556: MATHEMATICAL STATISTICS I

NON 1-1 TRANSFORMATIONS

Suppose that *X* is a continuous r.v. with range $\mathbb{X} \equiv (0, 2\pi)$ whose pdf f_X is constant

$$f_X(x) = \frac{1}{2\pi} \qquad 0 < x < 2\pi$$

and zero otherwise. This pdf has corresponding continuous cdf

$$F_X(x) = \frac{x}{2\pi} \qquad 0 < x < 2\pi$$

Example 1 Consider transformed r.v. $Y = \sin X$. Then the range of Y, \mathbb{Y} is [-1,1], but the transformation is not 1-1. However, from first principles, we have

$$F_Y(y) = P[Y \le y] = P[\sin X \le y]$$

Now, by inspection of Figure 1, we can easily identify the required set A_y : it is the union of **two** disjoint intervals

$$A_y = [0, x_1] \cup [x_2, 2\pi] = [0, \arcsin y] \cup [\pi - \arcsin y, 2\pi]$$

Figure 1: Computation of A_y for $Y = \sin X$

$$F_Y(y) = P\left[\sin X \le y\right] = P\left[X \le x_1\right] + P\left[X \ge x_2\right] = \left\{P\left[X \le x_1\right]\right\} + \left\{1 - P\left[X < x_2\right]\right\}$$
$$= \left\{\frac{1}{2\pi}\arcsin y\right\} + \left\{1 - \frac{1}{2\pi}\left(\pi - \arcsin y\right)\right\} = \frac{1}{2} + \frac{1}{\pi}\arcsin y$$

and hence, by differentiation

$$f_Y(y) = \frac{1}{\pi} \frac{1}{\sqrt{1 - y^2}} \qquad 0 \le y \le 1$$

and zero otherwise.

Example 2 Consider transformed r.v. $Y = \sin^2 X$. Then the range of Y, \mathbb{Y} , is [0,1], but the transformation is not 1-1. However, from first principles, we have

$$F_Y(y) = P[Y \le y] = P[\sin X \le y]$$

In Figure 2, we identify the required set A_y : it is the union of **three** disjoint intervals

$$A_y = [0, x_1] \cup [x_2, x_3] \cup [x_4, 2\pi]$$

where

$$x_1 = \arcsin(\sqrt{y})$$
 $x_2 = \pi - \arcsin(\sqrt{y})$ $x_3 = \pi + \arcsin(\sqrt{y})$ $x_4 = 2\pi - \arcsin(\sqrt{y})$

Figure 2: Computation of A_y for $Y = \sin^2 X$

$$F_Y(y) = P\left[\sin^2 X \le y\right] = P\left[X \le x_1\right] + P\left[x_2 < X \le x_3\right] + P\left[x_4 < X \le 2\pi\right]$$

$$= F_X(x_1) + \left\{F_X(x_3) - F_X(x_2)\right\} + \left\{1 - F_X(x_4)\right\}$$

$$= \frac{x_1}{2\pi} + \left\{\frac{x_3}{2\pi} - \frac{x_2}{2\pi}\right\} + \left\{1 - \frac{x_4}{2\pi}\right\} = \frac{2}{\pi}\arcsin(\sqrt{y})$$

and hence, by differentiation

$$f_Y(y) = \frac{1}{\pi} \frac{1}{\sqrt{(1-y)y}} \qquad 0 \le y \le 1$$

and zero otherwise.

Example 3 Consider transformed r.v. $T = \tan X$. Then the range of T, \mathbb{T} is \mathbb{R} , but the transformation is not 1-1. However, from first principles, we have, for t > 0

$$F_T(t) = P[T \le t] = P[\tan X \le t]$$

Figure 3 helps identify the required set A_t : in this case, it is the union of three disjoint intervals

$$A_t = [0, x_1] \cup \left[\frac{\pi}{2}, x_2\right] \cup \left[\frac{3\pi}{2}, 2\pi\right] = \left[0, \tan^{-1} t\right] \cup \left[\frac{\pi}{2}, \pi + \tan^{-1} t\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$$

(note, for values of t < 0, the union will be of only two intervals, but the calculation proceeds identically) so that

Figure 3: Computation of A_t for $T = \tan X$

$$F_T(t) = P\left[\tan X \le t\right] = P\left[X \le x_1\right] + P\left[\frac{\pi}{2} \le X \le x_2\right] + P\left[\frac{3\pi}{2} \le X \le 2\pi\right]$$
$$= \left\{\frac{1}{2\pi} \tan^{-1} t\right\} + \frac{1}{2\pi} \left\{\pi + \tan^{-1} t - \frac{\pi}{2}\right\} + \frac{1}{2\pi} \left\{2\pi - \frac{3\pi}{2}\right\} = \frac{1}{\pi} \tan^{-1} t + \frac{1}{2}$$

and hence, by differentiation

$$f_T(t) = \frac{1}{\pi} \frac{1}{1 + t^2} \qquad t \in \mathbb{R}$$