
MATH 423/533 - ASSIGNMENT 1
SOLUTIONS

Data stored in three data files on the course website contain x and y variables that are to be used for simple linear
regression. The data files are a1-1.txt, a1-2.txt and a1-3.txt.

Code for Assignment 1
#Read in data set 1
file1<-"http://www.math.mcgill.ca/dstephens/Regression/Data/a1-1.txt"
data1<-read.table(file1,header=TRUE)
plot(data1$x,data1$y,pch=19)
x1<-data1$x
y<-data1$y

(a) Perform a least squares fit of a simple linear regression model (including the intercept) in R for each of the
three data sets. In particular, for each data set

(i) report the parameter estimates arising from a least squares fit; 2 Marks
(ii) produce a plot of the data with the line of best fit superimposed; 1 Mark

(iii) plot (against the x values) the residuals ei, i = 1, . . . , n, from the fit; 1 Mark
(iv) comment on the adequacy of the straight line model, based on the residuals plot – that is, comment on

whether the assumptions of least squares fitting and how they relate to the residual errors εi are met by
the observed data. 1 Mark

Note: the R functions lm, coef and residuals will be useful.

(b) Demonstrate theoretically what happens to the least squares estimates if the predictor is

(i) subjected to a location shift: xi1 −→ xi1 −m for some m; 2 Marks
(ii) rescaled: xi1 −→ lxi1 for some l > 0. 2 Marks

Describe also how the properties of the corresponding estimators change. 1 Mark

EXTRA QUESTION FOR STUDENTS IN MATH 533
In the linear model, it is possible to use a different ‘best-fit’ criterion based on the Euclidean distance between
modelled means vector Xβ and the observed data vector y: that is, we choose β to minimize

‖y −Xβ‖ =
√
‖y −Xβ‖2 =

√√√√ n∑
i=1

(yi − xiβ)2.

For simple linear regression, derive the two equations that would need to be solved for the elements of β =
(β0, β1)

> to find the minimizing values. Explain how the corresponding model assumptions (in terms of the
properties of the residual errors and how they define the least squares procedure) differ from those behind least
squares.

3 Marks

Another fitting criterion is based on the sum of absolute differences

n∑
i=1

|yi − xiβ|

Does this criterion lead to estimators with different statistical characteristics to least squares ? Justify your
answer.

2 Marks
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SOLUTION

file1<-"http://www.math.mcgill.ca/dstephens/Regression/Data/a1-1.txt"
data1<-read.table(file1,header=TRUE)
#plot(data1$x,data1$y,pch=19,xlab='x',ylab='y',mar=c(0,1,0,1)); title('Data set 1')
file2<-"http://www.math.mcgill.ca/dstephens/Regression/Data/a1-2.txt"
data2<-read.table(file2,header=TRUE)
#plot(data2$x,data2$y,pch=19,xlab='x',ylab='y',mar=c(0,1,0,1)); title('Data set 2')
file3<-"http://www.math.mcgill.ca/dstephens/Regression/Data/a1-3.txt"
data3<-read.table(file3,header=TRUE)
#plot(data3$x,data3$y,pch=19,xlab='x',ylab='y',mar=c(0,1,0,1)); title('Data set 3')

(a) Data set 1:

(i) The parameter estimates (β̂0, β̂1) are found be

fit1<-lm(y˜x,data=data1); coef(fit1)

+ (Intercept) x
+ 0.02676552 1.72512091

that is, are equal to (0.0267655, 1.7251209)

2 Marks
(ii) Here is the plot

par(mar=c(2, 2, .1, .1))
plot(data1$x,data1$y,pch=19,xlab='x',ylab='y')
abline(coef(fit1),col='red',lwd=2)
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(iii) Here is the residual plot

par(mar=c(2, 2, .1, .1))
plot(data1$x,residuals(fit1),pch=19,xlab='x',ylab='y',mar=c(0,1,0,1))
abline(h=0,col='red',lty=2)
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(iv) Here the assumptions seem fine; the data set is small, and there may be a couple of outlying points,

but there is no strong evidence to suggest that the assumptions of (i) zero mean for all x; (ii) constant
variance for all x are not valid here. 1 Mark
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Data set 2:

(i) The parameter estimates (β̂0, β̂1) are found be

fit2<-lm(y˜x,data=data2); coef(fit2)

+ (Intercept) x
+ 10.660853 7.037952

that is, are equal to (10.6608534, 7.0379523) 2 Marks
(ii) Here is the plot

par(mar=c(2, 2, .1, .1))
plot(data2$x,data2$y,pch=19,xlab='x',ylab='y')
abline(coef(fit2),col='red',lwd=2)

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●● ●
●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

● ●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

−20 −10 0 10 20 30 40

−
20

0
−

10
0

0
10

0
20

0
30

0

1 Mark

MATH 423/533 ASSIGNMENT 1 Solutions Page 4 of ??



(iii) Here is the residual plot

par(mar=c(2, 2, .1, .1))
plot(data2$x,residuals(fit2),pch=19,xlab='x',ylab='y')
abline(h=0,col='red',lty=2)

●
●

●

●
●

●●
●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●●

●

●
●●

●

●●
●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

● ●

●

●

●
●●

● ● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●
● ●

●

●

●
●

●

●
● ●

●

●

●
●

●
●
●●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

● ●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ● ●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10 20 30 40

−
15

0
−

10
0

−
50

0
50

10
0

15
0

1 Mark
(iv) The assumptions seem broadly fine; the residuals are apparently zero mean for all x, although the

constant variance for all x is a little more questionable, there may be an indication that the variance
is smaller near the ends of the x range, but this is not conclusive, as the x values are not uniformly
distributed.

1 Mark
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Data set 3:

(i) The parameter estimates (β̂0, β̂1) are found be

fit3<-lm(y˜x,data=data3); coef(fit3)

+ (Intercept) x
+ 0.2403328 0.3267628

that is, are equal to (0.2403328, 0.3267628)

2 Marks
(ii) Here is the plot

par(mar=c(2, 2, .1, .1))
plot(data3$x,data3$y,pch=19,xlab='x',ylab='y')
abline(coef(fit3),col='red',lwd=2)
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(iii) Here is the residual plot

par(mar=c(2, 2, .1, .1))
plot(data3$x,residuals(fit3),pch=19,xlab='x',ylab='y',mar=c(0,1,0,1))
abline(h=0,col='red',lty=2)
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(iv) The assumptions seem broadly fine, apart from several outliers, which in a real analysis would require

some further analysis. It is plausible that the residuals are zero mean for all x; the constant variance
assumption is more questionable, but it is not easy to conclude a non-constant variance.

1 Mark
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(b) We have from the general theory that if the mean model is correctly specified, the least squares estimators
are unbiased with variance σ2(X>X)−1.

(i) if the predictor is subjected to a location shift by some quantity m, then the original model

Yi = β0 + β1xi1 + εi

becomes in terms of the new predictor xnew
i1 = xi1 −m

Yi = βnew
0 + βnew

1 xnew
i1 + εi = βnew

0 + βnew
1 (xi1 −m) + εi = Yi = (βnew

0 −mβnew
1 ) + βnew

1 xi1 + εi

which means that we must have βnew
1 = β1 and

β0 = βnew
0 −mβnew

1 ⇐⇒ βnew
0 = β0 + β1m

that is [
βnew
0

βnew
1

]
=

[
1 m

0 1

][
β0

β1

]
= M

[
β0

β1

]
say, that is, represents a linear reparameterization. Therefore we know that the least squares estimates
in the new parameterization are related to those in the original parameterization by the relation β̂

new
=

Mβ̂. This leaves the slope estimate unchanged, but the intercept estimate becomes β̂
new
0 = β̂0 + β̂1m.

The estimator variance-covariance matrix is computed using the new design matrix Xnew, specifically

1

nSnew
xx


n∑

i=1

(xi1 −m)2 −
n∑

i=1

(xi1 −m)

−
n∑

i=1

(xi1 −m) n


First, we note that

Snew
xx =

n∑
i=1

(xnew
i1 − xnew

1 )2 ≡
n∑

i=1

(xi1 − x1)2 = Sxx

so the variance of estimator β̂1 is unchanged at nσ2/Sxx. To compute the variance-covariance in ma-
trix form, we use the relationship between new and original parameters; we have the new variance-
covariance matrix as

σ2M(X>X)−1M>

2 Marks
(ii) if the predictor is subjected to a rescaling by l, then the original model becomes in terms of the new

predictor xnew
i1 = lxi1

Yi = βnew
0 + βnew

1 xnew
i1 + εi = βnew

0 + βnew
1 (lxi1) + εi

that is
Yi = βnew

0 + lβnew
1 xi1 + εi

which means that we must have βnew
0 = β0 and

β1 = lβnew
1 ⇐⇒ βnew

1 =
1

l
β1

that is [
βnew
0

βnew
1

]
=

[
1 0

0 1/l

][
β0

β1

]
= L

[
β0

β1

]
say, that is, represents a linear reparameterization. As before we have that β̂

new
= Lβ̂, and that the new

variance-covariance matrix is
σ2L(X>X)−1L>

2 Marks

The estimators are still unbiased for the corresponding estimands, but the variance is modified in the way
described above.

1 Mark
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Here are the results verified for Data set 2: here we choose m = 2 and l = 4 for illustration.

fit.orig<-lm(y˜x,data=data2)
fit.m<-lm(y˜I(x-2),data=data2)
fit.l<-lm(y˜I(4*x),data=data2)
coef(fit.orig)

+ (Intercept) x
+ 10.660853 7.037952

coef(fit.m)

+ (Intercept) I(x - 2)
+ 24.736758 7.037952

coef(fit.orig)[1] + 2*coef(fit.orig)[2]

+ (Intercept)
+ 24.73676

coef(fit.l)

+ (Intercept) I(4 * x)
+ 10.660853 1.759488

coef(fit.orig)[2]/4

+ x
+ 1.759488

The estimates match up as predicted. For the variance-covariance matrix results, using the R function vcov:

vcov(fit.orig)

+ (Intercept) x
+ (Intercept) 0.96348192 -0.027230380
+ x -0.02723038 0.008561911

vcov(fit.m)

+ (Intercept) I(x - 2)
+ (Intercept) 0.88880805 -0.010106557
+ I(x - 2) -0.01010656 0.008561911

M<-matrix(c(1,0,2,1),2,2)
M %*% vcov(fit.orig) %*% t(M)

+ [,1] [,2]
+ [1,] 0.88880805 -0.010106557
+ [2,] -0.01010656 0.008561911

vcov(fit.l)

+ (Intercept) I(4 * x)
+ (Intercept) 0.963481922 -0.0068075950
+ I(4 * x) -0.006807595 0.0005351195

L<-matrix(c(1,0,0,1/4),2,2)
L %*% vcov(fit.orig) %*% t(L)

+ [,1] [,2]
+ [1,] 0.963481922 -0.0068075950
+ [2,] -0.006807595 0.0005351195
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EXTRA QUESTION FOR STUDENTS IN MATH 533
If we write for arbitrary β

S(β) =

n∑
i=1

(yi − xiβ)
2 (1)

then the new criterion is to estimate β by minimizing
√
S(β); this is a monotone increasing and continuous

transform of S(β), so therefore we have automatically that it is minimized at the same β values, that is, the least
squares estimates – there is no change in the estimate, and the assumptions behind the new criteria are therefore
identical to those behind least squares (that is, each data pair (xi, yi) contributes to the fit in an identical fashion,
additively and exchangeably). We have for simple linear regression

∂S(β)

∂β0

= −1

2

1√
S(β)

n∑
i=1

(yi − β0 − β1xi1)

∂S(β)

∂β1

= −1

2

1√
S(β)

n∑
i=1

xi1(yi − β0 − β1xi1)

and equating to zero gives the two equations. 3 Marks

For the criterion
n∑

i=1

|yi − xiβ|

note that this can be written in the form
n∑

i=1

w(yi, xi;β)(yi − xiβ)
2 (2)

where
w(yi, xi;β) =

1

|yi − xiβ|
i = 1, . . . , n

Comparing (??) with (??) we see that in general the least squares solution is not a minimizer of (??) as the
“weights” w(yi, xi;β) are not in general equal. Thus the estimators are not (almost surely) equal to the least
squares estimators for finite n.

2 Marks
The form of (??) suggests an iterative procedure for finding the minimizing values:

1. Initialize the iteration at step r = 0 to the values β(0) (say, the least squares estimates); compute the corre-
sponding weights

w
(0)
i =

1

|yi − xiβ
(0)|

i = 1, . . . , n

where the weight is set to zero if the denominator is zero.

2. For r = 0, 1, 2, . . .:

(i) Solve the minimization problem

n∑
i=1

w
(r)
i (yi − xiβ)

2 = (y −Xβ)>W(r)(y −Xβ) (3)

say, where W(r) = diag(w(r)
1 , . . . , w

(r)
n ), to obtain the new values β(r+1); this can be achieved analytically

as
β(r+1) = (X>W(r)X)−1X>W(r)y

(ii) Compute new weights

w
(r+1)
i =

1

|yi − xiβ
(r+1)|

i = 1, . . . , n

where the weight is set to zero if the denominator is zero.
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3. Repeat 2. until convergence of the sequence β(r), r = 1, 2, . . ..

The following code gives some numerical solutions (for Data set 3):

#Numerical methods for solution
#Define a function for use in 'optim'
least.l1<-function(bev,Xm,yv){

fval<-sum(abs(yv-Xm%*%bev))

return(fval)
}

be.start<-coef(lm(y˜x,data3))
l1.fit<-optim(be.start,fn=least.l1,Xm=cbind(1,data3$x),yv=data3$y)
par(mar=c(2, 2, .1, .1))
plot(data3$x,data3$y,pch=19,xlab=expression(x[1]),ylab='y')
abline(coef(lm(y˜x,data=data3)),col='red',lwd=2)
abline(l1.fit$par,lwd=2,col='blue')
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Using the quantreg library in R

library(quantreg)

+ Loading required package: SparseM
+ Loading required package: methods
+
+ Attaching package: ’SparseM’
+ The following object is masked from ’package:base’:
+
+ backsolve

fit.l1<-rq(y˜x,0.5,data=data3)
summary(fit.l1)
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+
+ Call: rq(formula = y ˜ x, tau = 0.5, data = data3)
+
+ tau: [1] 0.5
+
+ Coefficients:
+ coefficients lower bd upper bd
+ (Intercept) -0.15321 -0.51563 -0.03863
+ x 0.39879 0.07487 0.46292

Produce a surface plot

be0<-seq(-3,3,by=0.1)
be1<-seq(-3,3,by=0.1)

Resid.func.l1<-function(b0,b1,xv,yv){

return((abs(yv-(b0+b1*xv))))

}
Resid.func.l1(0,1,data3$x[1],data3$y[1])

+ [1] 2.001

Smat<-outer(be0,be1,'*')*0
for(i in 1:nrow(data3)){

Smat<-Smat+outer(be0,be1,Resid.func.l1,xv=data3$x[i],yv=data3$y[i])

}

zval<-quantile(Smat,prob=c(1:19)/20)
par(mar=c(2, 2, .1, .1))
image(be0,be1,Smat,col=rev(heat.colors(200)),xlab=expression(beta[0]),ylab=expression(beta[1]))
contour(be0,be1,Smat,add=T,levels=zval)
abline(v=coef(fit.l1)[1],h=coef(fit.l1)[2])
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Using an iterative procedure (100 steps)

be.old<-coef(lm(y˜x,data3))
nsteps<-100
yvec<-data3$y
xvec<-data3$x
e.old<-yvec-cbind(1,xvec) %*% be.old
for(istep in 1:nsteps){

wval<-1/abs(e.old)
be.old<-coef(lm(yvec˜xvec,weights=wval,subset=(wval < Inf)))
e.old<-yvec-cbind(1,xvec) %*% be.old

}
print(be.old)

+ (Intercept) xvec
+ -0.1532125 0.3987872

print(coef(fit.l1))

+ (Intercept) x
+ -0.1532125 0.3987872
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