
557: MATHEMATICAL STATISTICS II
METHODS OF EVALUATING ESTIMATORS

An estimator, T (X˜ ), of θ can be evaluated via its statistical properties. Typically, two aspects are
considered:

• Expectation
• Variance

either in terms of finite n behaviour, or the hypothetical limiting case as n −→ ∞. In a frequentist
setting, these assessments are made conditional on a given value of θ, by examining the distribution
of T given θ, fT |θ.

Bias, Variance And Mean Square Error
For estimator T (in general a function of sample X˜ ) of parameter τ(θ), the following quantities will be
used to evaluate T .

• Bias: The bias of T is denoted bT (θ), and is defined by

bT (θ) = EfT |θ [T ]− τ(θ).

If bT (θ) = 0 for all θ, then T is termed unbiased for τ(θ).
• Variance: The variance of T is denoted in the usual way by VarfT |θ [T ], defined

VarfT |θ [T ] = EfT |θ [(T − EfT |θ [T ])2]

For an unbiased estimator,
VarfT |θ [T ] = EfT |θ [(T − τ(θ))2].

• Mean Square Error: The Mean Square Error (MSE) of T is denoted MSEθ(T ) and defined by

MSEθ(T ) = EfT |θ [(T − τ(θ))2]

By elementary calculation, it follows that

MSEθ(T ) = VarfT |θ [T ] + (EfT |θ [T ]− τ(θ))2

so that
Mean Square Error = Variance + (Bias)2

The Best Unbiased Estimator, or Uniform Minimum Variance Unbiased Estimator (UMVUE), of
τ(θ), denoted T ?, is the estimator with the smallest variance of all unbiased estimators of τ(θ), that is,
if T is any other unbiased estimator of τ(θ),

VarfT |θ [T ] ≥ VarfT?|θ [T
?]

It transpires that there is a lower bound, B(θ), on the variance of unbiased estimators of τ(θ), given
by the following result. The result does not in general guarantee that an estimator with variance B(θ)
exists, and does not give a method of constructing such an estimator, but it does confirm that if T is
such an unbiased estimator, and

VarfT |θ [T ] = B(θ)

then T is the Best Unbiased Estimator.
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Theorem (The Cramér-Rao Inequality)
Suppose that X1, . . . , Xn is a sample of random variables from probability model described by
pmf/pdf fX|θ, and let T (X˜ ) be an estimator of τ(θ). Suppose that

d

dθ

{
EfT |θ [T ]

}
=

∫

X

∂

∂θ

{
T (x˜)fX˜ |θ

(x˜|θ)
}

dx˜
that is, exchanging the order of integration and differentiation is legitimate, and that VarfT |θ [T ] < ∞.
Then

VarfT |θ [T ] ≥

(
d

dθ

{
EfT |θ [T ]

})2

EfX˜|θ
[
S(X˜ ; θ)2

]

where S(x˜; θ) is the score function

S(x˜; θ) =
∂

∂θ

{
log fX˜ |θ

(x˜|θ)
}

Proof For any two random variables U and V , by a previous result (the Cauchy-Schwarz inequality)

{
CovfU,V

[U, V ]
}2 ≤ VarfU

[U ] VarfV
[V ] ∴ VarfU

[U ] ≥
{

CovfU,V
[U, V ]

}2

VarfV
[V ]

. (1)

with equality if and only if U and V are linearly related. Now, note that, under the assumptions of the
theorem,

d

dθ

{
EfT |θ [T ]

}
=

∫

X
T (x˜)

∂

∂θ

{
fX˜ |θ

(x˜|θ)
}

dx˜

=
∫

X
T (x˜)

∂

∂θ

{
fX˜ |θ

(x˜|θ)
}

fX˜ |θ
(x˜|θ)

fX˜ |θ
(x˜|θ) dx˜

=
∫

X
T (x˜)

∂

∂θ

{
log fX˜ |θ

(x˜|θ)
}

fX˜ |θ
(x˜|θ) dx˜

= EfX˜|θ
[
T (X˜ )S(X˜ ; θ)

]

≡ CovfT,S|θ [T, S]

as EfS |θ[S] ≡ EfX˜
|θ[S(X˜ ; θ)] = 0, by results from MATH 556. Similarly

VarfX˜|θ
[S(X˜ ; θ)] = EfX˜|θ

[S(X˜ ; θ)2].

Therefore, using the covariance inequality

VarfT |θ [T ] ≥

{
d

dθ

{
EfT |θ [T ]

}}2

EfX˜|θ
[S(X˜ ; θ)2]

as required.
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Corollary : If X1, . . . , Xn are a random sample, then

VarfT |θ [T ] ≥

{
d

dθ

{
EfT |θ [T ]

}}2

nI(θ)

where I(θ) is the Fisher Information as defined in MATH 556 as

I(θ) = EfX|θ [S(X; θ)2]

Recall that, if second derivatives exist

I(θ) = −EfX|θ [Ψ(X; θ)]

where

Ψ(X; θ) =
∂2

∂θ2

{
log fX|θ(x|θ)

}

is the second derivative function.

Corollary : By definition, EfT |θ [T ] = bθ(T ) + τ(θ), so

VarfT |θ [T ] ≥

{
ḃT (θ) + τ̇(θ)

}2

EfX˜|θ
[S(X˜ ; θ)2]

Vector Parameter Case
A similar result can be derived in the vector parameter case. Suppose that θ˜ = (θ1, . . . , θk)T. If T˜(X˜ )
is a d-dimensional estimator of a vector function of θ˜, then we have a similar bound for the variance-
covariance matrix of the estimator. Recall first that for two (k × k) matrices A and B, we write A ≥ B
if A−B is non-negative definite, that is

x˜
T(A−B)x˜ ≥ 0 x˜ ∈ R

k.

Under the same assumptions as in the single parameter case, that differentiation and integration orders
may exchanged, and the required expectations and variances are finite, it follows that

VarfT˜|θ
[T˜ ] ≥ ˙̀(θ˜) I(θ˜)−1 ˙̀(θ˜)T (2)

where
I(θ˜) = EfX|θ [S˜

(X; θ˜)S
˜
(X; θ˜)T]

and S
˜
(X; θ˜) is the k × 1 vector score function with jth component

∂

∂θj
log fX|θ˜

(x|θ˜) j = 1, . . . , k.

and ˙̀(θ˜) is the d× k matrix with (l, j)th element

∂

∂θj

{
EfTl|θ˜

[Tl]
}

l = 1, . . . , d, j = 1 . . . , k

Note that in equation (2), the left-hand and right-hand side are d × d matrices. Note also that if the
second-derivative matrix can be defined, then

I(θ˜) = −EfX|θ [Ψ(X; θ˜)]

where the (l, j)th element of the k × k matrix Ψ is

∂2

∂θj∂θl

{
log fX|θ˜

(x|θ˜)
}
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Attaining the Lower Bound.

Theorem
Suppose that X1, . . . , Xn is a sample of random variables from probability model described by
pmf/pdf fX|θ, with likelihood L(θ|x˜). Let T (X˜ ) be an unbiased estimator of τ(θ). Then T (X˜ ) attains
the Cramér-Rao lower bound, that is

VarfT |θ [T ] = B(θ) =

(
d

dθ

{
EfT |θ [T ]

})2

EfX˜|θ
[
S(X˜ ; θ)2

]

if and only if

a(θ)(T (X˜ )− τ(θ)) =
∂

∂θ
log L(θ|X˜ )

for some function a(θ).

Proof In the variance inequality in equation (1), set

U ≡ T (X˜ ) V ≡ ∂

∂θ
log L(θ|X˜ )

so that {
CovfX˜|θ

[
T (X˜ ),

∂

∂θ
log L(θ|X˜ )

]}2

≤ VarfT |θ [T ] VarfX˜
|θ

[
∂

∂θ
log L(θ|X˜ )

]

with equality if and only if T and
∂

∂θ
log L(θ|X˜ ) are linearly related, that is

m(θ)T + c(θ) =
∂

∂θ
log L(θ|X˜ ) =

∂

∂θ

{
n∑

i=1

log fXi|θ(Xi|θ)
}

(3)

for some functions m(θ) and c(θ) that do not depend on X , but may in general depend on θ. Taking
expectations with respect to fX˜ |θ

on both sides of equation (3), and noting that the expectation on the
right-hand side is zero, we must have

c(θ) = −EfT |θ [T ] = τ(θ)

and the result follows.

If an estimator can be found such that the bound is met, then that estimator is the best unbiased
estimator. Note that, in the one-parameter Exponential Family, for a random sample X˜

L(θ|x˜) = fX˜ |θ
(x˜|θ) = h(x˜){c(θ)}n exp{w(θ)T (x˜)}

so that

∂

∂θ
log L(θ|X˜ ) = n

ċ(θ)
c(θ)

+ ẇ(θ)T (x˜) = ẇ(θ)
(

T (x˜)− nċ(θ)
c(θ)ẇ(θ)

)
= a(θ)

(
T (x˜)− nτ(θ)

)

say, where ċ(θ) is the partial derivative of c(θ) with respect to θ. Hence, taking expectations on left and
right hand sides, we note that

EfT |θ [T ] = nτ(θ)

so that
T (X˜ )

n

is an unbiased estimator of τ(θ) that that has minimum variance.
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Sufficiency and Unbiasedness.

Theorem The Rao-Blackwell Theorem
Let T be an unbiased estimator of τ(θ), and S be a sufficient statistic for θ. Define statistic U by

U ≡ g(S) = EfT |S,θ
[T |S]

Then U is an unbiased estimator of τ(θ), and for all θ

VarfU|θ [U ] ≤ VarfT |θ [T ].

Proof Clearly U = g(S) is a valid estimator, as it does not depend on the θ; the conditional
distribution of T given S does not depend on θ by sufficiency. By iterated expectation,

EfU|θ [U ] = EfS|θ [g(S)] = EfS|θ [EfT |S,θ
[T |S]] = EfT |θ [T ] = τ(θ)

so U is unbiased for τ(θ), and similarly

VarfT |θ [T ] = EfS|θ [VarfT |S,θ
[T |S]] + VarfS|θ [EfT |S,θ

[T |S]]

≥ VarfS|θ [EfT |S,θ
[T |S]]

= VarfS|θ [g(S)] = VarfU|θ [U ]

and thus U is a better estimator of τ(θ) than T , as it has lower variance.

Uniqueness.

Theorem
If T is a best unbiased estimator of τ(θ), that is, it achieves the lower bound on variance B(θ), then T
is unique.

Proof Let T ′ be another best unbiased estimator. Let

T ? =
1
2
(T + T ′).

Then T ? is clearly unbiased, and by elementary results

VarfT?|θ [T
?] =

1
4

VarfT |θ [T ] +
1
4

VarfT ′|θ [T
′] +

1
2

CovfT,T ′|θ [T, T ′]

≤ 1
4

VarfT |θ [T ] +
1
4

VarfT ′|θ [T
′] +

1
2

(
VarfT |θ [T ] VarfT ′|θ [T

′]
)1/2

= VarfT |θ [T ]

with equality if and only if T and T ′ are linearly related, as the variances of T and T ′ are equal. Thus,
to avoid contradiction, we must have a linear relationship, that is

T ′ = m(θ)T + c(θ)

say. But, in this case

CovfT,T ′|θ [T, T ′] = CovfT |θ [T, m(θ)T + c(θ)] = CovfT |θ [T, m(θ)T ] = m(θ)VarfT |θ [T ]

But, by the covariance equality above,

CovfT,T ′|θ [T, T ′] = VarfT |θ [T ]

implying that m(θ) ≡ 1. Hence, as T and T ′ both have expectation τ(θ), we must also have c(θ) = 0,
so that T and T ′ are identical.
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Characterizing Best Unbiased Estimators.

Theorem
An estimator T of τ(θ) is the best unbiased estimator of τ(θ) if and only if EfT |θ [T ] = τ(θ) and T is
uncorrelated with all estimators U such that

EfU|θ [U ] = 0.

U is termed an unbiased estimator of zero.

Proof Suppose first that T is the best unbiased estimator of τ(θ), and U is an unbiased estimator of
zero. Then estimator

S = T + aU

for constant a is also unbiased for τ(θ), and

VarfS|θ [S] = VarfT |θ [T ] + a2VarfU|θ [U ] + 2aCovfT,U|θ [T, U ].

Thus choosing a so that

a2 < −2a CovfT,U|θ [T, U ]

VarfU|θ [U ]

renders VarfS|θ [S] < VarfT |θ [T ] and a contradiction. Such a choice can always be made if
CovfT,U|θ [T,U ] is non-zero. Hence we must have

CovfT,U|θ [T,U ] = 0,

that is, that T and U are uncorrelated.

Now suppose that EfT |θ [T ] = τ(θ), and that T is uncorrelated with all unbiased estimators of zero. Let
T ′ be any other unbiased estimator of τ(θ). Now, writing

T ′ = T + (T ′ − T ) = T + Z

say, yields

VarfT ′|θ [T
′] = VarfT |θ [T ] + VarfZ|θ [Z] + 2CovfT,Z|θ [T,Z]

≥ VarfT |θ [T ]

as Z is an unbiased estimator of zero, and is thus uncorrelated with T by assumption, and also
VarfZ|θ [Z] ≥ 0.

Corollary : If T is a complete sufficient statistic for parameter θ, and h(T ) is an estimator which is a
function of T only, then h(T ) is the unique best unbiased estimator of τ(θ) = EfT |θ [h(T )].

Proof If T is complete, then the only function g with

EfT |θ [g(T )] = 0.

is g(t) = 0 for all t, that is, the only unbiased estimator of zero is zero itself. But the previous result
states that an estimator is a best unbiased estimator if it is uncorrelated with all unbiased estimators
of zero. As

CovfT |θ [h(T ), 0] = 0

for any h(T ), it follows that h(T ) is the unique best unbiased estimator of its expectation.
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