
557: MATHEMATICAL STATISTICS II
HYPOTHESIS TESTING

A statistical hypothesis test is a decision rule that takes as an input observed sample data and returns
an action relating to two mutually exclusive hypotheses that reflect two competing hypothetical states
of nature. The decision rule partitions the sample space X into two regions that respectively reflect
support for the two hypotheses. The following terminology is used:

• Two hypotheses characterize the two possible states of nature. The null hypothesis is denoted
H0, the alternative hypothesis is denoted H1.

• In parametric models, the null and alternative hypotheses define a partition of the (effective)
parameter space Θ. Suppose that disjoint subsets Θ0,Θ1 correspond to H0 and H1 respectively.
We write

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

• A test, T , of H0 versus H1 defines a partition of sample space X into two regions. The hypothesis
H0 is rejected in favour of H1 in the test depending on where the data x˜ (or a suitably chosen
statistic T (x˜)) fall within X .

• A test statistic, T (x˜), is the function of data x˜ used in a statistical hypothesis test.

• The critical region, R, is the region within which T (x˜) must lie in order for hypothesis H0 to be
rejected in favour of H1 The complement of R will be written R′.

• A test function, φR(T (x˜)), is an indicator function that reports the result of the test,

φR(T (x˜)) =

{
1 T (x˜) ∈ R
0 T (x˜) ∈ R′

• A Type I error occurs when the null hypothesis H0 is rejected when it is in fact true.

• A Type II error occurs when the null hypothesis H0 is accepted when it is in fact false.

• For test with test statistic T and critical region R ⊂ X , and θ ∈ Θ0, define the Type I error
probability ξ(θ) by

ξ(θ) = Pr [T ∈ R|θ] θ ∈ Θ0 (1)

If Θ0 comprises a single value, then

ξ = Pr [T ∈ R|θ = θ0]

• The size of a statistical test is
α = sup

θ∈Θ0

ξ(θ)

which is equal to ξ if Θ0 comprises a single value.

• Suppose α ≥ α. If T (x˜) ∈ R, then H0 is rejected at level α, and rejected at level α + ε for ε > 0.

• The power function, β(θ), is defined by

β(θ) = Pr [T ∈ R|θ] θ ∈ Θ

so that β(θ) = ξ(θ) for θ ∈ Θ0.
Note that this notation is not universally used; commonly the power of a statistical test is denoted 1−β(θ)
and computed for θ ∈ Θ1, whereas the Type II error probability is β(θ) for θ ∈ Θ1.
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Most Powerful Tests: The Neyman-Pearson Lemma
To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider
a family tests C for testing H0 and H1 with corresponding subsets Θ0 and Θ1.

• The uniformly most powerful (UMP) test T is the test whose power function β(θ) dominates
the power function, β†(θ), of any other test T † ∈ C at all θ ∈ Θ1,

β(θ) ≥ β†(θ) ∀ θ ∈ Θ1.

• A test with power function β(θ) is unbiased if

β(θ1) ≥ β(θ0) for all θ0 ∈ Θ0, θ1 ∈ Θ1

• A simple hypothesis is one which specifies the distribution of the data completely. Consider a
parametric model fX|θ(x|θ) with parameter space Θ = {θ0, θ1}, and the test of

H0 : θ = θ0

H1 : θ = θ1

Then both H0 and H1 are simple hypotheses.

• A parametric model fX|θ(x|θ) for θ ∈ Θ is identifiable if

fX|θ(x|θ0) = fX|θ(x|θ1) for all x ∈ R ⇐⇒ θ0 = θ1.

Theorem (The Neyman-Pearson Lemma)
Consider a parametric model fX|θ(x|θ) with parameter space Θ = {θ0, θ1}. A test of

H0 : θ = θ0

H1 : θ = θ1

is required. Consider a test T with rejection region R that satisfies

fX˜ |θ
(x˜|θ1) > kfX˜ |θ

(x˜|θ0) =⇒ x˜ ∈ R
fX˜ |θ

(x˜|θ1) < kfX˜ |θ
(x˜|θ0) =⇒ x˜ ∈ R

′

for some k ≥ 0, and Pr[X˜ ∈ R|θ = θ0] = α. Then T is UMP in the class, Cα, of tests at level α. Further,
if such a test exists with k > 0, then all tests at level α also have size α (that is, α is the least upper
bound of the power function β(θ)), and have rejection region identical to that of T , except perhaps if
x˜ ∈ A and

Pr[X˜ ∈ A|θ = θ0] = Pr[X˜ ∈ A|θ = θ1] = 0.

Proof As Pr[X˜ ∈ R|θ = θ0] = α, the test T has size and level α. Consider the test function φR(x˜) for
this test, and φR†(x˜) be the test function for any other α level test, T †. Denote by β(θ) and β†(θ) be the
power functions for these two tests. Now

g(x˜) = (φR(x˜)− φR†(x˜))(fX˜ |θ
(x˜|θ1)− kfX˜ |θ

(x˜|θ0)) ≥ 0

as
x˜ ∈ R ∩R† =⇒ φR(x˜) = φR†(x˜) = 1 ∴ g(x˜) = 0

x˜ ∈ R ∩R†′ =⇒ φR(x˜) = 1, φR†(x˜) = 0, fX˜ |θ
(x˜|θ1) > kfX˜ |θ

(x˜|θ0) ∴ g(x˜) > 0

x˜ ∈ R
′ ∩R† =⇒ φR(x˜) = 0, φR†(x˜) = 1, fX˜ |θ

(x˜|θ1) < kfX˜ |θ
(x˜|θ0) ∴ g(x˜) > 0

x˜ ∈ R
′ ∩R†′ =⇒ φR(x˜) = φR†(x˜) = 0 ∴ g(x˜) = 0.
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Thus ∫

X
(φR(x˜)− φR†(x˜))(fX˜ |θ

(x˜|θ1)− kfX˜ |θ
(x˜|θ0)) dx˜ ≥ 0

but this inequality can be written in terms of the power functions as

(β(θ1)− β†(θ1))− k(β(θ0)− β†(θ0)) ≥ 0 (2)

As β(θ) and β†(θ) are bounded above by α, and β(θ0) = α as T is a size α, we have that

β(θ0)− β†(θ0) = α− β†(θ0) ≥ 0 ∴ β(θ1)− β†(θ1) ≥ 0

Thus β(θ1) ≥ β†(θ1), and hence T is UMP, as θ1 is the only point in Θ1, and the test with power
function β† is arbitrarily chosen.

Now consider any UMP test T † ∈ Cα. By the result above, T is UMP at level α, so β(θ1) = β†(θ1). In
this case, if k > 0, we have from equation (2) that

β(θ0)− β†(θ0) = α− β†(θ0) ≤ 0.

But, by assumption, T † is a level α test, so we also have

α− β†(θ0) ≥ 0

and hence β†(θ0) = α, that is, T † is also a size α test. Therefore
∫

X
(φR(x˜)− φR†(x˜))(fX˜ |θ

(x˜|θ1)− kfX˜ |θ
(x˜|θ0)) dx˜ = 0 (3)

where the integrand in equation (3) is a non-negative function. Let A be the collection of sets of
probability (that is, density) zero under both fX˜ |θ

(x˜|θ0) and fX˜ |θ
(x˜|θ1), then

∫

A
(φR(x˜)− φR†(x˜))(fX˜ |θ

(x˜|θ1)− kfX˜ |θ
(x˜|θ0)) dx˜ = 0 A ∈ A

irrespective of the nature of R†, so the functions φR(x˜) and φR†(x˜) may not be equal for x˜ in such a
set A. Apart from that specific case, the integral in equation (3) can only be zero if at least one of the
two factors is identically zero for all x˜. The second factor cannot be identically zero for all x˜, as the
densities must integrate to one. Thus, for all x˜ ∈ X \ A

φR(x˜) = φR†(x˜),

and hence R†, satisfies the same conditions as R.

• To evaluate the value of constant k that appears in the Theorem, we need to compute Pr
[
X˜ ∈ R|θ0

]
for a fixed level/size α.

• It is possible that, for given alternative hypotheses, no UMP test exists. Also, for discrete data,
it may not be possible to solve the equation Pr

[
X˜ ∈ R|θ0

]
= α for every value of α, and hence

only specific values of α may be attained.

• The test can be reformulated in terms of the statistic λ(x˜) where

λ(x˜) =
fX˜ |θ

(x˜|θ1)

fX˜ |θ
(x˜|θ0)

where x˜ ∈ R ⇐⇒ λ(x˜) ∈ Rλ, where Rλ ≡ {t ∈ R+ : t > k}
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• If T (X˜ ) is a sufficient statistic for θ, then by the Neyman factorization theorem

fX˜ |θ
(x˜|θ1)

fX˜ |θ
(x˜|θ0)

=
g(T (x˜)|θ1)h(x˜)
g(T (x˜)|θ0)h(x˜)

=
g(T (x˜)|θ1)
g(T (x˜)|θ0)

so that
λ(x˜) ∈ Rλ ⇐⇒ T (x˜) ∈ RT

say. Thus any test based on T (x˜) with critical region RT is a UMP α level test, and

α = Pr[T (X˜ ) ∈ RT |θ0]

Composite Null Hypotheses
Often the null and alternative hypotheses do not specify the distribution of the data completely. For
example, the specification

H0 : θ = θ0

H1 : θ 6= θ0

could be of interest. If, in general, a UMP test of size α is required, then its power must equal the
power of the most powerful test of

H0 : θ = θ0

H1 : θ = θ1

for all θ1 ∈ Θ1.

For one class of models, finding UMP tests for composite hypotheses is possible in general. A para-
metric family F of probability models indexed by parameter θ ∈ Θ has a monotone likelihood ratio if
for θ2 > θ1, and for x in the union of the supports of the two densities fX|θ(x|θ1) and fX|θ(x|θ2),

λ(x) =
fX|θ(x|θ2)
fX|θ(x|θ1)

is a monotone function of x.

Theorem (Karlin-Rubin Theorem)
Suppose that a test of the hypotheses

H0 : θ ≤ θ0

H1 : θ > θ0

is required. Suppose that T (X˜ ) is a sufficient statistic for θ, and that fT |θ for θ ∈ Θ has a monotone
non-decreasing likelihood ratio, that is for θ2 ≥ θ1 and t2 ≥ t1

fT |θ(t2|θ2)
fT |θ(t2|θ1)

≥ fT |θ(t1|θ2)
fT |θ(t1|θ1)

.

Then for any t0, the test T with critical region RT defined by

T (x˜) > t0 =⇒ T (x˜) ∈ RT

T (x˜) ≤ t0 =⇒ T (x˜) ∈ R′T
is a UMP α level test, where

α = Pr[T > t0|θ0].
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Proof Let β(θ) be the power function of T . Now, for t2 ≥ t1,

fT |θ(t2|θ2)
fT |θ(t2|θ1)

≥ fT |θ(t1|θ2)
fT |θ(t1|θ1)

⇐⇒ fT |θ(t1|θ1)fT |θ(t2|θ2) ≥ fT |θ(t1|θ2)fT |θ(t2|θ1) (4)

Integrating both sides with respect to t1 on (−∞, t2), we obtain

FT |θ(t2|θ1)fT |θ(t2|θ2) ≥ FT |θ(t2|θ2)fT |θ(t2|θ1) ∴
fT |θ(t2|θ2)
fT |θ(t2|θ1)

≥ FT |θ(t2|θ2)
FT |θ(t2|θ1)

.

Alternatively, integrating both sides of equation (4) with respect to t2 on (t1,∞), we similarly obtain

fT |θ(t1|θ2)
fT |θ(t1|θ1)

≤ 1− FT |θ(t1|θ2)
1− FT |θ(t1|θ1)

But setting t1 = t2 = t in these two inequalities yields

1− FT |θ(t|θ2)
1− FT |θ(t|θ1)

≥ FT |θ(t|θ2)
FT |θ(t|θ1)

which, on rearrangement yields

1− FT |θ(t|θ2)
FT |θ(t|θ2)

≥ 1− FT |θ(t|θ1)
FT |θ(t|θ1)

∴ FT |θ(t|θ2) ≤ FT |θ(t|θ1) (5)

as FT |θ(t|θ) is non-decreasing in t, and the function g(x) = (1− x)/x is non-increasing for 0 < x < 1.
Finally,

β(θ2)−β(θ1) = Pr[T > t0|θ2]−Pr[T > t0|θ1] = (1−FT |θ(t|θ2))−(1−FT |θ(t|θ1)) = FT |θ(t|θ1)−FT |θ(t|θ2) ≥ 0

so β(θ) is non-decreasing in θ. Hence

sup
θ≤ θ0

β(θ) = β(θ0) = Pr[T > t0|θ0] = α

so T is an α level test. Now, let θ? > θ0, and consider the simple hypotheses

H?
0 : θ = θ0

H?
1 : θ = θ?.

Let k? be defined by

k? = inf
t∈ T0

fT |θ(t|θ?)
fT |θ(t|θ0)

where T0 = {t : t > t0, and fT |θ(t|θ?) > 0 or fT |θ(t|θ0) > 0}. Then

T > t0 ⇐⇒ fT |θ(t|θ?)
fT |θ(t|θ0)

> k?

so that, by the Neyman-Pearson Lemma, T is UMP for testing H?
0 versus H?

1 ; for any other test T ? of
H?

0 at level α with power function β? that satisfies β?(θ0) ≤ α, we have that β(θ?) ≥ β?(θ?). But for
any α level test T † of H0, we have β†(θ0) ≤ α. Thus taking T ? ≡ T †, we can conclude that

β(θ?) ≥ β†(θ?).

This inequality holds for all θ? ∈ Θ1, so T must be UMP at level α.
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The Likelihood Ratio Test
The Likelihood Ratio Test (LRT) statistic for testing H0 against H1

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

is based on the statistic

λX˜
(x˜) =

sup
θ∈Θ0

fX˜ |θ
(x˜|θ)

sup
θ∈Θ1

fX˜ |θ
(x˜|θ)

=
L(θ̂0 | x˜)

L(θ̂1 | x˜)

and H0 is rejected if λX˜
(x˜) is small enough, that is, λX˜

(x˜) ≤ k for some k to be defined.

Theorem If T (X˜ ) is a sufficient statistic for θ, then

λX˜
(x˜) = λT (T (x˜)) =

sup
θ∈Θ0

fT |θ(T (x˜)|θ)

sup
θ∈Θ1

fT |θ(T (x˜)|θ) ∀ x˜ ∈ X

Proof As T (X˜ ) is sufficient, for any θ0, θ1,

L(θ0 | x˜)
L(θ1 | x˜)

=
fX˜ |θ

(x˜ |θ0)

fX˜ |θ
(x˜ |θ1)

=
g(T (x˜)|θ0)h(x˜)
g(T (x˜); θ1)h(x˜)

=
g(T (x˜)|θ0)
g(T (x˜)|θ1)

=
fT |θ(T (x˜)|θ0)
fT |θ(T (x˜)|θ1)

by the Neyman factorization theorem, where the last equality follows as the normalizing constants in
numerator and denominator are identical. Hence, at the suprema, the LRT statistics are equal.

Union and Intersection Tests

• Suppose first that we require a test T for the null hypothesis expressed as

H0 : θ ∈ Θ0 ≡
⋂

γ∈ G
Θγ

where Θγ , γ ∈ G are a collection of subsets of Θ. Suppose that Tγ is a test for the hypotheses

H0γ : θ ∈ Θγ

H1γ : θ ∈ Θ′
γ

with test statistic Tγ(X˜ ) and critical region Rγ . Then the rejection region for T is

RG ≡
⋃

γ∈ G
Rγ =⇒ T rejects H0 if x˜ ∈

⋃

γ∈ G
{Tγ(x˜) ∈ Rγ}

that is, if any one of the Tγ rejects H0γ . This test is termed a Union-Intersection Test (UIT).

• Suppose now that we require a test T for the null hypothesis expressed as

H0 : θ ∈ Θ0 ≡
⋃

γ∈ G
Θγ

Then, by the same logic as above, the rejection region for T is

RG ≡
⋂

γ∈ G
Rγ =⇒ T rejects H0 if x˜ ∈

⋂

γ∈ G
{Tγ(x˜) ∈ Rγ}
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that is, if all of the Tγ reject H0γ . This test is termed an Intersection-Union Test (IUT). Note that
if αγ is the size of the test of H0γ , then the IUT is a level α test, where

α = sup
γ∈ G

αγ

as, for each γ and for any θ ∈ Θ0,

α ≥ αγ = Pr[X˜ ∈ Rγ |θ] ≥ Pr[X˜ ∈ R|θ]

Theorem Consider testing

H0 : θ ∈ Θ0 ≡
⋂

γ∈ G
Θγ

H1 : θ ∈ Θ′
0

using the global likelihood ratio statistic

λ(x˜) =
sup

θ∈Θ0

fX˜ |θ
(x˜|θ)

sup
θ∈Θ1

fX˜ |θ
(x˜|θ)

equipped with the usual critical region R ≡ {x˜ : λ(x˜) < c}, and the collection of likelihood ratio
statistics λγ(x˜)

λγ(x˜) =

sup
θ∈Θ0γ

fX˜ |θ
(x˜|θ)

sup
θ∈Θ1γ

fX˜ |θ
(x˜|θ)

Define statistic T (x˜) = inf
γ∈ G

λγ(x˜), and consider the critical region

RG ≡ {x˜ : λγ(x˜) < c, some γ ∈ G} ≡ {x˜ : T (x˜) < c},
Then

(a) T (x˜) ≥ λ(x˜) for all x˜.

(b) If βT and βλ are the power functions for the tests based on T (X˜ ) and λ(X˜ ) respectively, then

βT (θ) ≤ βλ(θ) for all θ ∈ Θ

(c) If the test based on λ(X˜ ) is an α level test, then the test based on T (X˜ ) is also an α level test.

Proof For (a), as Θ0 ⊂ Θγ , we have

λγ(x˜) ≥ λ(x˜) for each γ ∴ T (x˜) = inf
γ∈ G

λγ(x˜) ≥ λ(x˜)

and thus for (b), for any θ,

βT (θ) = Pr[T (X˜ ) < c|θ] ≤ Pr[λ(X˜ ) < c|θ] = βλ(θ).

Hence
sup

θ∈Θ0

βT (θ) ≤ sup
θ∈Θ0

βλ(θ) ≤ α

which proves (c).
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P-values
Consider a test of hypothesis H0 defined by region Θ0 of the parameter space. A p-value, p(X˜ ), is a
test statistic such that 0 ≤ p(x˜) ≤ 1 for each x˜. A p-value is valid if, for every θ ∈ Θ0 and 0 ≤ α ≤ 1

Pr[p(X˜ ) ≤ α | θ] ≤ α.

That is, a valid p-value is a test statistic that produces a test at level α of the form

p(x˜) ≤ α =⇒ x˜ ∈ R
p(x˜) > α =⇒ x˜ ∈ R

′

The most common construction of a valid p-value is given by the following theorem.

Theorem Suppose that T (X˜ ) is a test statistic constructed so that a large value of T (X˜ ) supports H1.
Then the statistic p(x˜) given for each x˜ ∈ X by

p(x˜) = sup
θ∈Θ0

Pr[T (X˜ ) ≥ T (x˜) | θ] = sup
θ∈Θ0

pθ(X˜ ) (6)

say, is a valid p-value.

Proof For θ ∈ Θ0, we have

pθ(x˜) = Pr[T (X˜ ) ≥ T (x˜) | θ] = Pr[−T (X˜ ) ≤ −T (x˜) | θ] = Fθ(−T (x˜)) ≡ FS(s)

say, defining FS ≡ Fθ as the cdf of S = −T (X˜ ); clearly 0 ≤ p(x˜) ≤ 1.

This recalls a result from distribution theory; if X ∼ FX , the U = FX(X) ∼ Uniform(0, 1).
Suppressing the dependence on θ for convenience, define random variable Y by

Y = Fθ(−T (X˜ )) ≡ FS(S) (= pθ(X˜ ))

and let Ay ≡ {s : FS(s) ≤ y}. If Ay is a half-closed interval (−∞, sy], then

FY (y) = Pr[Y ≤ y] = Pr[FS(S) ≤ y] = Pr[S ∈ Ay] = FS(sy) ≤ y

by definition of Ay, as sy ∈ Ay. If Ay is a half-open interval (−∞, sy)

FY (y) = Pr[Y ≤ y] = Pr[FS(S) ≤ y] = Pr[S ∈ Ay] = lim
s−→sy

FS(s) ≤ y

by continuity of probability. Putting the components together, for 0 ≤ α ≤ 1,

Pr[pθ(X˜ ) ≤ α | θ] ≡ Pr[Y ≤ α] ≤ α

But by the definition in equation (6), p(x˜) ≥ pθ(x˜), so

Pr[p(X˜ ) ≤ α | θ] ≤ Pr[pθ(X˜ ) ≤ α | θ] ≤ α

and the result follows.
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