
MATH 423/533 - ASSIGNMENT 4
SOLUTIONS

INTRODUCTION

This assignment concerns the use of factor predictors in linear regression modelling, and focusses on models
with two factors X1 and X2 with M1 and M2 levels. Terminology that is commonly used is

• one-way layout: This means a data set/model with a single factor predictor; the two models that can be
fitted are

Model Description R

1 Intercept only lm(y∼1)
1 +X1 Main effect lm(y∼x1)

• two-way layout: This means a data set/model with two factor predictors; the five models that can be fitted
are

Model Description R

1 Intercept only lm(y∼1)
1 +X1 Main effect of X1 lm(y∼x1)
1 +X2 Main effect of X2 lm(y∼x2)
1 +X1 +X2 Main effects model lm(y∼x1+x2)
1 +X1 +X2 +X1.X2 Main effects plus interaction lm(y∼x1+x2+x1:x2)

The first four models are nested inside the main effects plus interaction model; the modelled mean for that
model is

β0 +

M1−1∑
j=1

βC
1j1j(xi1)︸ ︷︷ ︸

main effect of X1

+

M2−1∑
l=1

βC
2l1l(xi2)︸ ︷︷ ︸

main effect of X2

+

M1−1∑
j=1

M2−1∑
l=1

βC
12jl1j(xi1)1l(xi2)︸ ︷︷ ︸

interaction

.

For each data point, only one term in each summation is non-zero as

1j(xi1) = 1⇐⇒ xi1 = j 1j(xi1)1l(xi2) = 1⇐⇒ xi1 = j and xi2 = l.

As described in lectures, the default setting in R is to use this contrast parameterization; the estimates of
the parameters

β0, β
C
1j , β

C
2l, β

C
12jl

are reported in the output of R. The default baseline level is the one with the first label when levels are
ordered alphabetically.
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1. The data set TestScores.csv contains data on standardized math test scores of 45 students from three
Faculties in a University.

(a) Using the lm and anova functions, assess whether there is any evidence that there is a difference
between the test scores of students from the three Faculties. Justify your conclusions with suitable R
output. 3 Marks

(b) Report the estimated mean scores, with associated standard errors, for students from each of the three
faculties. 3 Marks

2. The data set Filter.csv contains data on the noise emission level of 36 cars. The cars are categorized
using the carsize factor predictor that takes three levels, and two different noise filters are studied – the
filter factor predictor type therefore takes two levels (normal filter and Octel filter)

(a) For these data, form a table containing the number of model parameters p and the sum of squared
residuals SSRes for the five models listed on page 1 in this two-way layout. 5 Marks

(b) Using a standard (partial) F-test, report the result of a comparison of the two models

“Reduced” : E[Yi|xi] : 1 + carsize

“Full” : E[Yi|xi] : 1 + carsize + type + carsize:type

Report the p-value from the test using the pf() function in R. For example, if the degrees of freedom
of the Fisher-F distribution are 2 and 11, and the F statistic is 11.30, we compute the critical value and
p-value as follows:

1 > df1<-2;df2<-11
2 > (crit.value<-qf(0.95,df1,df2))
3 [1] 3.982298
4 >
5 > fstat<-11.30
6 > (pvalue<-1-pf(fstat,df1,df2))
7 [1] 0.00215176

3 Marks

3. The data set PatSat.csv contains information on patient satisfaction for 25 patients having undergone
treatment at a hospital for the same condition. There are four predictors: Age (age of patient in years),
Severity (severity score for condition) and Anxiety (anxiety score for patient) are continuous predic-
tors, whereas Surgery is a factor predictor with two levels (No and Yes) recording whether surgery was
needed.

Is there any evidence in these data that having surgery (as opposed to not having surgery) significantly
affected patient satisfaction ? Justify your answer using linear modelling and statistical testing, making
sure that you include in your modelling all predictors that influence the outcome measure. 6 Marks

(Hint: a simple comparison of responses for the two surgery groups may not be sufficient to answer the research
question if age, severity or anxiety also influence the outcome.)
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EXTRA QUESTION FOR STUDENTS IN MATH 533
Compute the matrix X>X for

(a) the main effect model in Q1;

(b) the main effects only model in Q2;

(c) the main effects plus interaction model in Q2

and hence comment on the orthogonality of the predictors in each case.

Using a linear transformation, construct an orthogonal parameterization/predictor set for (a), such that in the
new parameterization X>X is a diagonal matrix.

Hint: look up polynomial contrasts and how to implement them in R.
5 Marks
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SOLUTIONS

1. The data set TestScores.csv contains data on standardized math test scores of 45 students from three
Faculties in a University.

(a) With the TestScores.csv file stored in the local directory, we implement as follows:
Q1data<-read.csv('TestScores.csv',header=TRUE)
Q1data$Faculty<-as.factor(Q1data$Faculty)
fitQ1<-lm(Score˜Faculty,data=Q1data)
summary(fitQ1)

:
: Call:
: lm(formula = Score ˜ Faculty, data = Q1data)
:
: Residuals:
: Min 1Q Median 3Q Max
: -15.800 -2.200 1.133 3.800 9.133
:
: Coefficients:
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 35.80000 1.59589 22.433 < 2e-16 ***
: Faculty2 0.06667 2.25694 0.030 0.977
: Faculty3 12.40000 2.25694 5.494 2.11e-06 ***
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
:
: Residual standard error: 6.181 on 42 degrees of freedom
: Multiple R-squared: 0.488,Adjusted R-squared: 0.4636
: F-statistic: 20.02 on 2 and 42 DF, p-value: 7.843e-07

anova(fitQ1)

: Analysis of Variance Table
:
: Response: Score
: Df Sum Sq Mean Sq F value Pr(>F)
: Faculty 2 1529.4 764.69 20.016 7.843e-07 ***
: Residuals 42 1604.5 38.20
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We conclude, on the basis of the result of the global F test, with p-value equal to 7.8433837×10−7, that
there is a significant difference between the scores for faculties. To make this statement conclusively,
we should also check the residual plots to assess the validity of the model assumptions, in particular
the constant variance assumption (there is one mean per group, so the residuals will be zero mean
in all groups) – see plot below, which indicates perhaps a smaller variance in Faculty 3 observations,
although in the small sample this cannot be conclusively assessed.

3 Marks

(b) This can be done in two ways; either using the model formula removing the intercept

fitQ2<-lm(Score˜-1+Faculty,data=Q1data)
summary(fitQ2)$coef[,1:2]

: Estimate Std. Error
: Faculty1 35.80000 1.595894
: Faculty2 35.86667 1.595894
: Faculty3 48.20000 1.595894
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or by using the linear transformation

βG
1 = β0 βG

2 = β0 + βC
1 βG

3 = β0 + βC
2

that is, using matrix

L =

[
1 0 0
1 1 0
1 0 1

]
so that βG = Lβ. We can therefore compute from scratch:

L<-matrix(c(1,1,1,0,1,0,0,0,1),3,3,byrow=F)
X<-cbind(1,Q1data$Faculty=='2',Q1data$Faculty=='3')
beta.Sigma<-summary(fitQ1)$sigmaˆ2 * solve(t(X)%*%X)
(betaG.ests<-L %*% coef(fitQ1)) #Estimates

: [,1]
: [1,] 35.80000
: [2,] 35.86667
: [3,] 48.20000

betaG.Sigma<-L%*%beta.Sigma%*%t(L)
sqrt(diag(betaG.Sigma)) #Standard errors

: [1] 1.595894 1.595894 1.595894

3 Marks

The residuals plot indicates that the residuals for Faculty 3 seem to perhaps have lower variance.

res.data<-data.frame(res=residuals(fitQ1),Faculty = Q1data$Faculty)
par(mar=c(4,4,1,2))
stripchart(res˜Faculty,res.data,pch=19,vertical=T,ylim=range(-20,20),xlab='Faculty')
abline(h=0,lty=2)
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2. (a) Computing these quantities is straightforward in R:

Q2data<-read.csv('Filter.csv',header=TRUE)
mod1<-lm(noise˜1,data=Q2data);SS1<-round(anova(mod1)[1,2]/1000,3)
mod2<-lm(noise˜carsize,data=Q2data);SS2<-round(anova(mod2)[2,2]/1000,3)
mod3<-lm(noise˜type,data=Q2data);SS3<-round(anova(mod3)[2,2]/1000,3)
mod4<-lm(noise˜carsize+type,data=Q2data);SS4<-round(anova(mod4)[3,2]/1000,3)
mod5<-lm(noise˜carsize*type,data=Q2data);SS5<-round(anova(mod5)[4,2]/1000,3)

We may then put them in a table as follows

Model SSRes(×10−3) p
1 29.874 1

1 +X1 3.823 3

1 +X2 28.818 2

1 +X1 +X2 2.767 4

1 +X1 +X2 +X1 : X2 1.963 6

5 Marks

(b) We can do this easily from first principles
n<-nrow(Q2data)
fit1<-lm(noise˜carsize,data=Q2data)
fit2<-lm(noise˜carsize*type,data=Q2data)
SSRes1<-sum(residuals(fit1)ˆ2)
p1<-length(coef(fit1))
SSRes2<-sum(residuals(fit2)ˆ2)
p2<-length(coef(fit2))
(fstat<-((SSRes1-SSRes2)/(p2-p1))/(SSRes2/(n-p2)))

: [1] 9.47983

(pvalue<-1-pf(fstat,p2-p1,n-p2))

: [1] 0.0001460971

or using anova in R.

anova(fit1,fit2,test='F')

: Analysis of Variance Table
:
: Model 1: noise ˜ carsize
: Model 2: noise ˜ carsize * type
: Res.Df RSS Df Sum of Sq F Pr(>F)
: 1 33 3822.9
: 2 30 1962.5 3 1860.4 9.4798 0.0001461 ***
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3 Marks
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3. First we can explore the structure numerically (using correlation) and graphically (using a scatterplot):

Q3data<-read.csv('PatSat.csv',header=TRUE)
pairs(Q3data,pch=19)
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Q3num<-Q3data;Q3num$Surgery<-as.numeric(Q3num$Surgery)-1
cor(Q3num)

: Satisfaction Age Severity Surgery Anxiety
: Satisfaction 1.0000000 -0.8707049 -0.6531434 -0.1822682 -0.5127287
: Age -0.8707049 1.0000000 0.5290246 0.2456932 0.6212453
: Severity -0.6531434 0.5290246 1.0000000 0.1775101 0.4471567
: Surgery -0.1822682 0.2456932 0.1775101 1.0000000 0.1096486
: Anxiety -0.5127287 0.6212453 0.4471567 0.1096486 1.0000000

There appear to be some strong associations between the variables.
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In a direct comparison between surgery groups, it seems that there is no effect of surgery on satisfaction
level

fit0<-lm(Satisfaction˜Surgery,data=Q3data)
print(summary(fit0), concise=TRUE)

:
: Call: lm(formula = Satisfaction ˜ Surgery, data = Q3data)
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 71.000 6.433 11.036 <1e-04 ***
: SurgeryYes -7.643 8.597 -0.889 0.383
:
: Residual standard error: 21.34 on 23 degrees of freedom
: Multiple R-squared: 0.03322,Adjusted R-squared: -0.008812
: F-statistic: 0.7904 on 1 and 23 DF, p-value: 0.3832

The task now is to assess whether any effect is being masked by the other variables. We start with the main
effects model:

fit1<-lm(Satisfaction˜Age+Severity+Surgery+Anxiety,data=Q3data)
print(summary(fit1), concise=TRUE)

:
: Call: lm(formula = Satisfaction ˜ Age + Severity + Surgery + Anxiety,
: data = Q3data)
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 140.1689 8.3191 16.849 <1e-04 ***
: Age -1.1428 0.1904 -6.002 <1e-04 ***
: Severity -0.4699 0.1866 -2.518 0.0204 *
: SurgeryYes 2.2259 4.1402 0.538 0.5968
: Anxiety 1.2673 1.4922 0.849 0.4058
:
: Residual standard error: 9.921 on 20 degrees of freedom
: Multiple R-squared: 0.8183,Adjusted R-squared: 0.7819
: F-statistic: 22.51 on 4 and 20 DF, p-value: < 1e-04

drop1(fit1,test='F')

: Single term deletions
:
: Model:
: Satisfaction ˜ Age + Severity + Surgery + Anxiety
: Df Sum of Sq RSS AIC F value Pr(>F)
: <none> 1968.5 119.15
: Age 1 3545.1 5513.7 142.90 36.0182 7.22e-06 ***
: Severity 1 624.1 2592.6 124.04 6.3408 0.02043 *
: Surgery 1 28.4 1997.0 117.51 0.2890 0.59677
: Anxiety 1 71.0 2039.5 118.04 0.7212 0.40579
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It seems we can drop the predictors Surgery and Anxiety: we update the model as follows by omitting
these variables, and computing the summaries and comparison statistics.
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fit2<-update(fit1,˜.-Surgery-Anxiety)
print(summary(fit2), concise=TRUE)

:
: Call: lm(formula = Satisfaction ˜ Age + Severity, data = Q3data)
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 139.9233 8.1002 17.274 <1e-04 ***
: Age -1.0462 0.1573 -6.652 <1e-04 ***
: Severity -0.4359 0.1788 -2.439 0.0233 *
:
: Residual standard error: 9.682 on 22 degrees of freedom
: Multiple R-squared: 0.8096,Adjusted R-squared: 0.7923
: F-statistic: 46.77 on 2 and 22 DF, p-value: < 1e-04

anova(fit2,fit1,test='F')

: Analysis of Variance Table
:
: Model 1: Satisfaction ˜ Age + Severity
: Model 2: Satisfaction ˜ Age + Severity + Surgery + Anxiety
: Res.Df RSS Df Sum of Sq F Pr(>F)
: 1 22 2062.3
: 2 20 1968.5 2 93.754 0.4763 0.628

AIC(fit1,fit2)

: df AIC
: fit1 6 192.1011
: fit2 4 189.2643

We now check whether the introduction of interactions has any affect:

fit3<-update(fit2,˜.+Surgery*Age*Anxiety)
fit4<-update(fit3,˜.-Surgery:Age:Anxiety)
anova(fit2,fit4,fit3,test='F')

: Analysis of Variance Table
:
: Model 1: Satisfaction ˜ Age + Severity
: Model 2: Satisfaction ˜ Age + Severity + Surgery + Anxiety + Age:Surgery +
: Surgery:Anxiety + Age:Anxiety
: Model 3: Satisfaction ˜ Age + Severity + Surgery + Anxiety + Age:Surgery +
: Surgery:Anxiety + Age:Anxiety + Age:Surgery:Anxiety
: Res.Df RSS Df Sum of Sq F Pr(>F)
: 1 22 2062.3
: 2 17 1739.6 5 322.72 0.5978 0.7023
: 3 16 1727.5 1 12.06 0.1117 0.7425

AIC(fit2,fit4,fit3)

: df AIC
: fit2 4 189.2643
: fit4 9 195.0097
: fit3 10 196.8358

These models do not improve the fit, it seems, so we attempt other models:
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fit5<-update(fit2,˜.+Age:Severity)
fit6<-update(fit5,˜.+Surgery)
anova(fit2,fit5,fit6,test='F')

: Analysis of Variance Table
:
: Model 1: Satisfaction ˜ Age + Severity
: Model 2: Satisfaction ˜ Age + Severity + Age:Severity
: Model 3: Satisfaction ˜ Age + Severity + Surgery + Age:Severity
: Res.Df RSS Df Sum of Sq F Pr(>F)
: 1 22 2062.3
: 2 21 2032.7 1 29.549 0.2929 0.5944
: 3 20 2017.8 1 14.967 0.1483 0.7042

AIC(fit2,fit5,fit6)

: df AIC
: fit2 4 189.2643
: fit5 5 190.9035
: fit6 6 192.7187

BIC(fit2,fit5,fit6)

: df BIC
: fit2 4 194.1398
: fit5 5 196.9979
: fit6 6 200.0320

The model Age + Severity still seems to be preferred. We can also attempt some automatic methods
for selection using the step function, and different starting models: we attempt comparisons using AIC
for convenience, although other methods can be used.

step.fit1<-step(lm(Satisfaction˜Age*Severity*Anxiety*Surgery,data=Q3data),k=2,trace=0)
print(summary(step.fit1),concise=T)

:
: Call: lm(formula = Satisfaction ˜ Age + Severity + Anxiety + Surgery +
: Age:Severity + Age:Anxiety + Severity:Anxiety + Age:Surgery +
: Severity:Surgery + Anxiety:Surgery + Age:Severity:Anxiety +
: Age:Anxiety:Surgery, data = Q3data)
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 239.72040 160.09378 1.497 0.160
: Age -2.01705 3.34228 -0.603 0.557
: Severity -5.34778 4.21765 -1.268 0.229
: Anxiety -25.67624 39.13060 -0.656 0.524
: SurgeryYes 132.08818 107.10595 1.233 0.241
: Age:Severity 0.06882 0.07897 0.872 0.401
: Age:Anxiety 0.41667 0.67947 0.613 0.551
: Severity:Anxiety 1.22388 0.95373 1.283 0.224
: Age:SurgeryYes -3.34196 2.14892 -1.555 0.146
: Severity:SurgeryYes 1.03425 0.60872 1.699 0.115
: Anxiety:SurgeryYes -40.96403 33.53151 -1.222 0.245
: Age:Severity:Anxiety -0.02000 0.01639 -1.220 0.246
: Age:Anxiety:SurgeryYes 0.72484 0.54702 1.325 0.210
:
: Residual standard error: 10.36 on 12 degrees of freedom
: Multiple R-squared: 0.8811,Adjusted R-squared: 0.7623
: F-statistic: 7.412 on 12 and 12 DF, p-value: 0.0007637
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Starting with the model with up to the four-way interaction, the model gets simplified to the model above
that includes some third order interactions. TheR2 statistic is up to 0.8811, although the adjustedR2 statis-
tic is lower, at 0.7623. However, more compellingly, the AIC value is 197.486, indicating an inferior model
to the fit2 model above. We also note that some of the estimated standard errors are large, indicating
some multicollinearity and variance inflation.

We now attempt some simplification by dropping the three-way interactions

step.fit11<-update(step.fit1,˜.-Age:Severity:Anxiety-Age:Anxiety:Surgery)
anova(step.fit11,step.fit1)

: Analysis of Variance Table
:
: Model 1: Satisfaction ˜ Age + Severity + Anxiety + Surgery + Age:Severity +
: Age:Anxiety + Severity:Anxiety + Age:Surgery + Severity:Surgery +
: Anxiety:Surgery
: Model 2: Satisfaction ˜ Age + Severity + Anxiety + Surgery + Age:Severity +
: Age:Anxiety + Severity:Anxiety + Age:Surgery + Severity:Surgery +
: Anxiety:Surgery + Age:Severity:Anxiety + Age:Anxiety:Surgery
: Res.Df RSS Df Sum of Sq F Pr(>F)
: 1 14 1520.1
: 2 12 1287.5 2 232.56 1.0838 0.3693

AIC(fit2,step.fit11)

: df AIC
: fit2 4 189.2643
: step.fit11 12 197.6376

which seems a legitimate simplification, and then re-attempting an automatic fit using step but with a
different starting model including the two-way interactions:

step.fit2<-step(lm(Satisfaction˜(Age+Severity+Anxiety+Surgery)ˆ2,data=Q3data),k=2,trace=0)
print(summary(step.fit2),concise=T)

:
: Call: lm(formula = Satisfaction ˜ Age + Severity + Surgery + Age:Surgery +
: Severity:Surgery, data = Q3data)
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 145.1381 11.4691 12.655 < 1e-04 ***
: Age -0.7182 0.2575 -2.789 0.01169 *
: Severity -0.9342 0.3122 -2.993 0.00748 **
: SurgeryYes -5.2017 16.2534 -0.320 0.75243
: Age:SurgeryYes -0.4996 0.3260 -1.532 0.14194
: Severity:SurgeryYes 0.7085 0.3771 1.879 0.07571 .
:
: Residual standard error: 9.443 on 19 degrees of freedom
: Multiple R-squared: 0.8436,Adjusted R-squared: 0.8024
: F-statistic: 20.49 on 5 and 19 DF, p-value: < 1e-04

AIC(fit2,fit5,step.fit2)

: df AIC
: fit2 4 189.2643
: fit5 5 190.9035
: step.fit2 7 190.3508

The AIC values inform is that the three models fit2, fit5 and step.fit2 have very similar qualities;
recall that these three models are
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• fit2: Satisfaction = Age + Severity
• fit5: Satisfaction = Age + Severity + Age:Severity
• step.fit2: Satisfaction = Age + Severity + Surgery + Age:Surgery + Severity:Surgery

Model SSRes AIC BIC R2
Adj

fit2 2062.286 189.264 194.14 0.792
fit5 2032.737 190.903 196.998 0.786
step.fit2 1694.31 190.351 198.883 0.802

These three models could be equally well supported by the data, and only the last depends on the Surgery
factor. Therefore, the conclusion is not at all clear. To attempt to quantify the effect of surgery, we look at
fitted values for the last models when Surgery is set to No for all patients, and then to Yes for all patients,
and then look at the difference in Satisfaction Score.

No.data<-Q3data;No.data$Surgery<-as.factor('No')
Yes.data<-Q3data;Yes.data$Surgery<-as.factor('Yes')
No.fit<-predict(step.fit2,newdata=No.data)
Yes.fit<-predict(step.fit2,newdata=Yes.data)
par(mar=c(4,4,1,1))
plot(Yes.fit-No.fit,pch=19,xlab='Patient',ylab='Predicted Difference in Satisfaction Yes-No')
abline(h=0,lty=2)
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We might therefore conclude that surgery has a small effect to improve patient satisfaction overall (most
of these differences between Surgery==Yes and Surgery==No are positive), but it is not clear that it is
statistically significant. 6 Marks
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EXTRA QUESTION FOR STUDENTS IN MATH 533
In each case we can extract the design matrix using model.matrix() in R:

(a) the main effect model in Q1;

Xa<-model.matrix(fitQ1)[,]
(XatXa<-data.matrix(t(Xa) %*% Xa))

: (Intercept) Faculty2 Faculty3
: (Intercept) 45 15 15
: Faculty2 15 15 0
: Faculty3 15 0 15

(b) the main effects only model in Q2;

Xb<-model.matrix(mod4)[,]
colnames(Xb)<-c('Int','car=medium','car=small','type=Octel')
(XbtXb<-data.matrix(t(Xb) %*% Xb))

: Int car=medium car=small type=Octel
: Int 36 12 12 18
: car=medium 12 12 0 6
: car=small 12 0 12 6
: type=Octel 18 6 6 18

(c) the main effects plus interaction model in Q2

Xc<-model.matrix(mod5)[,]
colnames(Xc)<-c('Int','car=medium','car=small','type=Octel','med:Oct.','small:Oct.')
(XctXc<-data.matrix(t(Xc) %*% Xc))

: Int car=medium car=small type=Octel med:Oct. small:Oct.
: Int 36 12 12 18 6 6
: car=medium 12 12 0 6 6 0
: car=small 12 0 12 6 0 6
: type=Octel 18 6 6 18 6 6
: med:Oct. 6 6 0 6 6 0
: small:Oct. 6 0 6 6 0 6

These matrices are not diagonal, and therefore the dummy predictors given by the indicator functions on page
1 are not orthogonal. 3 Marks

The simplest way to obtain an orthogonal parameterization in (a) is to reparameterize to use the group means,
as in Q1 (b), by removing the intercept: 2 Marks

fitQ2<-lm(Score˜-1+Faculty,data=Q1data)
Xd<-model.matrix(fitQ2)[,]
(XdtXd<-data.matrix(t(Xd) %*% Xd))

: Faculty1 Faculty2 Faculty3
: Faculty1 15 0 0
: Faculty2 0 15 0
: Faculty3 0 0 15
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However, note that does NOT work for multi-factor models. For example,

mod4.2<-lm(noise˜-1+carsize+type,data=Q2data)
Xe<-model.matrix(mod4.2)[,]
colnames(Xe)<-c('car=large','car=medium','car=small','type=Octel')
(XetXe<-data.matrix(t(Xe) %*% Xe))

: car=large car=medium car=small type=Octel
: car=large 12 0 0 6
: car=medium 0 12 0 6
: car=small 0 0 12 6
: type=Octel 6 6 6 18

In order to obtain a fully orthogonal general representation, polynomial contrasts can be used. The contr.poly
function defines a new parameterization where

Q2data.poly<-Q2data
contrasts(Q2data.poly$carsize)<-contr.poly(3)
contrasts(Q2data.poly$type)<-contr.poly(2)
mod4.3<-lm(noise˜carsize+type,data=Q2data.poly)
Xf<-model.matrix(mod4.3)[,]
(XftXf<-round(data.matrix(t(Xf) %*% Xf),6))

: (Intercept) carsize.L carsize.Q type.L
: (Intercept) 36 0 0 0
: carsize.L 0 12 0 0
: carsize.Q 0 0 12 0
: type.L 0 0 0 18

mod5.1<-lm(noise˜carsize*type,data=Q2data.poly)
Xg<-model.matrix(mod5.1)[,]
colnames(Xg)<-c('Int','c.L','c.Q','t.L','c.L:t.L','c.Q:t.L')
(XgtXg<-round(data.matrix(t(Xg) %*% Xg),6))

: Int c.L c.Q t.L c.L:t.L c.Q:t.L
: Int 36 0 0 0 0 0
: c.L 0 12 0 0 0 0
: c.Q 0 0 12 0 0 0
: t.L 0 0 0 18 0 0
: c.L:t.L 0 0 0 0 6 0
: c.Q:t.L 0 0 0 0 0 6

The contr.poly parameterization uses a representation of the predictor columns based on orthogonal polyno-
mials, and it is possible to use the resulting contrasts especially if it is believed that the factor levels are equally
spaced on an underlying continuum; the idea is that the factor levels on an underlying ordinal scale can be
represented by real values, and then for a factor with M levels, one may represent the effects of the levels by
using polynomials of increasing order 1, 2, . . . ,M − 1, and hence look for polynomial patterns in the data. See
for example

http://www.ats.ucla.edu/stat/r/library/contrast coding.htm

Alternatively, a direct reparameterization into an orthogonal matrix can be obtained by decomposing any X
matrix: for example, using standard Gram-Schmidt or QR decomposition.

Note, however, that such a reparameterization typically changes the interpretation of the estimates, and will
change the result of the inference, but not the ANOVA tests; for example

round(summary(mod5)$coef,3)

: Estimate Std. Error t value
: (Intercept) 775.000 3.302 234.711
: carsizemedium car 70.833 4.670 15.169
: carsizesmall car 50.833 4.670 10.886
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: typeOctel filter -5.000 4.670 -1.071
: carsizemedium car:typeOctel filter -19.167 6.604 -2.902
: carsizesmall car:typeOctel filter 1.667 6.604 0.252
: Pr(>|t|)
: (Intercept) 0.000
: carsizemedium car 0.000
: carsizesmall car 0.000
: typeOctel filter 0.293
: carsizemedium car:typeOctel filter 0.007
: carsizesmall car:typeOctel filter 0.802

round(summary(mod5.1)$coef,3)

: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 810.139 1.348 600.989 0.000
: carsize.L 36.534 2.335 15.647 0.000
: carsize.Q -28.918 2.335 -12.385 0.000
: type.L -7.660 1.906 -4.018 0.000
: carsize.L:type.L 0.833 3.302 0.252 0.802
: carsize.Q:type.L 11.547 3.302 3.497 0.001

anova(mod5,test='F')

: Analysis of Variance Table
:
: Response: noise
: Df Sum Sq Mean Sq F value Pr(>F)
: carsize 2 26051.4 13025.7 199.1189 < 2.2e-16 ***
: type 1 1056.2 1056.2 16.1465 0.0003631 ***
: carsize:type 2 804.2 402.1 6.1465 0.0057915 **
: Residuals 30 1962.5 65.4
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(mod5.1,test='F')

: Analysis of Variance Table
:
: Response: noise
: Df Sum Sq Mean Sq F value Pr(>F)
: carsize 2 26051.4 13025.7 199.1189 < 2.2e-16 ***
: type 1 1056.2 1056.2 16.1465 0.0003631 ***
: carsize:type 2 804.2 402.1 6.1465 0.0057915 **
: Residuals 30 1962.5 65.4
: ---
: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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