557: MATHEMATICAL STATISTICS II
INTERVAL ESTIMATION - EXAMPLES

Example 1: Inverting a Test Statistic
Suppose that X1, ..., X,, ~ Normal(f,0?) for % known. A confidence interval can be constructed by
recalling the UMP unbiased test at level « of
H() 0= 00
Hy : 0+#6
with rejection region
R(Og) ={z : T< —cpn(bo)}U{z : T>cu(Op)}

where
c® (1 —a/2)

\/ﬁ + 00.

Cn(eo) =
The corresponding acceptance region is
A<90> = {,@ : —Cn(e()) <zT < Cn(g())}

so that o
PI’[X S A(@())leo] = Pr[—cn(eo) <X < Cn(eo)leo] =1-aqa.

¢From this we conclude that, under the distribution fx|¢(z|6o), we have that the probability that

c® (1 - a/2) - o® (1 -a/2)
is 1 — . Rearranging, we have that with probability 1 — ¢,
— o011 -a/2) - o011 -qa/2)
X——— X+ —F7——.
N <t <X+ NG
Therefore a 1 — « confidence interval is defined by [L(X), U(X )] where
- 01— a/2) - o1 - a/2)
L(X)=x - — 22 X)=X+ — 2
(X) N U =X+

Example 2 : Using a Pivotal Quantity : Exponential Case
Suppose that X7, ..., X,, ~ Exponential(¢). Then

T(X)= ZXi ~ Gamma(n, )
i=1

and hence
Q(X,6) = 0T(X) ~ Gamma(n, 1)

is a pivotal quantity. We have that
Pric; < Q(X,0) < 2l =1—«

if ¢; and ¢y are the «; and a5 quantiles of the Gamma(n, 1) distribution. Hence a 1 — « interval is

[L(X),U(X)] = [T(C;()’ T(Cif)}
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Example 3 : Using a Pivotal Quantity : Normal variance case

Suppose that X7,...,X,,, ~ Normal(;, 0?)and Yi,...,Y,, ~ Normal(fs,o3) are independent ran-
dom samples. Then

Q1(X,07) = (711—71 QZX X)? Qa(Y,03) = (2_1 2ZY Y)’

ot o3
are pivotal quantities, as
Q1(X,0?) ~ Chisquared(n; — 1) Q2(X, 03) ~ Chisquared(ng — 1).
To construct a 1 — « confidence interval, note that
Prlci1 < Q1(X,0%) < cialo?] =1—a

if c11 and ¢y are the a; and v quantiles of the Chisquared distribution with n; — 1 degrees of freedom.
Hence with probability 1 — «

2 ny
c11 < Q1(X,07) < c12 el < ——5 — <12

and therefore the 1 — « interval is

[L1(X), U1(X)] = (n1 — 1)3%’ (n1 —1)s?

C12 C11

with a similar interval for 3. Note also that by previous results

X 2 -1 2 2
Q1(~,a;)/(n1 ) = S—%J—g ~ Fisher-F(n; — 1,ng — 1)
Q2(X,03)/(n2 — 1) 5307

is also a pivotal quantity, so by similar arguments to the above, a 1 — « interval for 03 /03 is

|: S% 8% :|
2 7 <2
55C2 S55C1

where ¢; and ¢; are the «/2 and 1 — «/2 quantiles of the Fisher-F(n; — 1,ny — 1) distribution.

Example 4 : Inverting a Likelihood Ratio Statistic : Exponential case
Suppose that X7, ..., X,, ~ Exponential(f) and we wish to test the hypotheses

Hy : 6=060,
Hl . 97590

The likelihood ratio test for these hypotheses is based on the statistic

up Fxo@l) g )

M) = Sup Fxp@l®) ~ L@ z)

Under Hy, the ML estimator of 6 is =1 /X, so

g exp{-nbp X} <90T()j

Ax(z) = Aon —
x(@) 0 exp{—nbX}

3

)) exp{~T(X)fo + 1}
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where, for any 6,

T(X)= ZXi ~ Gamma(n, ) 0T (X) ~ Gamma(n, 1).
i=1

The acceptance region A(f)) is the set

{&i/\)g(%) > kl}

which is equivalent to the set
{t : (Qgt)n eXp{—teo} > kQ} .
In general, there are two solutions a;(6y) < az(6p) to the equation
(0ot)" exp{—tto} = ko 1)

or equivalently
nlogt — 0ot = k3 (2)

but the solutions can only be found numerically; we must choose k3 such that
Prfa1(60) < T(X) < as(60)|fo] = 1 — o 3)

In practice, we might choose a range of values of k3, then find a1 (6y) and a2 () as solutions to equation
(2), and then check equation (3) to see whether the probability is matched. In Figure 1 below, the
acceptance region is computed for n = 10,0y = 5 and o = 0.05

logA(x)

" a,(8) =0.9551 'ay(8p) =3.5242

T T T * T T
1 2 3 4 5

Figure 1: The oo = 0.05 acceptance region, A(6y), for the Exponential model with 6y = 5 and n = 10 is
(0.9551,3.542). We move the value of k3 up the y-axis until the intersection points, a1(6y) and az2(6o),
of the horizontal line and the function ¢(t) = nlogt — 6yt define a region containing probability 1 — .

To invert A(6p) to get the 1 — « confidence interval, we seek, for fixed data x and summary statistic
T(z), the set

C(T(z)) =1{0: T(z) € AO)} = {0 : (0T(2))" exp{—0T(2)} > k2}
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As the distribution is unimodal, a 1 — o confidence interval must take the form
C(T(z)) ={0: L(T(z)) <0 < U(T(2))}
Writing t = T'(z), from equation (1) and by analogy with Figure 1, we must have
(tL(1))" exp{—tL(t)} = (tU(#))" exp{—tU(t)}. 4)
If a = tL(t) and b = tU(¢), then the interval is
{0:a/t <0 <b/t}

where a and b satisfy
Prla/T <0 <b/T|0] =Pr[a < 0T <b=1-«

where 0T ~ Gamma(n, 1). Thus from (4) we require that

ae ® = bne—b

whilst
boq )
- ,n—1_-x -1—a.
/a (n) " e T dx o
Therefore, solving for a and b is numerically straightforward using a look-up table approach. The
code below in R demonstrates how this might be done; for a fine grid ¢, 2¢, . .., & — ¢, we compute the

quantiles g7, and gy corresponding to probabilities me and me 4+ 1 — «, and then find the value of m
such that
qre I — glew

is as close as possible to zero.

n<-10

eps<-le-6

eps.vec<-seq(eps,alpha-eps,by=eps)

ql.vec<-qgamma (eps.vec,n,1)

qU.vec<-qgamma (eps.vec+l-alpha,n,1)
d.vec<-exp(n*log(qL.vec)-qL.vec)-exp(n*log(qU.vec)-qU.vec)
a<-aL.vec[which.min(d.vec*d.vec)]
b<-qU.vec[which.min(d.vec*d.vec)]

which yields the following results

n | 5 10 15 20 25 30 35 40 45 50
a | 1758 4979 8.603 12439 16.412 20482 24.626 28.829 33.080 37.372
b | 10.864 17.613 23979 30.137 36.162 42.089 47.943 53.739 59.488 65.195

Note that this computation is independent of ¢ = T'(z); to obtain the confidence interval, we need to
divide a and b by t. For example, if » = 10 and ¢ = T'(z) = 2.281, we have

~4.979
- 2.281

17.613

=2.183 U(T(2) = S oar = 7722

L(T(z))

Note that as the distribution of Q(X, #) = 67'(X) does not depend on 6, it is a pivotal quantity, so
Prla < 0T <b]=Prla/T <0 <b/T|=1-«

already yields a 1 — o confidence interval; the additional constraint in equation (4) ensures that the
interval is as short as possible.



