
556: MATHEMATICAL STATISTICS I

INEQUALTIES

1. CONCENTRATION INEQUALITIES

LEMMA (CHEBYCHEV’S LEMMA)
If X is a random variable, then for non-negative function h, and c > 0,

P [h(X) ≥ c] ≤ EfX
[h(X)]
c

Proof. (continuous case) : Suppose that X has density function fX which is positive for x ∈ X. Let
A = {x ∈ X : h(x) ≥ c} ⊆ X . Then, as h(x) ≥ c on A,

EfX
[h(X)] =

∫
h(x)fX(x) dx =

∫

A
h(x)fX(x) dx +

∫

A′
h(x)fX(x) dx

≥
∫

A
h(x)fX(x) dx

≥
∫

A
cfX(x) dx

= cP [X ∈ A] = cP [h(X) ≥ c]

and the result follows.

• SPECIAL CASE I - THE MARKOV INEQUALITY
If h(x) = |x|r for r > 0, so

P [|X|r ≥ c] ≤ EfX
[|X|r]
c

.

Alternately stated (by Casella and Berger) as follows: If P [Y ≥ 0] = 1 and P [Y = 0] < 1, then for
any r > 0

P [Y ≥ r] ≤ EfX
[Y ]

r
with equality if and only if

P [Y = r] = p = 1− P [Y = 0]

for some 0 < p ≤ 1.

• SPECIAL CASE II - THE CHEBYCHEV INEQUALITY
Suppose that X is a random variable with expectation µ and variance σ2. Then h(x) = (x − µ)2

and c = k2σ2, for k > 0,
P

[
(X − µ)2 ≥ k2σ2

]
≤ 1/k2

or equivalently
P [|X − µ| ≥ kσ] ≤ 1/k2.

Setting ε = kσ gives
P [|X − µ| ≥ ε] ≤ σ2/ε2

or equivalently
P [|X − µ| < ε] ≥ 1− σ2/ε2.
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CHERNOFF BOUNDS

THEOREM
Suppose that X1, . . . , Xn are independent binary trials (known as ”Poisson trials”) such that

P [Xi = x] =
{

1− pi x = 0
pi x = 1

and zero otherwise. Let X = (X1 + · · ·+ Xn), so that

EfX
[X] =

n∑

i=1

pi = µ

say. Then for d > 0

P [X ≥ (1 + d)µ] ≤ exp
{

ed

(1 + d)(1+d)

}µ

and for 0 ≤ d ≤ 1
P [X ≥ (1 + d)µ] ≤ exp

{−µd2/3
}

Proof. Let a > 0. Then

P [X ≥ (1 + d)µ] = P [exp{aX} ≥ exp{a(1 + d)µ}]

≤ EfX
[exp{aX}] exp{−a(1 + d)µ}

using the previous Chebychev Lemma with h(x) = eax and c = ea(1+d)µ. But

EfX
[exp{aX}] =

n∏

i=1

EfXi
[exp{aXi}] =

n∏

i=1

[pie
a + (1− pi)] =

n∏

i=1

[1 + pi(ea − 1)]

Now for y > 0, 1 + y < ey, so setting y = pi(ea − 1), we conclude that

EfX
[exp{aX}] <

n∏

i=1

exp{pi(ea − 1)} = exp

{
n∑

i=1

pi(ea − 1)

}
= exp {µ(ea − 1)}

Hence
P [X ≥ (1 + d)µ] ≤ exp {µ(ea − 1)} exp{−a(1 + d)µ}

and setting a = log(1 + d) yields

P [X ≥ (1 + d)µ] ≤
{

eµd

(1 + d)µ(1+d)

}
=

{
ed

(1 + d)(1+d)

}µ

Now, for 0 ≤ d ≤ 1, the right hand side is bounded above by exp{−µd2/3}. To see this, consider (after
taking logs),

f(d) = d− (1 + d) log(1 + d) + d2/3.

We need to show that f(d) is bounded above by zero for 0 ≤ d ≤ 1. Now, clearly f(0) = 0, and taking
derivatives twice we have

f (1)(d) = − log(1 + d) + 2d/3

f (2)(d) = − 1
(1 + d)

+ 2/3

so f (1)(0) = 0 and f (1)(d) is negative for all 0 ≤ d ≤ 1. Thus f(d) must be negative for all d in this
range.
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NOTE : In fact, for any integer k ≥ 2, the bound for 0 ≤ d ≤ 1

P [X ≥ (1 + d)µ] ≤ exp
{
−µdk/3

}

holds, but the bound is tighter if k is smaller. The bound does not hold if k = 1. To see this, consider
again

fk(d) = d− (1 + d) log(1 + d) + dk/3.

and

f
(1)
k (d) = − log(1 + d) + kdk−1/3

f
(2)
k (d) = − 1

(1 + d)
+ k(k − 1)dk−2/3

Now fk(0) = 0 and fk(1) = 1− 2 log 2 + 1/3 < 0, and as there is only one solution of

log(1 + x) = kxk−1/3

on 0 < x < 1, there is precisely one turning point of f(d) on this interval. Thus fk(d) never becomes
positive on (0, 1).

See also the graph below of the function fk(d) for k = 1, 2, 3, 4, 5.

LEMMA (A CHERNOFF BOUND USING MGFS)
If X is a random variable, with mgf MX(t) defined on a neighbourhood (−h, h) of zero. Then

P [X ≥ a] ≤ e−atMX(t) for 0 < t < h

Proof. Using the Chebychev Lemma with h(x) = etx and c = eat, for t > 0,

P [X ≥ a] = P [tX ≥ at] = P [exp{tX} ≥ exp{at}] ≤ EfX
[etX ]

eat
=

MX(t)
eat

provided t < h also. Using similar methods,

P [X ≤ a] ≤ e−atMX(t) for − h < t < 0

THEOREM Tail bounds for the Normal density
If Z ∼ N(0, 1), then for t > 0

P [|Z| ≥ t] ≤
√

2
π

e−t2/2

t

Proof.

P [Z ≥ t] =
(

1
2π

)1/2 ∫ ∞

t
e−x2/2 dx ≤

(
1
2π

)1/2 ∫ ∞

t

x

t
e−x2/2 dx =

(
1
2π

)1/2 e−t2/2

t

and by symmetry P [|Z| ≥ t] = 2P [Z ≥ t].

Note: Using similar methods

P [|Z| ≥ t] ≥
√

2
π

te−t2/2

1 + t2

yielding a lower bound on this probability.
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Figure 1: The function fk(d) = d− (1 + d) log(1 + d) + dk/3 for k = 1, 2, 3, 4, 5. The function is negative
on 0 < d < 1 for each k ≥ 2.

2. INEQUALITIES FOR MULTIPLE RANDOM VARIABLES

LEMMA
Let a, b > 0 and p, q > 1 satisfy

1
p

+
1
q

= 1. (1)

Then
1
p

ap +
1
q

bq ≥ ab

with equality if and only if ap = bq.

Proof. Fix b > 0. Let

g(a; b) =
1
p

ap +
1
q

bq − ab.

We require that g(a; b) ≥ 0 for all a. Differentiating wrt a for fixed b yields

g(1)(a; b) = ap−1 − b

so that g(a; b) is minimized (the second derivative is strictly positive at all a) when ap−1 = b, and at
this value of a, the function takes the value

1
p

ap +
1
q

(ap−1)q − a(ap−1) =
1
p

ap +
1
q

ap − ap = 0
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as, by equation (1), 1/p + 1/q = 1 =⇒ (p− 1)q = p. As the second derivative is strictly positive at all a,
the minimum is attained at the unique value of a where ap−1 = b, where, raising both sides to power
q yields ap = bq.

THEOREM (HÖLDER’S INEQUALITY)
Suppose that X and Y are two random variables, and p, q > 1 satisfy 1. Then

|EfX,Y
[XY ]| ≤ EfX,Y

[|XY |] ≤ {EfX
[|X|p]}1/p {EfY

[|Y |q]}1/q

Proof. (continuous case) For the first inequality,

EfX,Y
[|XY |] =

∫∫
|xy|fX,Y (x, y) dxdy ≥

∫∫
xyfX,Y (x, y) dxdy = EfX,Y

[XY ]

and
EfX,Y

[XY ] =
∫∫

xyfX,Y (x, y) dxdy ≥
∫∫

−|xy|fX,Y (x, y) dxdy = −EfX,Y
[|XY |]

so
−EfX,Y

[|XY |] ≤ EfX,Y
[XY ] ≤ EfX,Y

[|XY |] ∴ |EfX,Y
[XY ]| ≤ EfX,Y

[|XY |].
For the second inequality, set

a =
|X|

{EfX
[|X|p]}1/p

b =
|Y |

{EfY
[|Y |q]}1/q

.

Then from the previous lemma

1
p

|X|p
EfX

[|X|p] +
1
q

|Y |q
EfY

[|Y |q] ≥
|XY |

{EfX
[|X|p]}1/p {EfY

[|Y |q]}1/q

and taking expectations yields, on the left hand side,

1
p

EfX
[|X|p]

EfX
[|X|p] +

1
q

EfY
[|Y |q]

EfY
[|Y |q] =

1
p

+
1
q

= 1

and on the right hand side
EfX,Y

[|XY |]
{EfX

[|X|p]}1/p {EfY
[|Y |q]}1/q

and the result follows.

THEOREM (CAUCHY-SCHWARZ INEQUALITY)
Suppose that X and Y are two random variables.

|EfX,Y
[XY ]| ≤ EfX,Y

[|XY |] ≤ {
EfX

[|X|2]}1/2 {
EfY

[|Y |2]}1/2

Proof. Set p = q = 2 in the Hölder Inequality.

Corollaries:
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(a) Let µX and µY denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz
inequality

|EfX,Y
[(X − µX)(Y − µY )]| ≤ {

EfX
[(X − µX)2]

}1/2 {
EfY

[(Y − µY )2]
}1/2

so that
EfX,Y

[(X − µX)(Y − µY )] ≤ EfX
[(X − µX)2]EfY

[(Y − µY )2]

and hence {
CovfX,Y

[X,Y ]
}2 ≤ V arfX

[X] V arfY
[Y ].

(b) Lyapunov’s Inequality: Define Y = 1 with probability one. Then, for 1 < p < ∞

EfX
[|X|] ≤ {EfX

[|X|p]}1/p .

Let 1 < r < p. Then
EfX

[|X|r] ≤ {EfX
[|X|pr]}1/p

and letting s = pr > r yields
EfX

[|X|r] ≤ {EfX
[|X|s]}r/s

so that
{EfX

[|X|r]}1/r ≤ {EfX
[|X|s]}1/s

for 1 < r < s < ∞.

THEOREM (MINKOWSKI’S INEQUALITY)
Suppose that X and Y are two random variables, and 1 ≤ p < ∞. Then

{
EfX,Y

[|X + Y |p]}1/p ≤ {EfX
[|X|p]}1/p + {EfY

[|Y |p]}1/p

Proof. Write

EfX,Y
[|X + Y |p] = EfX,Y

[|X + Y ||X + Y |p−1]

≤ EfX,Y
[|X||X + Y |p−1] + EfX,Y

[|Y ||X + Y |p−1]

by the triangle inequality x + y| ≤ |x|+ |y|. Using Hölder’s Inequality on the terms on the right hand
side, for q selected to satisfy 1/p + 1/q = 1,

EfX,Y
[|X+Y |p] ≤ {EfX

[|X|p]}1/p
{

EfX,Y
[|X + Y |q(p−1)]

}1/q
+{EfY

[|Y |p]}1/p
{

EfX,Y
[|X + Y |q(p−1)]

}1/q

and dividing through by
{
EfX,Y

[|X + Y |q(p−1)]
}1/q

yields

EfX,Y
[|X + Y |p]

{
EfX,Y

[|X + Y |q(p−1)]
}1/q

≤ {EfX
[|X|p]}1/p + {EfY

[|Y |p]}1/p

and the result follows as q(p− 1) = p, and 1− 1/q = 1/p.
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3. JENSEN’S INEQUALITY

Jensen’s Inequality gives a lower bound on expectations of convex functions. Recall that a function
g(x) is convex if, for 0 < λ < 1, g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y) for all x and y. Alternatively,
function g(x) is convex if

d2

dt2
{g(t)}t=x = g(2)(x) ≥ 0.

Conversely, g(x) is concave if −g(x) is convex.

THEOREM (JENSEN’S INEQUALITY)
Suppose that X is a random variable with expectation µ, and function g is convex. Then

EfX
[g(X)] ≥ g(EfX

[X])

with equality if and only if, for every line a + bx that is a tangent to g at µ

P [g(X) = a + bX] = 1.

that is, g(x) is linear.

Proof. Let l(x) = a + bx be the equation of the tangent at x = µ. Then, for each x, g(x) ≥ a + bx as in
the figure below.
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0
1

2
3

4
5

x

g(
x)

µ = 2

l(x) = a + bx

g(x)

Figure 2: The function g(x) and its tangent at x = µ.

Thus
EfX

[g(X)] ≥ EfX
[a + bX] = a + bEfX

[X] = l(µ) = g(µ) = g(EfX
[X])

as required. Also, if g(x) is linear, then equality follows by properties of expectations. Suppose that

EfX
[g(X)] = g(EfX

[X]) = g(µ)
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but g(x) is convex, but not linear. Let l(x) = a + bx be the tangent to g at µ. Then by convexity

g(x)− l(x) > 0 ∴
∫

(g(x)− l(x))fX(x) dx =
∫

g(x)fX(x) dx−
∫

l(x)fX(x) dx > 0

and hence
EfX

[g(X)] > EfX
[l(X)].

But l(x) is linear, so EfX
[l(X)] = a + bEfX

[X] = g(µ), yielding the contradiction

EfX
[g(X)] > g(EfX

[X]).

and the result follows.

Corollary and examples:

• If g(x) is concave, then
EfX

[g(X)] ≤ g(EfX
[X])

• g(x) = x2 is convex, thus
EfX

[
X2

] ≥ {EfX
[X]}2

• g(x) = log x is concave, thus
EfX

[log X] ≤ log {EfX
[X]}

LEMMA
Suppose that X is a random variable, with finite expectation µ. Let g be a non-decreasing function.
Then

EfX
[g(X)(X − µ)] ≥ 0

Proof. Using the indicator random variable IA(X),

EfX
[g(X)(X − µ)] = EfX

[g(X)(X − µ)I(−∞,0)(X − µ)] + EfX
[g(X)(X − µ)I[0,∞)(X − µ)]

=
∫ µ

−∞
g(x)(x− µ)fX(x)dx +

∫ ∞

µ
g(x)(x− µ)fX(x)dx

≥
∫ µ

−∞
g(µ)(x− µ)fX(x)dx +

∫ ∞

µ
g(µ)(x− µ)fX(x)dx

= EfX
[g(µ)(X − µ)I(−∞,0)(X − µ)] + EfX

[g(µ)(X − µ)I[0,∞)(X − µ)]

= EfX
[g(µ)(X − µ)] = 0

8


