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Abstract

We give two methods for computing the characteristic function of the hyperbolic secant (sech) distribution. The
first utilizes Fourier series expansions, the second complex analysis.

1 Introduction

We aim to compute the characteristic function for pdf
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that corresponds to the hyperbolic secant distribution'.

2 Using series expansions

2.1 A series expansion for the characteristic function

Note first that the expansion in equation (1) is generated as follows. Consider first z > 0; we have

2 2" - , — ,
e+ et ] +66*27T93 =2e" 7" Z(—l)k exp{—2rkz} =2 Z(—l)k exp{—(2k + 1)7x} (2)
k=0 k=0

But for z > 0, fx(—xz) = fx(z), so equation (2) holds for z < 0 also with z replaced by —z. Thus
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for |t| < 7, so the mgf exists. Thus,
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using the result from lectures that

"The lead factor of 2 was inadvertently dropped in the previous calculations



2.2 A Fourier series expansion for sech(z)

A Fourier series expansion for function f(x) takes the form
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Note that if f(z) is an even function, then f(x)sin(kx) is odd and f(x) cos(kx) is even, so
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and by, = 0. Conversely, if f(x) is odd, then f(x)sin(kz) is even and f(x) cos(kz) is odd, so
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where for k > 0

and a;, = 0.

o Consider first the expansion of f(x) = cos(fz), where 6 is not integer valued. This is an even function, so
we have b, = 0 and
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Also,
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o Now consider the expansion of f(z) = sin(fx), where 6 is not integer valued. This is an odd function, so

ar = 0 and by similar calculation
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2.3 The Characteristic Function of the sech(x) distribution
Setting x = t/27 in equation (8), we conclude that
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2.4 A note on the Fourier series representation

Technically, the Fourier series expansion in equation (4) is valid on |z| < 7, yet clearly the cf C'x is defined for
allt € Ras
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The cf is not identically zero when |¢/2| < =; in fact it does follow that the formula in equation (9) is valid for
all t as the function sech is analytic at all values of ¢, and thus
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by the technique of analytic continuation.

3 A Proof using Complex Analysis

We now compute the result using complex analysis. This proof is adapted from the proof of Priestley?, p241.
Consider the integral of the complex-valued function
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except at the pole zp = 7i/2. The residue at this covert pole is defined as
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Then by Cauchy’s Residue Theorem, the integral around the contour is equal to the residue multiplied by 27,
that is
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2Introduction to Complex Analysis, 2nd Edition, H. A. Priestley, 2003, Oxford University Press.
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as R — oo, as a < 1. Similarly
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so neither of these integrands depend on R or S. Thus
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and hence, from equation (10), we have
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Making the change of variable © — 7z yields
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and

C'x(t) = sec(it/2) = sech(t/2) = Wl(t/z)



