limit theorem

$$\sqrt{n}(\widehat{\theta}_k - \theta_k) \stackrel{d}{\longrightarrow} \operatorname{Normal}(0, \Sigma)$$

say, where Σ denotes the limiting variance-covariance matrix when sampling is under f_0 , and

$$\frac{1}{\sqrt{n}}\dot{\ell}_k(\theta_k) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \frac{\partial}{\partial \theta_k}\log f_k(X_i;\theta_k) \stackrel{d}{\longrightarrow} \operatorname{Normal}(0,J(\theta_k)).$$

Finally,

$$\left\{\frac{1}{n}\,\widehat{I}_n(\widehat{\theta}_k)\right\}^{-1}\left\{\frac{R_n(\theta^*)}{n}\right\}\stackrel{p}{\longrightarrow} 0$$

by Slutsky's Theorem.

Therefore, by equating the asymptotic variances of the above quantities, we must have

 $J(\theta_k) = I(\theta_k) \Sigma I(\theta_k)$

yielding that

$$\Sigma = \{I(\theta_k)\}^{-1} J(\theta_k) \{I(\theta_k)\}^{-1}$$

Model Selection USING Minimum KL

The quantity

$$\int \log f_k(x; \widehat{\theta}_k(Y)) f_0(x) dx = \mathbb{E}_X[\log f_k(X; \widehat{\theta}_k(Y))]$$

is a random quantity, a function of data random quantities Y. Thus we instead decide to choose k by

$$\widehat{k} = \arg\max_k \mathbb{E}_Y[\mathbb{E}_X[\log f_k(X; \widehat{\theta}_k(Y))]]$$

where *X* and *Y* are drawn from the true model f_0 .

We consider first the expansion of the inner integral around the true value θ_k for an arbitrary *y*; under regularity conditions

$$\begin{split} \mathbb{E}_{X}[\log f_{k}(X;\widehat{\theta}_{k}(y))] &= \mathbb{E}_{X}[\log f_{k}(X;\theta_{k})] \\ &+ \mathbb{E}_{X}\left[\dot{\ell}_{k}(\theta_{k})\right]^{\top}(\widehat{\theta}_{k} - \theta_{k}) \\ &+ \frac{1}{2}(\widehat{\theta}_{k} - \theta_{k})^{\top}\mathbb{E}_{X}\left[\ddot{\ell}_{k}(\theta_{k})\right](\widehat{\theta}_{k} - \theta_{k}) \\ &+ o_{p}(n) \end{split}$$

By definition
$$\mathbb{E}_X \left[\dot{\ell}_k(\theta_k) \right] = 0$$
, and
 $\mathbb{E}_X \left[\ddot{\ell}_k(\theta_k) \right] = -I_n(\theta_k)$

so therefore

$$\mathbb{E}_{X}[\log f_{k}(X;\widehat{\theta}_{k}(y))] = \mathbb{E}_{X}[\log f_{k}(X;\theta_{k})] - \frac{1}{2}(\widehat{\theta}_{k} - \theta_{k})^{\top} I_{n}(\theta_{k})(\widehat{\theta}_{k} - \theta_{k}) + o_{p}(n)$$

We then must compute

$$\mathbb{E}_{Y}[\mathbb{E}_{X}[\log f_{k}(X;\widehat{\theta}_{k}(Y))]]$$

The term $\mathbb{E}_X[\log f_k(X; \theta_k)]$ is a constant wrt this expectation.

The expectation of the quadratic term can be computed by standard results for large *n*; under sampling *Y* from f_0 , we have as before that

$$(\widehat{\theta}_k - \theta_k)^{\top} I_n(\theta_k) (\widehat{\theta}_k - \theta_k)$$

can be rewritten

$$\{\sqrt{n}(\widehat{\theta}_k - \theta_k)\}^\top \left\{\frac{1}{n}I_n(\theta_k)\right\} \{\sqrt{n}(\widehat{\theta}_k - \theta_k)\}$$

where

$$\sqrt{n}(\widehat{\theta}_k - \theta_k) \stackrel{d}{\longrightarrow} \operatorname{Normal}(0, \Sigma)$$

and

$$\frac{1}{n}I_n(\theta_k) \xrightarrow{a.s.} I(\theta_k)$$

Therefore, by standard results for quadratic forms

$$\mathbb{E}_{Y}\left[(\widehat{\theta}_{k}(Y) - \theta_{k})^{\top} I_{n}(\theta_{k})(\widehat{\theta}_{k}(Y) - \theta_{k})\right] \xrightarrow{a.s.} \operatorname{Trace}\left(I(\theta_{k})\Sigma\right)$$

and

$$\mathbb{E}_{Y}[\mathbb{E}_{X}[\log f_{k}(X;\widehat{\theta}_{k}(Y))]] = \mathbb{E}_{X}[\log f_{k}(X;\theta_{k})] - \frac{1}{2}\operatorname{Trace}\left(I(\theta_{k})\Sigma\right) + o_{p}(n)$$
^(*)

However, the right hand side cannot be computed, as θ_k is not known and must be estimated.

Thus we repeat the same operation, but instead expand

 $\mathbb{E}_X[\log f_k(X;\theta_k)]$

about $\widehat{\theta}_k(x)$ for a fixed *x*. We have

$$\begin{split} \log f_k(x;\theta_k) &= \log f_k(x;\widehat{\theta}_k(x)) \\ &+ \dot{\ell}_k(\widehat{\theta}_k(x))^\top (\theta_k - \widehat{\theta}_k(x)) \\ &+ \frac{1}{2} (\widehat{\theta}_k(x) - \theta_k)^\top \ddot{\ell}_k(\widehat{\theta}_k(x)) (\widehat{\theta}_k(x) - \theta_k) \\ &+ \mathrm{o}(n) \end{split}$$

of which we need then to take the expectation wrt *X*.

Again
$$\mathbb{E}_X \left[\dot{\ell}_k(\widehat{\theta}_k(X)) \right] = 0$$
, and writing
 $-(\widehat{\theta}_k(x) - \theta_k)^\top \ddot{\ell}_k(\widehat{\theta}_k(x))(\widehat{\theta}_k(x) - \theta_k)$

as

$$\{\sqrt{n}(\widehat{\theta}_k(x) - \theta_k)\}^\top \left\{-\frac{1}{n}\ddot{\ell}_k(\widehat{\theta}_k(x))\right\}\{\sqrt{n}(\widehat{\theta}_k(x) - \theta_k)\}$$

we have that the expectation over X of this quadratic form converges to

Trace $(I(\theta_k)\Sigma)$

as by standard theory

$$\sqrt{n}(\widehat{\theta}_k(x) - \theta_k) \stackrel{d}{\longrightarrow} \operatorname{Normal}(0, \Sigma).$$

Thus

$$\mathbb{E}_{X}[\log f_{k}(X;\theta_{k})] = \mathbb{E}_{X}[\log f_{k}(X;\widehat{\theta}_{k}(X))] - \frac{1}{2}\operatorname{Trace}\left(I(\theta_{k})\Sigma\right) + o_{p}(n).$$

Therefore, using the previous expression (*) we now have

$$\mathbb{E}_{Y}[\mathbb{E}_{X}[\log f_{k}(X;\widehat{\theta}_{k})]] = \mathbb{E}_{X}[\log f_{k}(X;\widehat{\theta}_{k}(X))] - \operatorname{Trace}\left(I(\theta_{k})\Sigma\right) + o_{p}(n)$$

By the earlier identity

$$I(\theta_k)\Sigma = J(\theta_k) \{I(\theta_k)\}^{-1}$$

and the right hand side can be consistently estimated by

$$\log f_k(x; \widehat{\theta}_k) - \widehat{\mathrm{Trace}} \left(J(\theta_k) \left\{ I(\theta_k) \right\}^{-1} \right)$$

where the estimated trace must be computed from the available data.

On obvious estimator of the trace is

Trace
$$\left(\widehat{J}(\widehat{ heta}_k(x))\left\{\widehat{I}(\widehat{ heta}_k(x))\right\}^{-1}\right)$$

although this might potentially be improved upon. In any case, if the approximating model f_k is close in KL terms to the true model f_0 , we would expect that

Trace
$$\left(J(\theta_k) \left\{I(\theta_k)\right\}^{-1}\right) \simeq \dim(\theta_k)$$

as we would have under regularity assumptions

$$J(\theta_k) \simeq I(\theta_k)$$

This yields the criterion: choose k to maximize

 $\log f_k(x; \hat{\theta}_k) - \dim(\theta_k)$

or equivalently to minimize

$$-2\log f_k(x;\hat{\theta}_k) + 2\dim(\theta_k)$$

This is Akaike's Information Criterion (AIC).

Note: The required regularity conditions on the f_k model are not too restrictive. However, the approximation

Trace
$$\left(J(\theta_k) \left\{I(\theta_k)\right\}^{-1}\right) \simeq \dim(\theta_k)$$

is potentially poor.

The Bayesian Information Criterion (BIC) uses an approximation to the marginal likelihood function to justify model selection. For data $\mathbf{y} = (y_1, \dots, y_n)$, we have the posterior distribution for model k as

$$\pi_n(\theta_k; \mathbf{y}) = \frac{L_k(\theta_k; \mathbf{y}) \pi_0(\theta_k)}{\int L_k(t; \mathbf{y}) \pi_0(t) \, \mathrm{d}t}.$$

where $L_k(\theta; \mathbf{y})$ is the likelihood function. The denominator is

$$f_k(\mathbf{y}) = \int L_k(t; \mathbf{y}) \pi_0(t) \, \mathrm{d}t$$

that is, the marginal likelihood.

The Bayesian Information Criterion (cont.)

Let

$$\ell_k(\theta; \mathbf{y}) = \log L_k(\theta; \mathbf{y}) = \sum_{i=1}^n \log f_k(y_i; \theta)$$

denote the log-likelihood for model k. By a Taylor expansion of $\ell_k(\theta; \mathbf{y})$ around ML estimate $\hat{\theta}_k$, we have

$$\ell_k(\theta; \mathbf{y}) = \ell_k(\widehat{\theta}_k; \mathbf{y}) + (\theta - \widehat{\theta}_k)^\top \dot{\ell}(\widehat{\theta}_k; \mathbf{y}) + \frac{1}{2} (\theta - \widehat{\theta}_k)^\top \ddot{\ell}(\widehat{\theta}_k; \mathbf{y}) (\theta - \widehat{\theta}_k) + o(1)$$

We have by definition that $\dot{\ell}(\widehat{\theta}_k) = 0$, and we may write

$$-\ddot{\ell}(\widehat{\theta}_k;\mathbf{y}) = \left\{V_n(\widehat{\theta}_k)\right\}^{-1}.$$

 $V_n(\widehat{\theta}_k)$ is the Hessian matrix derived from *n* data points.

The Bayesian Information Criterion (cont.)

In ML theory, $V_n(\hat{\theta}_k)$ estimates the variance of the ML estimator derived from *n* data. We may denote that, for a random sample, that

$$V_n(\widehat{\theta}_k) = \frac{1}{n} V_1(\widehat{\theta}_k)$$

say, where

$$V_1(\theta) = n \left\{ \sum_{i=1}^n \frac{\partial^2}{\partial \theta \partial \theta^{\top}} \log f_k(y_i; \theta) \right\}^{-1}$$

is a square symmetric matrix of dimension $p_k = \dim(\theta_k)$ recording an estimate of the the variance of the ML estimator for a single data point n = 1. Then, exponentiating, we have that

$$L_k(\theta; \mathbf{y}) \simeq L_k(\widehat{\theta}_k; \mathbf{y}) \exp\left\{-\frac{1}{2}(\theta - \widehat{\theta}_k)^\top \left\{V_n(\widehat{\theta}_k)\right\}^{-1} (\theta - \widehat{\theta}_k)\right\}$$

This is a standard quadratic approximation to the likelihood around the ML estimate.

The Bayesian Information Criterion (cont.)

Suppose that prior $\pi_0(\theta_k)$ is constant (equal to *c*, say) in the neighbourhood of $\hat{\theta}_k$. Then, for large *n*

$$f_{k}(\mathbf{y}) = \int L_{k}(t; \mathbf{y}) \pi_{0}(t) dt$$

$$\simeq \int cL_{k}(\widehat{\theta}; \mathbf{y}) \exp\left\{-\frac{1}{2}(t - \widehat{\theta}_{k})^{\top} \left\{V_{n}(\widehat{\theta}_{k})\right\}^{-1}(t - \widehat{\theta}_{k})\right\} dt$$

$$= cL_{k}(\widehat{\theta}; \mathbf{y})(2\pi)^{p_{k}/2} |V_{n}(\widehat{\theta}_{k})|^{1/2}$$

as the integrand is proportional to a Normal $(\hat{\theta}_k, V_n(\hat{\theta}_k))$ distribution.

The Bayesian Information Criterion (cont.)

But

$$|V_n(\widehat{\theta}_k)|^{1/2} = \left|\frac{1}{n}V_1(\widehat{\theta}_k)\right|^{1/2} = n^{-p_k/2} \left|V_1(\widehat{\theta}_k)\right|^{1/2}$$

Therefore the marginal likelihood becomes

$$f_k(\mathbf{y}) = cL_k(\widehat{\theta}; \mathbf{y})(2\pi)^{p_k/2} n^{-p_k/2} \left| V_1(\widehat{\theta}_k) \right|^{1/2}$$

or on the $-2\log$ scale we have

$$-2\log f_k(\mathbf{y}) \simeq -2\ell_k(\widehat{\theta}; \mathbf{y}) + p_k\log n + \text{constant}$$

where

constant =
$$-p_k \log(2\pi) - \log |V_1(\hat{\theta}_k)| - 2 \log c$$

The constant term is o(1) and is hence negligible, so the BIC is defined as

BIC =
$$-2\ell_k(\widehat{\theta}; \mathbf{y}) + p_k \log n$$
.