556: MATHEMATICAL STATISTICS I
INEQUALTIES

1. CONCENTRATION INEQUALITIES

LEMMA (CHEBYCHEV’'S LEMMA)
If X is a random variable, then for non-negative function /, and ¢ > 0,

- Bry [h(X)

C

P[h(X) = d

Proof. (continuous case) : Suppose that X has density function fx which is positive for z € X. Let
A={x eX:h(z)>c} C X.Then,as h(x) > con A,

Ep, [h(X)] = / W) fx (@) do = / W) fx () do + / W) fx () do

A A

[ haxte) do

A

> /cfx(m) dz
A
= P X eA=cP[h(X)>(

v

and the result follows. g

e SPECIAL CASEI-THE MARKOV INEQUALITY
If h(z) = |z|" forr > 0, so
- B X1

PIXT 2 < =B

Alternately stated (by Casella and Berger) as follows: If P[Y" > 0] = 1 and P[Y = 0] < 1, then for

anyr >0

B Y
T
with equality if and only if

for some 0 < p < 1.

e SPECIAL CASEII - THE CHEBYCHEV INEQUALITY
Suppose that X is a random variable with expectation p and variance 2. Then h(z) = (z — p)?
and ¢ = k202, for k > 0,
P|(X —p)? > K02 <1/k?
or equivalently
P(|X — p| > ko] < 1/k2
Setting € = ko gives
P|X —p| > € <o?/é
or equivalently
PX —pul <€ >1-0%/.



CHERNOFF BOUNDS

THEOREM
Suppose that X7, ..., X,, are independent binary trials (known as “Poisson trials”) such that

pi cv=1
and zero otherwise. Let X = (X7 + - -- + X,,), so that

Ep [X]=> pi=up
i=1
say. Then for d > 0

ol ju
andfor0<d<1
PIX > (1+d)p] < exp{—pd?/3}
Proof. Leta > 0. Then

PIX>(1+du] = Plexp{aX} > expla(l +d)u}]

< Epglexp{aX}]exp{—a(l+ d)u}

using the previous Chebychev Lemma with h(z) = ¢ and ¢ = (1T, But

EpploxpfaX}] = [ Ep lexptoXil = [[oie® + (1 = pi)] = [ [1 + pite® — 1)
i=1 i =1

Now fory > 0,1+ y < €Y, so setting y = p;(e* — 1), we conclude that

Efylexp{aX}] < [ exp{pi(e® — 1)} = exp {Zpi(ea - 1)} = exp {u(e” — 1)}

i=1 1=1
Hence
PIX > (1+ d)p] < exp {u(e® — 1)} exp{—a(l + d)p}
and setting a = log(1 + d) yields

ez 00 = { e - {aes )

Now, for 0 < d < 1, the right hand side is bounded above by exp{—pud?/3}. To see this, consider (after
taking logs),

f(d)=d— (1+d)log(1+d)+d*/3.
We need to show that f(d) is bounded above by zero for 0 < d < 1. Now, clearly f(0) = 0, and taking
derivatives twice we have

fOd) = —log(1+d)+2d/3
@) — L
) = (1+d)+2/3

so f1(0) = 0 and f(1)(d) is negative for all 0 < d < 1. Thus f(d) must be negative for all d in this
range. 1



NOTE : In fact, for any integer £ > 2, the bound for 0 < d <1
PIX > (1+d)p) < exp { —ud"/3}

holds, but the bound is tighter if k£ is smaller. The bound does not hold if £ = 1. To see this, consider
again
fe(d) =d — (1 +d)log(1+d) + d*/3.

and
Fd) = —log(1+d) + kd* /3
(2) _ 1 k=2
P = (1+d)+k(k 1)d*2/3

Now fi(0) =0and fx(1) =1—2log2+ 1/3 < 0, and as there is only one solution of
log(1 4+ z) = ka*"1/3

on 0 < x < 1, there is precisely one turning point of f(d) on this interval. Thus f;(d) never becomes
positive on (0, 1).

See also the graph below of the function f;(d) for k = 1,2, 3,4, 5.

LEMMA (A CHERNOFF BOUND USING MGEFS)
If X is a random variable, with mgf M (¢) defined on a neighbourhood (—h, h) of zero. Then

PIX >a|<e ™Mx(t) forO<t<h

Proof. Using the Chebychev Lemma with h(z) = €' and ¢ = e, for ¢t > 0,
Ep e¥] _ Mx(t)

P[X > a] = P[tX > at] = Plexp{tX} > exp{at}] < =7 cat

provided ¢ < h also. Using similar methods,
P[X <a]<e ™Mx(t) for —h<t<0
]
THEOREM Tail bounds for the Normal density

If Z~ N(0,1), thenfort >0
267152/2
PIz >4 <2
T

/2 roo /2 roo 1/2 —t2/2
P[Z>1t1] = 1 / e T2 dr < 1 / Lo=e?/2 o — 1 €
27'(_ t 27T t t 271— t

and by symmetry P[|Z| > t] = 2P[Z > t].

2 te=t*/2
PllZ| >t >\ ——

yielding a lower bound on this probability.

Proof.

Note: Using similar methods



0.05
l

0.00

fi(d)
-0.05

-0.10
x~ =

=~
L L (LR 1
abhwN e
/
/
\

S~ —— -

-0.15
1

1

x~ =

-0.20

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: The function f;,(d) = d — (1 + d) log(1 + d) + d*/3 for k = 1,2, 3, 4, 5. The function is negative
on(0 < d < 1foreachk > 2.

2. INEQUALITIES FOR MULTIPLE RANDOM VARIABLES

LEMMA
Leta,b > 0 and p,q > 1 satisty
1 1
- +-=1. 1)
p q
Then
1 1
—aP+-b1>ab
p q

with equality if and only if a” = b9.
Proof. Fix b > 0. Let
g(a;b) = ! aP + ! b? — ab.
p q
We require that g(a; b) > 0 for all a. Differentiating wrt a for fixed b yields
g(l)(a; by=aP' —b

so that g(a;b) is minimized (the second derivative is strictly positive at all a) when a?~! = b, and at

this value of a, the function takes the value
1 1 1 1
—aP+ = (PN —a(aP ) ==aP +-aP —a’ =0
b q



as, by equation (1), 1/p+1/q¢ =1 = (p — 1)q = p. As the second derivative is strictly positive at all a,
the minimum is attained at the unique value of a where aP~! = b, where, raising both sides to power
q yields a? = b7. 11

THEOREM (HOLDER’S INEQUALITY)
Suppose that X and Y are two random variables, and p, ¢ > 1 satisfy 1. Then

|Bpy XY < Ep JIXY ) S {Ep [IXIP P LB, [[Y ]9}

Proof. (continuous case) For the first inequality,

By XY = / oyl fxy (.y) dedy > / / wyfxy (@, y) dedy = By, [XY]

and
By, [XY] = / / ryfxy (@,y) dedy > / / layl oy (y) dedy = — By [IXY]

SO
_EfX,YHXYH < EfX,Y[XY] < EfX,YHXYH |EfX,Y[XY” < EfX,YHXYH-

For the second inequality, set

U .S I S | N
{EplIXp]} {Ep (1Y}

Then from the previous lemma

1 |xp 1oV XY
P EncIXIP] g Ex (Y1 ™ {Ep | XPIYYP{Ep, [[Y]9)}

and taking expectations yields, on the left hand side,

} By [ X]7] 1 By, [[Y]7] _ 1 T 1 -1
p Epc[[XIF] - a Ex Y]] p o g

and on the right hand side
EfX,Y HXYH

{Ep IX PP (B, [V ]0]} 1/

and the result follows. 1

THEOREM (CAUCHY-SCHWARZ INEQUALITY)
Suppose that X and Y are two random variables.

|Epey (XY < Epy (XY < {Br (X2 By (1P}

Proof. Set p = q = 2 in the Holder Inequality. &

Corollaries:



(a) Let pux and py denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz

inequality
By [(X = i) (Y = )]l < {Ep [(X = )21} 2 {ER (Y = )}
so that
Efx,y[(X —pux)(Y = py)] < Ery (X — HX)Q]Efy (Y — My)z]
and hence

2
{Cova,Y[X7 Y]} < Vary [X]Varg, [Y].
(b) Lyapunov’s Inequality: Define Y = 1 with probability one. Then, for 1 < p < oo
Er | X1) < {Bp X7

Let1 < r < p. Then
Ep [IX] < {Ep [IX PP

and letting s = pr > r yields
Ep [IX]] < (B [IXI)}

so that
B XYY < {2y X

forl <r < s < oo.

THEOREM (MINKOWSKI'S INEQUALITY)
Suppose that X and Y are two random variables, and 1 < p < co. Then

(B IX + YPIYYP < (Ep XY+ (Ep [V P}V

Proof. Write

Ep X +YP] = Epy IX +Y]IX + Y P

< B XX + Y P74 B VX + Y P

by the triangle inequality = + y| < |z| + |y|. Using Holder’s Inequality on the terms on the right hand
side, for ¢ selected to satisfy 1/p+1/¢ =1,

_ Ya ) Ya
B IX+YP) < (B X PP { Epe 1X + Y1900 By, (VP By 11X 4+ Y9070

and dividing through by {Ey, , [|X + Y[4(P~1)] }1/q yields

Epey [IX + Y]

By, [|1X + Y|so-0]1 1/ < {Ep | XIPIYP + {Bp [V PP
fxy ap

and the result follows as ¢(p — 1) =p,and 1 —1/g = 1/p. &



3. JENSEN’S INEQUALITY

Jensen’s Inequality gives a lower bound on expectations of convex functions. Recall that a function
g(x)is convex if, for 0 < A < 1, g(Ax + (1 — N)y) < Ag(z) + (1 — X\)g(y) for all x and y. Alternatively,
function g(x) is convex if

d2
20Oy =P (@) 2 0.

Conversely, g(z) is concave if —g(x) is convex.

THEOREM (JENSEN’S INEQUALITY)
Suppose that X is a random variable with expectation 4, and function g is convex. Then

Ep [9(X)] = 9(Bpy [X])

with equality if and only if, for every line a + bz that is a tangent to g at p
Plg(X)=a+bX] =1.

that is, g(z) is linear.

Proof. Let l(z) = a + bx be the equation of the tangent at z = p. Then, for each z, g(z) > a + bx as in
the figure below.

g(x)

. I(x) =a+bx

Figure 2: The function g(z) and its tangent at x = p.

Thus
Er[9(X)] = Epyla+bX] = a+bEp [X] = () = g(p) = 9(Efy [X])

as required. Also, if g() is linear, then equality follows by properties of expectations. Suppose that

B [9(X)] = g(Eyy [X]) = g(n)



but g(z) is convex, but not linear. Let [(z) = a + bx be the tangent to g at ;.. Then by convexity

o@) =1 >0 o [l 1)) do= [ gl@rfx(@) da = [U@)fx(@) da>0
and hence
Epclg(X)] > Ep [I(X))].
But [(z) is linear, so Ey, [I[(X)] = a + bEy, [X] = g(p), yielding the contradiction

By [9(X)] > Q(Efx [XT]).

and the result follows. 1

Corollary and examples:

e If g(x) is concave, then

2

e g(x) = z* is convex, thus

e g(x) = logz is concave, thus
Efy [log X] <log{Ey, [X]}

LEMMA
Suppose that X is a random variable, with finite expectation p. Let g be a non-decreasing function.
Then

Epg(X)(X —p)] >0

Proof. Using the indicator random variable 74 (X),

ErJg(X)(X = )] = EpJg(X)(X = p)I(—c0,0)(X — p)] + Epy [9(X) (X = 1) I0,00) (X — )]

o0

[ @ -wix@det [ @ - p)xis

—00 m

o0

/ " o) — ) fx () da + / o(w)(@ — 1) fx()da

—00 2

Y

= Erg()(X = ) (—0,0)(X — )] + Epy [g(1) (X — 1) jg,00) (X — p1)]

= Eplg(p)(X —p)] =0



