
557: MATHEMATICAL STATISTICS II
THE EM ALGORITHM: GENETICS OF HUMAN BLOOD GROUPS

In human genetics, the genotype at a genomic locus is a pair of alleles corresponding to small seg-
ments of DNA lying on the two chromosomal strands. The phenotype is the physical presentation or
trait arising from the genotype. At a certain locus that determines the phenotype of blood group, the
relationship between genotype and phenotype is somewhat complex; there are

• three alleles (A, B and O) yielding six possible genotypes (ordering is not important)
• only four phenotypes (A,B,AB and O).

The relationship between phenotype and genotype in this case is determined by the following table.
The third column, headed X , denotes a label for the genotype class. In simple experiments, however,
only the phenotype may be observed; let Y1, . . . , Yn denote the recorded phenotype for each of the n
data.

Genotype Phenotype X Y
AA A 1 1
AB AB 2 3
AO A 3 1
BB B 4 2
BO B 5 2
OO O 6 4

Suppose that inference about the proportions of the three alleles A,B and O, denoted θA, θB, θO is
required from a sample of size n of phenotype data. We formulate a data augmentation approach, and
use the EM algorithm to perform maximum likelihood estimation. One independence assumption
(based on so-called Hardy-Weinberg equilibrium) is needed; we assume that the probability of observing
a genotype is the product of the individual allele probabilities. For example

P(AA) = θA × θA

P(AB) = θA × θB

and so on.

Define the augmented data X1, . . . , Xn, where for i = 1 . . . , n,

Pr[Xi = j] = Pr[ith genotype is in class j] j = 1, . . . , 6

that is

Pr[Xi = j] =





θ2
A j = 1

θAθB j = 2

θAθO j = 3

θ2
B j = 4

θBθO j = 5

θ2
O j = 6

for i = 1, . . . , n

with X1, . . . , Xn a random sample. This simplification yields a complete data likelihood

L(θ˜|x˜, y
˜
) ≡ L(θ˜|x˜) =

n∏

i=1

{
θ
2I{1}(xi)+I{2}(xi)+I{3}(xi)

A θ
I{2}(xi)+2I{4}(xi)+I{5}(xi)

B θ
I{3}(xi)+I{5}(xi)+2I{6}(xi)

O

}
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say, where

nj =
n∑

i=1

I{j}(xi) j = 1, . . . , 6.

The complete data likelihood is a multinomial-type likelihood in θ˜.

In the standard notation, for the EM steps, we have to

• E-step: compute
Q(θ˜|θ˜

(r)) = EfX˜|Y˜ ,θ˜
[log L(θ˜|X˜ , Y

˜
)|y
˜
, θ˜

(r)]

taking the expectation over X1, . . . , Xn etc.

• M-step: maximize Q(θ˜|θ˜
(r)) to get θ˜

(r+1).

Here the M-step is straightforward due to the multinomial likelihood. The E-step is also quite straight-
forward, but some steps need clarification.

The log complete data likelihood takes the form

log L(θ˜|x˜, y
˜
) =

n∑

i=1

(
2I{1}(xi) + I{2}(xi) + I{3}(xi)

)
log θA

+
n∑

i=1

(
I{2}(xi) + 2I{4}(xi) + I{5}(xi)

)
log θB

+
n∑

i=1

(
I{3}(xi) + I{5}(xi) + 2I{6}(xi)

)
log θO

which is linear and additive in the indicator functions.

Conditional on Y
˜

and θ˜, some expectations can be written down automatically. For example

EfXi|Yi,θ˜
[I{j}(Xi)|Yi = 3, θ˜] =

{
1 j = 2

0 j 6= 2

EfXi|Yi,θ˜
[I{j}(Xi)|Yi = 4, θ˜] =

{
1 j = 6

0 j 6= 6

as by definition Y = 3 =⇒ X = 2 and Y = 4 =⇒ X = 6. For the remaining conditional expectations,
we have by Bayes theorem

EfXi|Yi,θ˜
[I{j}(Xi)|Yi = 1, θ˜] =





θ2
A

θ2
A + 2θAθO

j = 1

2θAθO

θ2
A + 2θAθO

j = 3

0 otherwise

as if Y = 1, then either X = 1 or X = 3, with conditional probability for each determined by noting
that

Pr[X = 1|Y = 1] =
Pr[X = 1, Y = 1]

Pr[Y = 1]
=

Pr[X = 1, Y = 1]
Pr[X = 1, Y = 1] + Pr[X = 3, Y = 1]

=
P(AA)

P(AA) + P(AO)
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Similarly,

EfXi|Yi,θ˜
[I{j}(Xi)|Yi = 2, θ˜] =





θ2
B

θ2
B + 2θBθO

j = 4

2θBθO

θ2
B + 2θBθO

j = 5

0 otherwise

Thus Q(θ˜|θ˜
(r)) takes the form

Q(θ˜|θ˜
(r)) = α

(r)
A log θA + α

(r)
B log θB + α

(r)
O log θO

where

α
(r)
A =

2n1θ
(r)2
A

θ
(r)2
A + 2θ

(r)
A θ

(r)
O

+ n3 +
2n1θ

(r)
A θ

(r)
O

θ
(r)2
A + 2θ

(r)
A θ

(r)
O

α
(r)
B = n3 +

2n2θ
(r)2
B

θ
(r)2
B + 2θ

(r)
B θ

(r)
O

+
2n2θ

(r)
B θ

(r)
O

θ
(r)2
B + 2θ

(r)
B θ

(r)
O

α
(r)
O =

2n1θ
(r)
A θ

(r)
O

θ
(r)2
A + 2θ

(r)
A θ

(r)
O

+
2n2θ

(r)
B θ

(r)
O

θ
(r)2
B + 2θ

(r)
B θ

(r)
O

+ 2n4.

and n1, . . . , n4 are the observed counts for phenotypes A,B,AB and O. By the results for the multinomial
likelihood, we can maximize Q(θ˜|θ˜

(r)) analytically to get

θ
(r+1)
A =

α
(r)
A

α
(r)
A + α

(r)
B + α

(r)
O

θ
(r+1)
B =

α
(r)
B

α
(r)
A + α

(r)
B + α

(r)
O

θ
(r+1)
O =

α
(r)
O

α
(r)
A + α

(r)
B + α

(r)
O

Example: Data from Clarke et. al. (1959)
We have n1 = 186, n2 = 38, n3 = 13 and n4 = 284 for the numbers of A,B,AB and O phenotypes in a
sample of n = 521. Starting the iterative procedure at θ˜

(0) = (1/3, 1/3, 1/3)T yields the following first
ten iterations:

r θ
(r)
A θ

(r)
B θ

(r)
O

1 0.25047985 0.06110045 0.68841971
2 0.21845436 0.05049394 0.73105170
3 0.21418233 0.05016173 0.73565593
4 0.21366195 0.05014667 0.73619139
5 0.21359944 0.05014547 0.73625508
6 0.21359196 0.05014535 0.73626270
7 0.21359106 0.05014533 0.73626361
8 0.21359095 0.05014533 0.73626372
9 0.21359094 0.05014533 0.73626373
10 0.21359094 0.05014533 0.73626373

indicating that convergence to the maximum value is fairly rapid.
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THE EM ALGORITHM: CENSORED DATA

Suppose that Y1, . . . , Yn are the realized failure times of electronic components, and that in addition
there are m additional components that are censored at times tn+1, . . . , tn+m. Denote by Xn+1, . . . , Xn+m

the unobserved failure times of these m components (so that we observe only that Xn+j > tn+j for
j = 1, . . . ,m).

Under the assumption that the data are Exponential(θ) distributed, we may carry out inference about
θ using the EM algorithm. We have the complete data likelihood as

L(θ|x˜, y
˜
) =

n∏

i=1

θe−θyi ×
n+m∏

i=n+1

θe−θxi = θn+m exp

{
−θ

[
n∑

i=1

yi +
n+m∑

i=n+1

xi

]}

so that

log L(θ|x˜, y
˜
) = (n + m) log θ − θ

[
n∑

i=1

yi +
n+m∑

i=n+1

xi

]
.

Bearing in mind the constraint that Xn+j > tn+j , we note that for i = n+1, . . . , n+m, in the Exponential
model that exhibits the lack of memory property

EfXi|Y˜
,θ
[Xi|y

˜
, θ] = ti +

1
θ

Thus

Q(θ|θ(r)) = (n + m) log θ − θ

[
n∑

i=1

yi +
n+m∑

i=n+1

ti +
m

θ(r)

]

which is readily maximized to yield

θ(r+1) =
n + m

n∑
i=1

yi +
n+m∑

i=n+1
ti +

m

θ(r)

For the following data

3.479 0.57 1.067? 1.736? 0.156? 0.265 0.044? 0.595 4.515? 1.617

where the ? superscript indicates censored values, we have n = m = 5. If θ(0) = 1, we have

r θ(r) r θ(r)

1 0.525137 11 0.356170
2 0.424376 12 0.356114
3 0.387227 13 0.356086
4 0.370989 14 0.356072
5 0.363370 15 0.356065
6 0.359677 16 0.356061
7 0.357858 17 0.356060
8 0.356956 18 0.356059
9 0.356506 19 0.356058

10 0.356282 20 0.356058

indicating that convergence to the maximum value is slower than in earlier examples. Note that in the
exponential model, the maximum likelihood estimate is available directly as

L(θ|y
˜
, t˜) = θn exp

{
−θ

[
n∑

i=1

yi +
n+m∑

i=n+1

ti

]}
∴ θ̂(y

˜
, t˜) =

n
n∑

i=1
yi +

n+m∑
i=n+1

ti

=
5

6.525 + 7.518
= 0.356058.
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