
The Importance of Model

selection



Why the best model matters

We aim to find the simplest possible model that adequately explains
the observed response.

• over-simplification risks omitting key predictors leading to
incorrect inference (‘model mis-specification’)

• over-complexity may lead to poor predictive behaviour, and
weaker (i.e. less powerful) statistical inference.

Consider the model set up

Y = Xβ + ε = Xβ + ε = X(1)β(1) +X(2)β(2) + ε

where X =
[
X(1) X(2)], and where β, β(1) and β(2) are p, p− r and

r-dimensional parameter vector and sub-vectors respectively.
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Over-simplification

• True Model:

Y = Xβ + ε = X(1)β(1) +X(2)β(2) + ε

• Fitted Model:
Y = X(1)β(1) + ε.

For the estimators, we have

β̂(1) = ({X(1)}>{X(1)})−1{X(1)}>Y = A(1)Y

say, and

σ̂2(1) =
1

n− (p− r)
Y>(In −H(1))Y
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Over-simplification (cont.)

The estimator β̂(1) is in general biased:

EY|X[β̂
(1)|X] = A(1)

EY|X[Y|X] = A(1)(X(1)β(1) +X(2)β(2))

= β(1) +A(1)X(2)β(2)

which does not equal β(1) unless

A(1)X(2)β(2) = 0p−r;

this follows if and only if β(2) = 0r (i.e. the X(2) predictors are not
influential), or

A(1)X(2) = 0p−r,r ⇐⇒ {X(1)}>{X(2)} = 0p−r,r

i.e. the predictors in X(1) and X(2) are orthogonal.
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Over-simplification (cont.)
We also have by standard theory for the reduced model

VarY|X[β̂(1)|X] = σ2({X(1)}>{X(1)})−1

whereas if the correct full model is fitted, we have

VarY|X[β̂|X] = σ2(X>X)−1

= σ2
[
{X(1)}>{X(1)} {X(1)}>{X(2)}
{X(2)}>{X(1)} {X(2)}>{X(2)}

]−1
= σ2

[
S11 S12
S21 S22

]−1
say. On inverting the block matrix, we have for the variance
covariance block for the β(1) component

σ2(S11 − S12S−122 S21)
−1
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Over-simplification (cont.)

In general
(S11 − S12S−122 S21)

−1 ≥ S−111

that is
(S11 − S12S−122 S21)

−1 − S−111

is positive semi-definite.

Thus the variance from the full model is larger than that for the
reduced model.

5



Over-simplification (cont.)

However, recall that the estimator is biased; a fairer comparison
involves using the mean-squared error (MSE) which is the sum

VarY|X[β̂(1)|X] + (EY|X[β̂
(1)|X]− β(1))(EY|X[β̂

(1)|X]− β(1))>

For the full model, the MSE is merely

σ2(S11 − S12S−122 S21)
−1

whereas for the reduced model, the MSE is

σ2S−111 +A(1)X(2)β(2){β(2)}>{X(2)}>{A(1)}>

and so which of the two MSEs is larger depends on the magnitude
of β(2).

6



Over-simplification (cont.)

From previous results for quadratic forms, we have that the
estimator σ̂2(1) has expectation

σ2 +
1

n− (p− r)
{X(2)}>{β(2)}>(In −H(1))X(2)β(2)

so there is a positive bias.
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Over-simplification (cont.)

For prediction at a future value xnew = [xnew
(1), x

new
(2)], using the full

model we have no prediction bias, and the variance (and MSE) is

σ2(1+ {xnew}>(X>X)−1xnew).

For the reduced model, the expectation, bias and variance are

Expectation : xnewβ(1) + xnewA(1)X(2)β(2)

Bias : xnewA(1)X(2)β(2)

Variance : σ2(1+ {xnew
(1)}
>S−111 x

new
(1))
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Over-complexity

• True Model:
Y = X(1)β(1) + ε;

• Fitted Model:

Y = X(1)β(1) +X(2)β(2) + ε.

where we know that the true value of β(2) = 0r.

Standard theory applies even in this special case; the least squares
estimator is unbiased with variance

σ2(X>X)−1 = σ2
[
S11 S12
S21 S22

]−1
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Over-complexity (cont.)

As before the variance of β̂(1) from the full model is

σ2(S11 − S12S−122 S21)
−1 ≥ σ2S−111

so the variance is larger than the model that does not fit spurious
variables.

The estimator of σ2 from the full model is unbiased, following
results for the sums of squares decomposition and F -test.
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Over-complexity (cont.)

For prediction, let Ŷ be the prediction from the full model, and Ŷ(1)

be the prediction from the correct model. Clearly the predictions Ŷ
are unbiased. Then we may write

Ŷ = (Ŷ− Ŷ(1)) + Ŷ(1)

and it follows that (Ŷ− Ŷ(1)) and Ŷ(1) are orthogonal

EY|X[Ŷ(1)(Ŷ− Ŷ(1))>|X] = 0n,n

(see the Appendix). Thus

VarY|X[Ŷ|X] = VarY|X[(Ŷ− Ŷ(1))|X] +VarY|X[Ŷ(1)|X]

≥ VarY|X[Ŷ(1)|X].
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Over-complexity (cont.)

Thus we conclude that including the spurious variables adversely
affects

• the variance of estimators,
• the variance of predictors

In conclusion, we need to guard against omitting important
variables, and including spurious variables.
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Appendix

Prediction and Orthogonality



Prediction using two blocks of predictors

Suppose that a linear regression model is to be written in terms of
two blocks of predictors X(1) and X(2):

X =
[
X(1) X(2)

]
so that

Y = Xβ + ε = X(1)β(1) +X(2)β(2) + ε

where

β =

[
β(1)

β(2)

]
are the parameter vector and sub-vectors.
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Prediction using two blocks of predictors (cont.)

Let
• Ŷ be the fitted values arising from the fit of the full linear
regression model

• Ŷ(1) be the fitted values arising from the fit of the reduced
linear regression model that presumes β(2) = 0r

I this is the fit after omitting the X(2) predictors.
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Algebraic proof

As
Ŷ = (Ŷ− Ŷ(1)) + Ŷ(1)

it follows that (Ŷ− Ŷ(1)) and Ŷ(1) are orthogonal: to see this, write

VarY|X[Ŷ|X] = VarY|X[(Ŷ− Ŷ(1))|X] +VarY|X[Ŷ(1)|X]

+2CovY|X[(Ŷ− Ŷ(1)), Ŷ(1)|X]

where

CovY|X[(Ŷ− Ŷ(1)), Ŷ(1)|X] = CovY|X[(H−H(1))Y,H(1)Y|X]

= (H−H(1))VarY|X[Y|X]{H(1)}>

= σ2(H−H(1)){H(1)}>
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Algebraic proof (cont.)

Recalling that H and H(1) are symmetric and idempotent, we have

(H−H(1)){H(1)}> = HH(1) −H(1).

Now H is a projection matrix mapping points in Rn onto the space
X spanned by the columns of X; the columns of H(1) are elements
of Rn, but also as

H(1) = X(1)({X(1)}>{X(1)})−1{X(1)}>

the columns of H(1) are elements of the subspace X1 spanned by the
columns of X(1). As X1 ⊂ X , we therefore must have

HH(1) = H(1).
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Algebraic proof (cont.)

Hence

CovY|X[(Ŷ− Ŷ(1)), Ŷ(1)|X] = σ2(H−H(1)){H(1)}> = 0n,n

and

VarY|X[Ŷ|X] = VarY|X[(Ŷ− Ŷ(1))|X] +VarY|X[Ŷ(1)|X]

≥ VarY|X[Ŷ(1)|X]

that is, the difference between left hand side and right hand side is
positive definite.
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Geometric proof

A geometric proof follows in a similar fashion; in the following
figures we display the data vector in three dimensions, and the
model spaces in two and one dimensions for the full model and the
true model respectively.
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Fit Ŷ of response Y: projection onto (X(1),X(2)) plane
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Fit Ŷ(1) of response Y: projection onto X(1) line
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Fits Ŷ and Ŷ(1)
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Fits Ŷ and Ŷ(1)
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Ŷ

O

●

●

Y

Ŷ
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Fits Ŷ and Ŷ(1)
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Orthogonality

From previous results, we know that after the fit is computed using
least squares, we have from the full model

ŷ>(y− ŷ) =
n∑

i=1

ŷi(yi − ŷi) = 0

- see the gray triangle on the previous figure.

Also, we have from the reduced model

{ŷ(1)}>(y− ŷ(1)) =

n∑
i=1

ŷ(1)i (yi − ŷ(1)i ) = 0

- see the green triangle on the previous figure.
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Orthogonality and Pythagoras

By these orthogonality results, we know that for the full model

||y||2 = ||y− ŷ||2 + ||ŷ||2

n∑
i=1

y2i =
n∑

i=1
(yi − ŷi)2 +

n∑
i=1

ŷ2i

SST = SSRes + SSR

c2 = b2 + a2

say.
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Orthogonality and Pythagoras

For the reduced model

||y||2 = ||y− ŷ(1)||2 + ||ŷ(1)||2

n∑
i=1

y2i =
n∑

i=1
(yi − ŷ(1)i )

2 +
n∑

i=1
{ŷ(1)i }

2

SST = SS(1)Res + SS(1)R

c2 = e2 + d2

say.
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Orthogonality and Pythagoras

Therefore
SSRes + SSR = SS(1)Res + SS(1)R

or
b2 + a2 = e2 + d2
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Orthogonality and Pythagoras

However, the residual vector from the full model, y− ŷ, has the
property that

{X(1)}>(y− ŷ) = 0

as the columns of X(1) are used in the fit that produces ŷ.

Therefore the (blue) triangle YŶ Ŷ (1) is a right angle triangle, and we
have

||y− ŷ(1)||2 = ||y− ŷ||2 + ||ŷ− ŷ(1)||2

n∑
i=1

(yi − ŷ(1)i )
2 =

n∑
i=1

(yi − ŷi)2 +
n∑

i=1
(ŷi − ŷ(1)i )

2

e2 = b2 + f 2
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Orthogonality and Pythagoras

Thus by the previous result

b2 + a2 = e2 + d2

=⇒ b2 + a2 = (b2 + f 2) + d2

=⇒ a2 = f 2 + d2

that is
||ŷ||2 = ||ŷ− ŷ(1)||2 + ||ŷ(1)||2

or equivalently

n∑
i=1

ŷ2i =
n∑

i=1

(ŷi − ŷ(1)i )
2 +

n∑
i=1

{ŷ(1)i }
2
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Orthogonality and Pythagoras

Hence the vectors

(ŷ− ŷ(1)) and ŷ(1)

are orthogonal, so that

n∑
i=1

(ŷi − ŷ(1)i )ŷ
(1)
i = 0

Carrying these results forward to the random variable versions, we
have that

(Ŷ− Ŷ(1)) and Ŷ(1)

are uncorrelated.
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Prediction, Orthogonality and Variances

Suppose now that the true (data-generating) model has β(2) = 0;
that is, the model that uses X as the predictor matrix is using extra
variables that do not contribute significantly to the fit. Then we
have

EY|X[Y|X] = EY|X(1) [Y|X(1)] = X(1)β(1)

and also that

EY|X[Ŷ|X] = EY|X(1) [Ŷ(1)|X(1)] = X(1)β(1).

that is, the predictions are identical (and correct) in expectation
under the full and reduced model.
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Prediction, Orthogonality and Variances

However

VarY|X[Ŷ|X] = VarY|X[(Ŷ− Ŷ(1)) + Ŷ(1)|X]

= VarY|X[(Ŷ− Ŷ(1))|X] +VarY|X(1) [Ŷ(1)|X(1)]

≥ VarY|X(1) [Ŷ(1)|X(1)]

with the second line following by the uncorrelatedness of

(Ŷ− Ŷ(1)) and Ŷ(1).

Thus the variances of predictions under the full model are at least as
large as the variances under the reduced model.
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