MurLtIPLE REGRESSION: EXAMPLE



Cobb-Douglas Production Function

The Cobb-Douglas production function for observed economic
dataz = 1,...,7 may be expressed as

O, = eﬁOIiﬁlc;.Bzui

where
* O; is output
* [; is labour input
* ¢; is capital input

® u; is a random error term



Cobb-Douglas Production Function (cont.)

Taking natural logs, we have that

Y; = fo+ Pixi + Baxip + €
where
* Y; = In(0;) is log output
* x;; = In(/;) is log labour input
* x; = In(¢;) is log capital input

* ¢; = In(#;) is a random error term

We will term this model the “complete” model.



Data: 50 US states plus Dist. of Columbia.

Manufacturing sector, 2005.
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Note that also x1 and x; are highly positively correlated:
> cor (x1,x2)

[1] 0.960402



1 > fitl2<-lm(y~x1+x2,data=Cobb); summary (fitl2)

2 Coefficients:

3 Estimate Std. Error t value Pr(>|t])

4 (Intercept) 3.88760 0.39623 9.812 4.70e-13 *#*%*

5 x1 0.46833 0.09893 4.734 1.98e-05 %%

6 x2 0.52128 0.09689 5.380 2.18e-06 x*%

7

8 Signif. codes: 0 ‘x*x’ 0.001 ‘%’ 0.01 ‘%" 0.05 *.” 0.1 Y 1
9

10 Residual standard error: 0.2668 on 48 degrees of freedom

11 Multiple R-squared: 0.9642, Adjusted R-squared: 0.9627

12 F-statistic: 645.9 on 2 and 48 DF, p-value: < 2.2e-16

14 > summary (fitl2) $sigma
15 [1] 0.2667521

We see from this analysis that

SSRes = SSres(B0, B1, B2) = (1 — p)5 = 48 x 0.2667521% = 3.41552

which can be extracted as

16 > summary (£fit12)$df[2] *summary (fitl12)$sigma”2
17 [1] 3.41552



Analysis in R: anova

> anova (fitl2)
Analysis of Variance Table

Response: y

Df Sum Sg Mean Sg F value Pr (>F)
x1 1 89.865 89.865 1262.915 < 2.2e-16 #*xx*
X2 1 2.060 2.060 28.947 2.183e-06 *xx*

Residuals 48 3.416 0.071

Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘' 0.05 *.” 0.1 '’ 1
Here we have the decomposition

SSr (81, B280) = SSr(B1/B0) + SSr (82150, B1)

where
* line 23 (Ssum Sq): SSr(B1|Bo) = 89.865;
* line 24 (Ssum 5q): SSr(5:|B0,B1) = 2.060
Note from line 25 (Sum Sq), SSres(0, 51, 32) = 3.416 as before.



Analysis in R: anova

28 > fit2l<-1lm(y~x2+x1,data=Cobb)
29 > anova (fit21)
30 Analysis of Variance Table

31

32 Response: y

33 Df Sum Sg Mean Sgq F value Pr (>F)

34 x2 1 90.330 90.330 1269.450 < 2.2e-16 *x*xx*
35 x1 1 1.595 1.595 22.412 1.981e-05 =xxx%
36 Residuals 48 3.416 0.071

37 -

38 Signif. codes: 0 ‘%%’ 0.001 ‘xx’ 0.01 ‘x” 0.05 .7 0.1 " 1

Here we have the decomposition

SSR (B4, B2|Bo) = SSr(B2]Bo) + SSr (1|50, B2)

where
* line 34 (Sum Sq): SSr(53:|B0) = 90.330;
e line 35 (sum Sq): SSr(B1]Bo, B32) = 1.595
Again from line 36 (Sum Sq), SSres(50, 81, B2) = 3.416 as before.



Analysis in R: F-tests

The F-tests carried out using anova are partial F-tests. From the
first analysis
39 > anova (fitl2)

40 Analysis of Variance Table
41 Response: y

42 Df Sum Sg Mean Sgq F value Pr (>F)
43 x1 1 89.865 89.865 1262.915 < 2.2e-16 **x*
44 x2 1 2.060 2.060 28.947 2.183e-06 *xx%

45 Residuals 48 3.416 0.071

The test on line 43 is the comparison of the models

“Reduced" : E[Yi]x;] = fo
“Full" : E[Yix] = Bo+ Bixi

whilst recognizing that x; may also be used to estimate 2.



Analysis in R: F-tests

We compute

(SSRres(0) — SSres(Bo, B1))/7
SSres(Bo, B1, B2) /(7 — p)

where
* p =3 (number of coeflicients in the “complete" model)

* v = 1 (number of coefficients set to zero in the “full" model to
obtain the “reduced" model)



Analysis in R: F-tests

We may access these elements in R as follows:

46 >SSResO<-anova (lm(y~1,data=Cobb)) [1,2]

47 >MSRes0l2<-anova (1lm(y ~ x1+x2,data=Cobb)) [3, 3]
48 >SSResOl<-anova (lm(y~x1,data=Cobb)) [2,2]

49 >F<-((SSRes0-SSRes01) /1) /MSRes012

The anova function returns a matrix, and we must access elements
of the matrix using the R notation [1,2],[3,3] and [2, 2]
respectively.

This yields

50 > SSRes0

51 [1] 95.34013
52 > MSRes012

53 [1] 0.07115667
54 > SSRes01

55 [1] 5.475317
56 > F

57 [1] 1262.915

which matches the result on line 43 (F value).



Analysis in R: F-tests

The test on line 44 is the comparison of the models
“Reduced" : E[Yi|x;] = o+ Bixi
“Full" c EYx)] = Bo+ Bixi + Paxin

We compute

SSReS(BO, 61) - SSRes(BOa /Bla 62))/7

Fo (
SSres(Bo, B1, B2) /(7 — p)

where
* p =3 (number of coeflicients in the “complete" model)

* r = 1 (number of coefficients set to zero in the “full" model to
obtain the “reduced" model)
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Analysis in R: F-tests

We may access these elements in R as follows:

58 > SSResOl<-anova (lm(y~x1l,data=Cobb)) [2,2]

59 > MSRes(0l2<-anova (lm(y~x1+x2,data=Cobb)) [3, 3]
60 > SSRes0Ol2<-anova (lm(y~x1+x2,data=Cobb)) [3,2]
61 > F<-((SSRes01-SSRes012) /1) /MSRes012

62 >

63 > SSRes0

64 [1] 95.34013
65 > MSRes012

66 [1] 0.07115667
67 > SSRes01

68 [1] 5.475317
69 > F

70 [1] 28.94735

which matches the result on line 44 (F value).
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Analysis in R: F-tests

The F-value on line 34 performs the partial F-test for testing

“Reduced" : E[Y;]x;] = [So

“Full" C EYilx] = Bo+ Baxi
whilst recognizing that x; may also be used to estimate o2 using the
statistic
F— (SSRCS(/BO) - SSRes(ﬁOa BZ))/”
SSRCS(ﬁOa /817 ,82)/(7’1 - P)

71 > SSResO<-anova (lm(y~1,data=Cobb)) [1,2]
72 > MSRes0l2<-anova (lm(y~x1+x2,data=Cobb)) [3, 3]
73 > SSRes02<-anova (lm(y~x2,data=Cobb)) [2,2]
74 > (F<-((SSRes0-SSRes02) /1) /MSRes012)
75 [1] 1269.45
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Analysis in R: F-tests

76
77
78
79

The F-value on line 35 performs the partial F-test for testing
“Reduced" : E[Y;|x;] = [Bo+ Baxi
“Full" o E[Yix] = Bo+ Bixi + Baxin

using the statistic

(SSres(Bo, B2) — SSres(S0, B1, Ba2)) /7

E = Sk Bo: Br. B2) (1 — p)

SSRes02<-anova (1lm(y ~x2,data=Cobb) ) [2, 2]
MSResO0l2<-anova (1lm(y~x1+x2,data=Cobb)) [3, 3]
SSRes0l2<-anova (lm(y ~x1+x2,data=Cobb)) [3, 2]
(F<—( (SSRes02-SSRes012) /1) /MSRes012)

1] 22.41237

— V V V V
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Analysis in R: F-tests

The conclusions of the above analyses are that

* when we start with x; in the model, and try to add x,, there is
a significant improvement in fit; we see this from line 44: the
p-valueis 2.183e-06

e when we start with x; in the model, and try to add x1, there is
a significant improvement in fit; we see this from line 35: the
p-valueis 1.981e-05
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Analysis in R: F-tests

Note that, if we considered x; irrelevant from the start, we might
omit it from any analysis and consider the alternative “complete”
model.

Y; = Bo+ Bixit + €.

Then to test
“Reduced" : E[Yix;] = fo
“Full" : EYix] = Bo+ Pixi

we would compute

(SSres(Bo) — SSres(Bo, B1)) /7
SSRes(ﬂOa /81)/(” _P)

F:

where now p = 2.
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Analysis in R: F-tests

81 > summary (lm(y~x1,data=Cobb))
82 Coefficients:

83 Estimate Std. Error t value Pr(>|t])

84 (Intercept) 4.99902 0.42371 11.80 6.29e-16 *#*=*
85 x1 0.97950 0.03454 28.36 < 2e-16 x**
86

87 Signif. codes: 0 ‘sx%’ 0.001 ‘x%" 0.01 %’ 0.05 .7 0.1 " 1
88

89 Residual standard error: 0.3343 on 49 degrees of freedom

90 Multiple R-squared: 0.9426, Adjusted R-squared: 0.9414

91 F-statistic: 804.2 on 1 and 49 DF, p-value: < 2.2e-16

92

93 > anova (lm(y~x1l,data=Cobb))

94 Analysis of Variance Table

95

96 Response: y

97 Df Sum Sg Mean Sg F value Pr (>F)

98 x1 1 89.865 89.865 804.22 < 2.2e-16 *x*%
99 Residuals 49 5.475 0.112

100

101 Signif. codes: 0 ‘%%’ 0.001 ‘xx’ 0.01 %’ 0.05 .7 0.1 Y’ 1
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Analysis in R: F-tests

The numerical result (804 .22) on lines 91 (F-statistic)and
98 (F value) is different from that on lines 43 and 57
(1262.915).

Both F-tests compare

“Reduced" : E[Y;x;] = fo
“Full" : EYix] = Bo+ Pixi
however, the results on line 43 and 57 acknowledge a possible

influence of xy; this leads to a reduction the MSges quantity which is
in the denominator of the F-statistic.
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Analysis in R: F-tests

To assess the importance of each of the variables x; and x; directly,
we may use the dropl command:
102 > fitl2<-1lm(y~x1+x2,data=Cobb)

103 > dropl (fitl2,test='F")
104 Single term deletions

105

106 Model:

107y ~ x1 + x2

108 Df Sum of Sg RSS AIC F value Pr (>F)

109 <none> 3.4155 -131.88

110 x1 1 1.5948 5.0103 -114.34 22.412 1.981e-05 #*xx
111 x2 1 2.0598 5.4753 -109.81 28.947 2.183e-06 xxx
112 —-

113 Signif. codes: 0 ‘x*x’ 0.001 ‘xx’ 0.01 ‘%" 0.05 *.” 0.1 Y " 1

reproducing the results on lines 35 and 44 respectively.
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	Multiple Regression: Example

