
Math 533

Extra Hour Material



A Justification for Regression



The Justification for Regression

It is well-known that if we want to predict a random quantity Y
using some quantity m according to a mean-squared error MSE,
then the optimal predictor is the expected value of Y , µ;

E[(Y −m)2] = E[(Y − µ+ µ−m)2]

= E[(Y − µ)2] + E[(µ−m)2] + 2E[(Y − µ)(µ−m)]

= E[(Y − µ)2] + (µ−m)2 + 0

which is minimized when m = µ.
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The Justification for Regression (cont.)

Now suppose we have a joint distribution between Y and X, and
wish to predict the Y as a function of X, m(X) say. Using the same
MSE criterion, if we write

µ(x) = EY |X [Y |X = x]

to represent the conditional expectation of Y given X = x, we have

EX,Y [(Y −m(X))2] = EX,Y [(Y − µ(X) + µ(X)−m(X))2]

= EX,Y [(Y − µ(X))2] + EX,Y [(µ(X)−m(X))2]

+ 2EX,Y [(Y − µ(X))(µ(X)−m(X))]

= EX,Y [(Y − µ(X))2] + EX [(µ(X)−m(X))2] + 0
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The Justification for Regression (cont.)

The cross term equates to zero by noting that by iterated
expectation

EX,Y [(Y−µ(X))(µ(X)−m(X))] = EX [EY |X [(Y−µ(X))(µ(X)−m(X))]]

and for the internal expectation

EY |X [(Y−µ(X))(µ(X)−m(X))|X] = (µ(X)−m(X))EY |X [(Y−µ(X))|X] a.s.

and
EY |X [(Y − µ(X))|X] = 0 a.s.
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The Justification for Regression (cont.)

This the MSE is minimized over functions m(.) when

EX [(µ(X)−m(X))2]

is minimized, but this term can be made zero by setting

m(x) = µ(x) = EY |X [Y |X = x].

Thus the MSE-optimal prediction is made by using µ(x).

Note: Here X can be a single variable, or a vector; it can be random
or non-random – the result holds.
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The Justification for Linear Modelling

Suppose that the true conditional mean function is represented by
µ(x) where x is a single predictor. We have by Taylor expansion
around x = 0 that

µ(x) = µ(0) +

p−1∑
j=1

µ(j)(0)

j!
xj + O(xp)

where the remainder term O(xp) represents terms of xp in
magnitude or higher order terms, and

µ(j)(0) =
djµ(x)
dxj

∣∣∣∣∣
x=0
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The Justification for Linear Modelling (cont.)

The derivatives of µ(x) at x = 0 may be treated as unspecified
constants, in which case a reasonable approximating model takes the
form

β0 +

p−1∑
j=1

βjxj

where βj ≡ µ(j)(0) for j = 0, 1, . . . , p− 1.

Similar expansions hold if x is vector valued.
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The Justification for Linear Modelling (cont.)

Finally, if Y and X are jointly normally distributed, then the
conditional expectation of Y given X = x is linear in x.

• see Multivariate Normal Distribution handout.
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The General Linear Model



The General Linear Model

The linear model formulation that assumes

EY|X[Y|X] = Xβ VarY|X[Y|X] = σ2In

is actually quite a general formulation as the rows xi of X can be
formed by using general transforms of the originally recorded
predictors.

• multiple regression: xi = [1 xi1 xi2 · · · xik]
• polynomial regression: xi = [1 xi1 x2

i1 · · · x
k
i1]
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The General Linear Model (cont.)
• harmonic regression: consider single continuous predictor x

measured on a bounded interval.

Let ωj = j/n, j = 0, 1, . . . , n/2 = K, and then set

EYi|X [Yi|xi] = β0 +

J∑
j=1

βj1 cos(2πωjxi) +

J∑
j=1

βj2 sin(2πωjxi)

If J = K, we then essentially have an n× n matrix X specifying
a linear transform of y in terms of the derived predictors

(cos(2πωjxi), sin(2πωjxi)).

– the coefficients

(β0, β11, β12, . . . , βK)

form the discrete Fourier transform of y
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The General Linear Model (cont.)

In this case, the columns of X are orthogonal, and

X>X = diag(n, n/2, n/2, . . . , n/2, n)

that is, X>X is a diagonal matrix.
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The General Linear Model (cont.)

• basis functions:
I truncated spline basis: for x ∈ R, let

xi1 =

{
(x− η1)

α x > η1
0 x ≤ η1

= (x− η1)
α
+

for some fixed η1, and α ∈ R. More generally,

EYi|X [Yi|xi] = β0 +

J∑
j=1

βj(xi − ηj)α+

for fixed η1 < η2 < · · · < ηJ .
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The General Linear Model (cont.)
I piecewise constant: : for x ∈ R, let

xi1 =

{
1 x ∈ A1
0 x /∈ A1

= 1A1(x)

for some set A1. More generally,

EYi|X [Yi|xi] = β0 +

J∑
j=1

βj1Aj(x)

for sets A1, . . . ,AJ . If we want to use a partition of R, we may
write this

EYi|X [Yi|xi] =

J∑
j=0

βj1Aj(x).

where

A0 =

 J⋃
j=1

Aj

′
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The General Linear Model (cont.)

I piecewise linear: specify

EYi|X [Yi|xi] =

J∑
j=0

1Aj(x)(βj0 + βj1xi)

I piecewise linear & continuous: specify

EYi|X [Yi|xi] = β0 + β1x +

J∑
j=1

βj1(xi − ηj)+

for fixed η1 < η2 < · · · < ηJ .
I higher order piecewise functions (quadratic, cubic etc.)
I splines
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Example: Motorcycle data

1 library(MASS)
2 #Motorcycle data
3 plot(mcycle,pch=19,main=’Motorcycle accident data’)
4
5 x<-mcycle$times
6 y<-mcycle$accel
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Raw data
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Example: Piecewise constant fit

1 #Knots
2 K<-11
3 kappa<-as.numeric(quantile(x,probs=c(0:K)/K))
4
5 X<-(outer(x,kappa,’-’)>0)^2
6 X<-X[,-12]
7
8 fit.pwc<-lm(y∼ X)
9 summary(fit.pwc)

10 newx<-seq(0,max(x),length=1001)
11
12 newX<-(outer(newx,kappa,’-’)>0)^2
13 newX<-cbind(rep(1,1001),newX[,-12])
14
15 yhatc<-newX %*% coef(fit.pwc)
16 lines(newx,yhatc,col=’blue’,lwd=2)
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Fit: Piecewise constant
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Example: Piecewise linear fit

17 X1<-(outer(x,kappa,’-’)>0)^2
18 X1<-X1[,-12]
19
20 X2<-(outer(x,kappa,’-’)>0)*outer(x,kappa,’-’)
21 X2<-X2[,-12]
22
23 X<-cbind(X1,X2)
24
25 fit.pwl<-lm(y∼ X)
26 summary(fit.pwl)
27 newx<-seq(0,max(x),length=1001)
28
29 newX1<-(outer(newx,kappa,’-’)>0)^2
30 newX2<-(outer(newx,kappa,’-’)>0)*outer(newx,kappa,’-’)
31
32 newX<-cbind(rep(1,1001),newX1[,-12],newX2[,-12])
33
34 yhatl<-newX %*% coef(fit.pwl)
35 lines(newx,yhatl,col=’red’,lwd=2)
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Fit: ... + piecewise linear

●●●
●

● ●●● ●●●● ●●
●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

10 20 30 40 50

−
10

0
−

50
0

50

Motorcycle accident data

times

ac
ce

l

19



Example: Piecewise linear fit

36 X<-(outer(x,kappa,’-’)>0)*outer(x,kappa,’-’)
37 X<-X[,-12]
38
39 fit.pwcl<-lm(y∼ X)
40 summary(fit.pwcl)
41 newx<-seq(0,max(x),length=1001)
42
43 newX<-(outer(newx,kappa,’-’)>0)*outer(newx,kappa,’-’)
44
45 newX<-cbind(rep(1,1001),newX[,-12])
46
47 yhatcl<-newX %*% coef(fit.pwcl)
48 lines(newx,yhatcl,col=’green’,lwd=2)
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Fit: ... + piecewise continuous linear
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Fit: ... + piecewise continuous quadratic
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Fit: ... + piecewise continuous cubic
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Fit: B-spline
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Fit: Harmonic regression K = 2
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Fit: Harmonic regression K = 3
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Fit: Harmonic regression K = 4
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Fit: Harmonic regression K = 5
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Reparameterization



Reparameterizing the model

For any model
EY|X[Y|X] = Xβ

we might consider a reparameterization of the model by writing

xnew
i = xiA−1

for some p× p non-singular matrix A. Then

EYi|X [Yi|xi] = xiβ = (xnew
i A)β = xnew

i β(new)

where
β(new) = Aβ
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Reparameterizing the model (cont.)

Then
Xnew = XA−1 ⇐⇒ X = XnewA

and we may choose A such that

{Xnew}> {Xnew} = In

to give an orthogonal (actually, orthonormal) parameterization.

Recall that if the design matrix Xnew is orthonormal, we have for
the OLS estimate

β̂(new) = {Xnew}> y.

Note however that the “new” predictors and their coefficients may
not be readily interpretable, so it may be better to reparameterize
back to β by defining

β̂ = A−1β̂(new)
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Coordinate methods for inversion



Coordinate methods for inversion

To find the ordinary least squares estimates, we solve the normal
equations to obtain

β̂ = (X>X)−1X>y

which requires us to invert the p× p matrix

X>X.

This is the minimum norm solution to

β = arg min
b
||y−Xb||2 = arg min

b

n∑
i=1

(yi − xib)2
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Coordinate methods for inversion (cont.)

We may solve this problem using coordinate descent rather than
direct inversion; if b2, . . . , bp are fixed, then the minimization
problem for b1 becomes

b̂1 = arg min
b1

S(b1|b2, . . . , bp) = arg min
b1

n∑
i=1

(yi − b1xi1 − ci1)2

where

ci1 =

p∑
j=2

bjxij.
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Coordinate methods for inversion (cont.)

Writing y∗i = yi − ci1, and the sum of squares as

n∑
i=1

(y∗i − b1xi1)2,

we have that

b̂1 =

n∑
i=1

xi1y∗i
n∑

i=1
x2
i1

.
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Coordinate methods for inversion (cont.)

We may solve recursively in turn for each bj, that is, after
initialization and at step t, update

b̂(t)j −→ b̂(t+1)
j

by minimizing

min
bj

S(bj|b
(t+1)
1 , b(t+1)

2 , . . . , b(t+1)
j−1 , b(t)j+1 . . . , b

(t)
p )

which does not require any matrix inversion.
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Distributional Results



Some distributional results

Distributional results using the Normal distribution are key to
many inference procedures for the linear model. Suppose that

X1, . . . ,Xn ∼ Normal(µ, σ2)

are independent.
1. Zi = (Xi − µ)/σ ∼ Normal(0, 1);
2. Yi = Z2

i ∼ χ
2
1;

3. U =
∑n

i=1 Z
2
i ∼ χ

2
n;

4. If U1 ∼ χ2
n1

and U2 ∼ χ2
n2

are independent, then

V =
U1/n1

U2/n2
∼ Fisher(n1, n2)

and
1
V
∼ Fisher(n2, n1)
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Some distributional results (cont.)

5. If Z ∼ Normal(0, 1) and U ∼ χ2
ν , then

T =
Z√
U/ν

∼ Student(ν)

6. If
Y = AX + b

where
I X = (X1, . . . ,Xn)> ∼ Normal(0, σ2In);
I A is n× n;
I b is n× 1;

then
Y ∼ Normal(b, σ2AA>) ≡ Normal(µ,Σ)

say, and
(Y− µ)>Σ−1(Y− µ) ∼ χ2

n.
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Some distributional results (cont.)

7. Non-central Chi-squared distribution: If X ∼ Normal(µ, σ2), we
find the distribution of X2/σ2.

Y =
X
σ
∼ Normal(µ/σ, 1)

By standard transformation results, if Q = Y 2, then

fQ(y) =
1
√y

[φ(
√
y− µ/σ) + φ(−√y− µ/σ)]

This is the density of the non-central chi-squared distribution
with 1 degree of freedom and non-centrality parameter
λ = (µ/σ)2, written

χ2
1(λ).
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Some distributional results (cont.)

The non-central chi-squared distribution has many similar
properties to the standard (central) chi-squared distribution. For
example if X1, . . . ,Xn are independent, with Xi ∼ χ2

1(λi), then

n∑
i=1

Xi ∼ χ2
n

( n∑
i=1

λi

)
.

The non-central chi-squared distribution plays a role in testing
for the linear regression model as it characterizes the distribution
of various sums of squares terms.
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Some distributional results (cont.)
8. Quadratic forms: If A is a square symmetric idempotent matrix,

and Z = (Z1, . . . ,Zn)> ∼ Normal(0, In), then

Z>AZ ∼ χ2
ν

where ν = Trace(A).

To see this, use the singular value decomposition

A = UDU>

where U is an orthogonal matrix with U>U = In, and D is a
diagonal matrix. Then

Z>AZ = Z>UDU>Z = (Z>U)D(U>Z) = {Z∗}>D{Z∗}

say. But

U>Z ∼ Normal(0,U>U) = Normal(0, In)
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Some distributional results (cont.)

Therefore
Z>AZ = {Z∗}>D{Z∗}.

But A is idempotent, so

AA> = A

that is,
UDU>UDU> = UDU>.

The left hand side simplifies, and we have

UD2U> = UDU>.
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Some distributional results (cont.)

Thus, pre-multiplying by U>, and post-multiplying by U, we
have

D2 = D

and the diagonal elements of D must either be zero or one, so

Z>AZ = {Z∗}>D{Z∗} ∼ χ2
ν

where ν = Trace(D) = Trace(A).
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Some distributional results (cont.)
9. If A1 and A2 are square, symmetric and orthogonal, and

A1A2 = 0

then
Z>A1Z and Z>A2Z

are independent. This result again uses the singular value
decomposition; let

V1 = D1U>1 Z V2 = D2U>2 Z.

We have that

CovV1,V2 [V1,V2] = EV1,V2 [V2V>1 ]

= EZ[D2U>2 ZZ
>U1D1]

= D2U>2 U>1 D1 = 0

as if A1 and A2 are orthogonal, then U>2 U>1 = 0.
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Bayesian Regression and Penalized

Least Squares



The Bayesian Linear Model

Under a Normality assumption

Y|X, β, σ2 ∼ Normal(Xβ, σ2In)

which defines the likelihood L(β, σ2; y,X), we may perform
Bayesian inference by specifying a joint prior distribution

π0(β, σ2) = π0(β|σ2)π0(σ2)

and computing the posterior distribution

πn(β, σ2|y,X) ∝ L(β, σ2; y,X)π0(β, σ2)
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The Bayesian Linear Model (cont.)

Prior specification:

• π0(σ2) ≡ InvGamma(α/2, γ/2), that is, by definition,
1/σ2 ∼ Gamma(α/2, γ/2)

π0(σ2) =
(γ/2)α/2)

Γ(α/2)

(
1
σ2

)α/2−1
exp

{
− γ

2σ2

}
• π0(β|σ2) ≡ Normal(θ, σ2Ψ), that is, β is conditionally

Normally distributed in p dimensions,

where parameters
α, γ, θ,Ψ

are fixed, known constants (’hyperparameters’)
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The Bayesian Linear Model (cont.)

In the calculation of πn(β, σ2|y,X), we have after collecting terms

πn(β, σ2|y,X) ∝
(

1
σ2

)(n+α+p)/2−1

exp
{
− γ

2σ2

}
exp

{
−Q(β, y,X)

2σ2

}
where

Q(β, y,X) = (y−Xβ)>(y−Xβ) + (β − θ)>Ψ−1(β − θ).
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The Bayesian Linear Model (cont.)

By completing the square, may write

Q(β, y,X) = (β −m)>M−1(β −m) + c

where
• M = (X>X + Ψ−1)−1;
• m = (X>X + Ψ−1)−1(X>y + Ψ−1θ);
• c = y>y + θ>Ψ−1θ −m>M−1m
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The Bayesian Linear Model (cont.)

From this we deduce that

πn(β, σ2|y,X) ∝
(

1
σ2

)(n+α+p)/2−1
exp

{
−(γ + c)

2σ2

}
exp

{
− 1

2σ2 (β −m)>M−1(β −m)

}
that is

πn(β, σ2|y,X) ≡ πn(β|σ2, y,X)πn(σ2|y,X)

• πn(β|σ2, y,X) ≡ Normal(m, σ2M);
• πn(σ2|y,X) ≡ InvGamma((n + α)/2, (c + γ)/2).
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The Bayesian Linear Model (cont.)

The Bayesian posterior mean/modal estimator of β based on this
model is

β̂B = m = (X>X + Ψ−1)−1(X>y + Ψ−1θ)
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Ridge Regression

If, in the Bayesian estimation, we choose

θ = 0 Ψ−1 = λIp

we have
β̂B = m = (X>X + λIp)−1X>y.

If
• λ = 0: β̂B = β̂, the least squares estimate.

• λ =∞: β̂B = 0.
Note that to make this specification valid, we should place all the
predictors (the columns of X) on the same scale.
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Ridge Regression (cont.)

Consider the constrained least squares problem

minimize S(β) =

n∑
i=1

(yi − xiβ)2 subject to
k∑

j=1

β2
j ≤ t

We solve this problem after centering the predictors

xij −→ xij − xj

and centering the responses

yi −→ yi − y.

After this transformation, the intercept can be omitted.

50



Ridge Regression (cont.)

Suppose that therefore there are precisely p β parameters in the
model.

We solve the constrained minimization using Lagrange multipliers:
we minimize Sλ(β)

Sλ(β) = S(β) + λ

 p∑
j=1

β2
j − t


We have that

∂Sλ(β)

∂β
=
∂S(β)

∂β
+ 2λβ

– a p× 1 vector.
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Ridge Regression (cont.)

By direct calculus, we have

∂Sλ(β)

∂β
= −2X>(y−Xβ) + 2λβ

and equating to zero we have

X>y = (X>X + λI)β

so that
β̂B = (X>X + λI)−1X>y
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Ridge Regression (cont.)

For statistical properties, we have

EY|X[β̂B|X] = (X>X + λI)−1X>Xβ 6= β

so the ridge regression estimator is biased. However the mean
squared error (MSE) of β̂B can be smaller than that of β̂.
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Ridge Regression (cont.)

If the columns of matrix X is orthogonal, so that

X>X = Ip

then
β̂Bj =

1
1 + λ

β̂j < β̂j.

In general the ridge regression estimates are ‘shrunk’ towards zero
compared to the least squares estimates.
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Ridge Regression (cont.)

Using the singular value decomposition, write

X = UDV>

where
• U is n× p, columns of U are an orthonormal basis for the

column space of X, and

U>U = Ip.

• V is p× p, columns of V are an orthonormal basis for the row
space of X;

V>V = Ip.

• D is diagonal with elements

d1 ≥ d2 ≥ · · · ≥ dp ≥ 0.
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Ridge Regression (cont.)

Least squares: Predictions are

Ŷ = Xβ̂ = X(X>X)−1X>y

= (UDV>)(VDU>UDV>)−1VDU>y

= UU>y.

as
V>V = Ip =⇒ VV> = Ip

(to see this pre-multiply both sides by V>) so that

(VDU>UDV>)−1 ≡ (VD2V>)−1 = VD−2V>
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Ridge Regression (cont.)

Ridge regression: Predictions are

Ŷ = Xβ̂B = X(X>X + λIp)−1X>y

= UD(D2 + λIp)−1DU>y

=

p∑
j=1

u˜j
(

d2
j

d2
j + λ

)
u˜>j y

where u˜j is the jth column of U.
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Ridge Regression (cont.)

Ridge regression transforms the problem to one involving the
orthogonal matrix U instead of X, and the shrinks the coefficients
by

d2
j

d2
j + λ

≤ 1.

For ridge regression, the hat matrix is

Hλ = X(X>X + λIp)−1X>

= UD(D2 + λIp)−1DU>

and the ‘degrees of freedom’ of the fit is

Trace(Hλ) =

p∑
j=1

d2
j

d2
j + λ
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Other Penalties

The LASSO penalty is

λ

p∑
j=1

|βj|

and we solve the minimization

min
β

(y−Xβ)>(y−Xβ) + λ

p∑
j=1

|βj|.

No analytical solution is available, but the minimization can be
achieved using coordinate descent.

In this case, the minimization allows for the optimal value β̂j to be
precisely zero for some j.
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Other Penalties (cont.)

A general version of this penalty is

λ

p∑
j=1

|βj|q

and if q ≤ 1, there is a possibility of an estimate being shrunk
exactly to zero.

For q ≥ 1, the problem is convex; for q < 1 the problem is
non-convex, and harder to solve.

However, if q ≤ 1, the shrinkage to zero allows for variable
selection to be carried out automatically.
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Model Selection using

Information Criteria



Selection using Information Criteria

Suppose we wish to choose one from a collection of models
described by densities f1, f2, . . . , fK with parameters θ1, θ2, . . . , θK .
Let the true, data generating model be denoted f0.

We consider the KL divergence between f0 and fk:

KL(f0, fk) =

∫
log
(

f0(x)
fk(x; θk)

)
f0(x)dx

and aim to choose the model using the criterion

k̂ = arg min
k

KL(f0, fk)
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Selection using Information Criteria (cont.)

In reality, θk are typically unknown, so we consider estimating them
using maximum likelihood procedures. We consider

KL(f0, f̂k) =

∫
log

(
f0(x)

fk(x; θ̂k)

)
f0(x)dx

where θ̂k is obtained by maximizing the likelihood under model k,
that is maximizing

n∑
i=1

log fk(yi; θ)

with respect to θ for data y1, . . . , yn.
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Selection using Information Criteria (cont.)

We have that

KL(f0, fk) =

∫
log f0(x)f0(x)dx−

∫
log fk(x; θk)f0(x)dx

so we then may choose k by

k̂ = arg max
k

∫
log fk(x; θk)f0(x)dx

or if the parameters need to be estimated

k̂ = arg max
k

∫
log fk(x; θ̂k(y))f0(x)dx.
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Asymptotic results for estimation

under misspecification



Maximum likelihood as minimum KL

We may seek to define θk directly using the entropy criterion

θk = arg min
θ

KL(f0, fk(θ)) = arg min
θ

∫
log
(

f0(x)
fk(x; θ)

)
f0(x)dx

and solve the problem using calculus by differentiating KL(f0, fk(θ))
with respect to θ and equating to zero.

Note that under standard regularity conditions

∂

∂θ

{∫
log
(

f0(x)
fk(x; θ)

)
f0(x)dx

}
= − ∂

∂θ

{∫
log fk(x; θ)f0(x)dx

}

= −
∫ {

∂

∂θ
log fk(x; θ)

}
f0(x)dx

= −EX

[
∂

∂θ
log fk(X; θ)

]
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Maximum likelihood as minimum KL (cont.)

Therefore θk solves

EX

[
∂

∂θ
log fk(X; θ)|θ=θk

]
= 0.

Under identifiability assumptions, we assume that is that there is a
single θk which solves this equation.

The sample-based equivalent calculation dictates that for the
estimate θ̂k

1
n

n∑
i=1

∂

∂θ
log fk(xi; θ)|θ=θk = 0

which coincides with ML estimation.
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Maximum likelihood as minimum KL (cont.)

Under identifiability assumptions, as

1
n

n∑
i=1

∂

∂θ
log fk(Xi; θ)|θ=θk −→ 0,

by the strong law of large numbers we must have that

θ̂k −→ θk

with probability 1 as n −→∞.
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Maximum likelihood as minimum KL (cont.)
Let

I(θk) = EX

[
−∂

2 log fk(X; θ)

∂θ∂θ>

∣∣∣∣
θ=θk

; θk

]
be the Fisher information computed wrt fk(x; θk), and

I(θk) = EX

[
−∂

2 log fk(X; θ)

∂θ∂θ>

∣∣∣∣
θ=θk

]

be the same expectation quantity computed wrt f0(x). The
corresponding n data versions, where log fk(X; θ) is replaced by

n∑
i=1

log fk(Xi; θ)

are
In(θk) = nI(θk) In(θk) = nI(θk).
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Maximum likelihood as minimum KL (cont.)

The quantity În(θk) is the sample based version

În(θk) = −

{ n∑
i=1

∂2

∂θ∂θ>
log fk(Xi; θ)

}
θ=θk

This quantity is evaluated at θk = θ̂k to yield În(θ̂k); we have that

În(θ̂k) −→ In(θk)

with probability 1 as n −→∞.
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Maximum likelihood as minimum KL (cont.)

Another approach that is sometimes used is to uses the equivalence
between expressions involving the first and second derivative
versions of I(θ); we have also that

I(θk) = EX

[
∂ log fk(X; θ)

∂θ

∣∣∣∣
⊗

2

θ=θk

; θk

]
= J (θk)

with the expectation computed wrt fk(x; θk), where for vector U

U
⊗

2 = UU>.

Let

J(θk) = EX

[
∂ log fk(X; θ)

∂θ

∣∣∣∣
⊗

2

θ=θk

]
be the equivalent calculation with the expectation computed wrt
f0(x).
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Maximum likelihood as minimum KL (cont.)

Now by a second order Taylor expansion of the first derivative of
the loglikelihood, if

˙̀k(θk) =
∂ log fk(x; θ)

∂θ

∣∣∣∣
θ=θk

῭k(θk) =
∂2 log fk(x; θ)

∂θ∂θ>

∣∣∣∣
θ=θk

at θ = θk, we have

˙̀k(θk) = ˙̀k(θ̂k) + ῭k(θ̂k)(θk − θ̂k) +
1
2

(θk − θ̂k)>
...
` n(θ∗)(θk − θ̂k)

= ῭k(θ̂k)(θk − θ̂k) + Rn(θ∗)

as ˙̀k(θ̂k) = 0, ||θ̂k − θ∗|| < ||θ̂k − θk||, and where the remainder
term is being denoted Rn(θ∗).
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Maximum likelihood as minimum KL (cont.)
We have by definition that

−῭k(θ̂k) = În(θ̂k).

and in the limit
Rn(θ∗)

n
p−→ 0

that is, Rn(θ∗) = op(n), and

1
n
În(θ̂k)

a.s.−→ I(θk)

as n −→∞.

Rewriting the above approximation, we have

√
n(θ̂k − θk) =

{
1
n
În(θ̂k)

}−1{ 1√
n

˙̀k(θk)

}
+

{
1
n
În(θ̂k)

}−1{Rn(θ∗)

n

}
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Maximum likelihood as minimum KL (cont.)

By the central limit theorem

√
n(θ̂k − θk)

d−→ Normal(0,Σ)

say, where Σ denotes the limiting variance-covariance matrix when
sampling is under f0, and

1√
n

˙̀k(θk) =
1√
n

n∑
i=1

∂

∂θk
log fk(Xi; θk)

d−→ Normal(0, J(θk)).

Finally, {
1
n
În(θ̂k)

}−1{Rn(θ∗)

n

}
p−→ 0

by Slutsky’s Theorem.
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Maximum likelihood as minimum KL (cont.)

Therefore, by equating the asymptotic variances of the above
quantities, we must have

J(θk) = I(θk)ΣI(θk)

yielding that
Σ = {I(θk)}−1J(θk){I(θk)}−1
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Model Selection using Minimum

KL



The Expected KL Divergence

The quantity∫
log fk(x; θ̂k(Y ))f0(x)dx = EX [log fk(X; θ̂k(Y ))]

is a random quantity, a function of data random quantities Y . Thus
we instead decide to choose k by

k̂ = arg max
k
EY [EX [log fk(X; θ̂k(Y ))]]

where X and Y are drawn from the true model f0.
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The Expected KL Divergence (cont.)

We consider first the expansion of the inner integral around the true
value θk for an arbitrary y; under regularity conditions

EX [log fk(X; θ̂k(y))] = EX [log fk(X; θk)]

+ EX

[
˙̀k(θk)

]>
(θ̂k − θk)

+
1
2

(θ̂k − θk)>EX

[
῭k(θk)

]
(θ̂k − θk)

+ op(n)
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The Expected KL Divergence (cont.)

By definition EX

[
˙̀k(θk)

]
= 0, and

EX

[
῭k(θk)

]
= −In(θk)

so therefore

EX [log fk(X; θ̂k(y))] = EX [log fk(X; θk)]−
1
2

(θ̂k−θk)>In(θk)(θ̂k−θk)+op(n)

We then must compute

EY [EX [log fk(X; θ̂k(Y ))]]

The term EX [log fk(X; θk)] is a constant wrt this expectation.
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The Expected KL Divergence (cont.)

The expectation of the quadratic term can be computed by standard
results for large n; under sampling Y from f0, we have as before that

(θ̂k − θk)>In(θk)(θ̂k − θk)

can be rewritten

{
√
n(θ̂k − θk)}>

{
1
n
In(θk)

}
{
√
n(θ̂k − θk)}

where √
n(θ̂k − θk)

d−→ Normal(0,Σ)

and
1
n
In(θk)

a.s.−→ I(θk)

77



The Expected KL Divergence (cont.)

Therefore, by standard results for quadratic forms

EY

[
(θ̂k(Y )− θk)>In(θk)(θ̂k(Y )− θk)

]
a.s.−→ Trace (I(θk)Σ)

and

EY [EX [log fk(X; θ̂k(Y ))]] = EX [log fk(X; θk)]−
1
2

Trace (I(θk)Σ)+op(n)

(*)
However, the right hand side cannot be computed, as θk is not
known and must be estimated.
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The Expected KL Divergence (cont.)

Thus we repeat the same operation, but instead expand

EX [log fk(X; θk)]

about θ̂k(x) for a fixed x. We have

log fk(x; θk) = log fk(x; θ̂k(x))

+ ˙̀k(θ̂k(x))>(θk − θ̂k(x))

+
1
2

(θ̂k(x)− θk)> ῭k(θ̂k(x))(θ̂k(x)− θk)

+ o(n)

of which we need then to take the expectation wrt X.
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The Expected KL Divergence (cont.)

Again EX

[
˙̀k(θ̂k(X))

]
= 0, and writing

−(θ̂k(x)− θk)> ῭k(θ̂k(x))(θ̂k(x)− θk)

as

{
√
n(θ̂k(x)− θk)}>

{
− 1
n

῭k(θ̂k(x))
}
{
√
n(θ̂k(x)− θk)}

we have that the expectation over X of this quadratic form
converges to

Trace (I(θk)Σ)

as by standard theory

√
n(θ̂k(x)− θk)

d−→ Normal(0,Σ).
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The Expected KL Divergence (cont.)

Thus

EX [log fk(X; θk)] = EX [log fk(X; θ̂k(X))]− 1
2

Trace (I(θk)Σ) + op(n).

Therefore, using the previous expression (*) we now have

EY [EX [log fk(X; θ̂k)]] = EX [log fk(X; θ̂k(X))]−Trace (I(θk)Σ)+op(n)

By the earlier identity

I(θk)Σ = J(θk) {I(θk)}−1

and the right hand side can be consistently estimated by

log fk(x; θ̂k)− T̂race
(
J(θk) {I(θk)}−1

)
where the estimated trace must be computed from the available data.
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The Expected KL Divergence (cont.)

On obvious estimator of the trace is

Trace
(
Ĵ(θ̂k(x))

{
Î(θ̂k(x))

}−1
)

although this might potentially be improved upon. In any case, if
the approximating model fk is close in KL terms to the true model
f0, we would expect that

Trace
(
J(θk) {I(θk)}−1

)
l dim(θk)

as we would have under regularity assumptions

J(θk) l I(θk)
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The Expected KL Divergence (cont.)

This yields the criterion: choose k to maximize

log fk(x; θ̂k)− dim(θk)

or equivalently to minimize

−2 log fk(x; θ̂k) + 2dim(θk)

This is Akaike’s Information Criterion (AIC).

Note: The required regularity conditions on the fk model are not
too restrictive. However, the approximation

Trace
(
J(θk) {I(θk)}−1

)
l dim(θk)

is potentially poor.
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The Bayesian Information Criterion

The Bayesian Information Criterion (BIC) uses an approximation to
the marginal likelihood function to justify model selection. For data
y = (y1, . . . , yn), we have the posterior distribution for model k as

πn(θk; y) =
Lk(θk; y)π0(θk)∫
Lk(t; y)π0(t) dt

.

where Lk(θ; y) is the likelihood function. The denominator is

fk(y) =

∫
Lk(t; y)π0(t) dt

that is, the marginal likelihood.
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The Bayesian Information Criterion (cont.)

Let

`k(θ; y) = logLk(θ; y) =

n∑
i=1

log fk(yi; θ)

denote the log-likelihood for model k. By a Taylor expansion of
`k(θ; y) around ML estimate θ̂k, we have

`k(θ; y) = `k(θ̂k; y) + (θ − θ̂k)> ˙̀(θ̂k; y)

+
1
2

(θ − θ̂k)> ῭(θ̂k; y)(θ − θ̂k) + o(1)

We have by definition that ˙̀(θ̂k) = 0, and we may write

−῭(θ̂k; y) =
{
Vn(θ̂k)

}−1
.

Vn(θ̂k) is the Hessian matrix derived from n data points.
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The Bayesian Information Criterion (cont.)

In ML theory, Vn(θ̂k) estimates the variance of the ML estimator
derived from n data. We may denote that, for a random sample, that

Vn(θ̂k) =
1
n
V1(θ̂k)

say, where

V1(θ) = n

{ n∑
i=1

∂2

∂θ∂θ>
log fk(yi; θ)

}−1

is a square symmetric matrix of dimension pk = dim(θk) recording
an estimate of the the variance of the ML estimator for a single data
point n = 1.
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The Bayesian Information Criterion (cont.)

Then, exponentiating, we have that

Lk(θ; y) l Lk(θ̂k; y) exp
{
−1

2
(θ − θ̂k)>

{
Vn(θ̂k)

}−1
(θ − θ̂k)

}
This is a standard quadratic approximation to the likelihood around
the ML estimate.
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The Bayesian Information Criterion (cont.)

Suppose that prior π0(θk) is constant (equal to c, say) in the
neighbourhood of θ̂k. Then, for large n

fk(y) =

∫
Lk(t; y)π0(t) dt

l
∫

cLk(θ̂; y) exp
{
−1

2
(t − θ̂k)>

{
Vn(θ̂k)

}−1
(t − θ̂k)

}
dt

= cLk(θ̂; y)(2π)pk/2|Vn(θ̂k)|1/2

as the integrand is proportional to a Normal(θ̂k,Vn(θ̂k))
distribution.
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The Bayesian Information Criterion (cont.)

But

|Vn(θ̂k)|1/2 =

∣∣∣∣ 1nV1(θ̂k)

∣∣∣∣1/2
= n−pk/2

∣∣∣V1(θ̂k)
∣∣∣1/2

Therefore the marginal likelihood becomes

fk(y) = cLk(θ̂; y)(2π)pk/2n−pk/2
∣∣∣V1(θ̂k)

∣∣∣1/2

or on the −2 log scale we have

−2 log fk(y) l −2`k(θ̂; y) + pk log n + constant

where

constant = −pk log(2π)− log |V1(θ̂k)| − 2 log c.
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The Bayesian Information Criterion (cont.)

The constant term is o(1) and is hence negligible, so the BIC is
defined as

BIC = −2`k(θ̂; y) + pk log n.
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