556: MATHEMATICAL STATISTICS I COMPUTING THE HYPERBOLIC SECANT DISTRIBUTION CHARACTERISTIC FUNCTION

David A. Stephens Department of Mathematics and Statistics McGill University

October 28, 2006

Abstract

We give two methods for computing the characteristic function of the hyperbolic secant (sech) distribution. The first utilizes Fourier series expansions, the second complex analysis.

1 Introduction

We aim to compute the characteristic function for pdf

$$f_X(x) = \frac{1}{\cosh(\pi x)} = \frac{2}{e^{-\pi x} + e^{\pi x}} = 2\sum_{k=0}^{\infty} (-1)^k \exp\{-(2k+1)\pi|x|\} \qquad x \in \mathbb{R}.$$
 (1)

that corresponds to the *hyperbolic secant* distribution¹.

2 Using series expansions

2.1 A series expansion for the characteristic function

Note first that the expansion in equation (1) is generated as follows. Consider first x > 0; we have

$$\frac{2}{e^{-\pi x} + e^{\pi x}} = \frac{2e^{-\pi x}}{1 + e^{-2\pi x}} = 2e^{-\pi x} \sum_{k=0}^{\infty} (-1)^k \exp\{-2\pi kx\} = 2\sum_{k=0}^{\infty} (-1)^k \exp\{-(2k+1)\pi x\}$$
 (2)

But for x > 0, $f_X(-x) = f_X(x)$, so equation (2) holds for x < 0 also with x replaced by -x. Thus

$$f_X(x) = 2\sum_{k=0}^{\infty} (-1)^k \exp\{-(2k+1)\pi|x|\}$$
 $x \in \mathbb{R}$.

Note that

$$\int_{-\infty}^{\infty} \frac{2e^{tx}}{e^{-\pi x} + e^{\pi x}} \ dx < \infty$$

for $|t| < \pi$, so the mgf exists. Thus,

$$C_X(t) = 2 \int_{-\infty}^{\infty} e^{itx} \sum_{k=0}^{\infty} (-1)^k \exp\{-(2k+1)\pi |x|\} dx = 2 \sum_{k=0}^{\infty} (-1)^k \int_{-\infty}^{\infty} e^{itx} \exp\{-(2k+1)\pi |x|\} dx$$

$$= 2 \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)\pi} \frac{2}{1 + \left\{\frac{t}{(2k+1)\pi}\right\}^2}$$

$$= 4\pi \sum_{k=0}^{\infty} (-1)^k \frac{(2k+1)}{(2k+1)^2\pi^2 + t^2}$$
(3)

using the result from lectures that

$$\int_{-\infty}^{\infty} e^{itx} \frac{1}{2} e^{-|x|} dx = \frac{1}{1+t^2}.$$

¹The lead factor of 2 was inadvertently dropped in the previous calculations

2.2 A Fourier series expansion for sech(x)

A Fourier series expansion for function f(x) takes the form

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$
 (4)

where for $k \geq 0$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \ dx$$
 $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \ dx.$

Note that if f(x) is an even function, then $f(x)\sin(kx)$ is odd and $f(x)\cos(kx)$ is even, so

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(kx) \ dx.$$

and $b_k = 0$. Conversely, if f(x) is odd, then $f(x)\sin(kx)$ is even and $f(x)\cos(kx)$ is odd, so

$$b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(kx) \ dx.$$

and $a_k = 0$.

• Consider first the expansion of $f(x) = \cos(\theta x)$, where θ is not integer valued. This is an even function, so we have $b_k = 0$ and

$$\frac{\pi}{2}a_{k} = \int_{0}^{\pi} f(x)\cos(kx) dx = \int_{0}^{\pi} \cos(\theta x)\cos(kx) dx = \frac{1}{2} \int_{0}^{\pi} \cos((\theta + k)x) + \cos((\theta - k)x) dx$$

$$= \frac{1}{2} \left[\frac{\sin((\theta + k)x)}{(\theta + k)} + \frac{\sin((\theta - k)x)}{(\theta - k)} \right]_{0}^{\pi}$$

$$= \frac{1}{2} \frac{\sin((\theta + k)\pi)}{(\theta + k)} + \frac{\sin((\theta - k)\pi)}{(\theta - k)}$$

$$= \frac{1}{2} \frac{(\theta - k)\sin((\theta + k)\pi) + (\theta + k)\sin((\theta - k)\pi)}{(\theta + k)(\theta - k)}$$

$$= \frac{1}{2} \frac{(\theta - k)\sin((\theta \pi)\cos(k\pi) + (\theta - k)\cos(\theta \pi)\sin(k\pi) + (\theta + k)\sin(\theta \pi)\cos(-k\pi) + (\theta + k)\cos(\theta \pi)\sin(-k\pi)}{(\theta^{2} - k^{2})}$$

$$= \frac{1}{2} \frac{(\theta - k)\sin((\theta \pi)\cos(k\pi) + (\theta + k)\sin((\theta \pi)(-1)^{k+1})}{(\theta^{2} - k^{2})}$$

$$= (-1)^{k} \frac{\theta\sin(\theta \pi)}{(\theta^{2} - k^{2})}$$

Also,

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \cos(\theta x) \ dx = \frac{2\sin(\theta \pi)}{\theta \pi}.$$

Hence, from equation (4)

$$\cos(\theta x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx)$$

$$= \frac{\sin(\theta \pi)}{\theta \pi} + \frac{2}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{\theta \sin(\theta \pi)}{(\theta^2 - k^2)} \cos(kx)$$

$$= \frac{\sin(\theta \pi)}{\theta \pi} + \frac{2\theta \sin(\theta \pi)}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{1}{(\theta^2 - k^2)} \cos(kx)$$

$$= \frac{2\theta \sin(\theta \pi)}{\pi} \left[\frac{1}{2\theta^2} - \frac{\cos(x)}{(\theta^2 - 1^2)} + \frac{\cos(2x)}{(\theta^2 - 2^2)} - \cdots \right] \tag{5}$$

• Now consider the expansion of $f(x) = \sin(\theta x)$, where θ is not integer valued. This is an odd function, so $a_k = 0$ and by similar calculation

$$\frac{\pi}{2}b_k = \int_0^{\pi} f(x)\sin(kx) dx = \int_0^{\pi} \sin(\theta x)\sin(kx) dx$$
$$= -\frac{1}{2}\int_0^{\pi} \cos((\theta + k)x) - \cos((\theta - k)x) dx$$
$$= (-1)^k \frac{k\sin(\theta \pi)}{(\theta^2 - k^2)}$$

Hence, from equation (4)

$$\sin(\theta x) = \sum_{k=1}^{\infty} b_k \sin(kx) = \frac{2}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{k \sin(\theta \pi)}{(\theta^2 - k^2)} \sin(kx)$$

$$= \frac{2 \sin(\theta \pi)}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{k \sin(kx)}{(\theta^2 - k^2)}$$

$$= -\frac{2 \sin(\theta \pi)}{\pi} \left[\frac{\sin(x)}{(\theta^2 - 1^2)} - \frac{2 \sin(2x)}{(\theta^2 - 2^2)} + \frac{3 \sin(3x)}{(\theta^2 - 3^2)} \cdots \right]$$
(6)

Now, for any θ ,

$$\sin(\theta \pi) = 2\sin(\theta \pi/2)\cos(\theta \pi/2)$$

so that

$$\frac{1}{\cos(\theta\pi/2)} = \frac{2\sin(\theta\pi/2)}{\sin(\theta\pi)}.$$
 (7)

But from equation (6), for any x

$$\frac{\sin(\theta x)}{\sin(\theta \pi)} = \frac{2}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{k \sin(kx)}{(\theta^2 - k^2)}$$

and at $x = \pi/2$,

$$\frac{\sin(\theta\pi/2)}{\sin(\theta\pi)} = \frac{2}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{k \sin(k\pi/2)}{(\theta^2 - k^2)} = \frac{2}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)}{(\theta^2 - (2k-1)^2)}$$

Hence, from equation (7)

$$\frac{1}{\cos(\theta\pi/2)} = \frac{4}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)}{(\theta^2 - (2k-1)^2)}$$

and equivalently, at $\theta = 2x$

$$\frac{\pi}{\cos(\pi x)} = 4\sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)}{(4x^2 - (2k-1)^2)}$$

or at $\theta = 2ix$

$$\frac{\pi}{\cosh(\pi x)} = 4\sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)}{(-4x^2 - (2k-1)^2)} = 4\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k-1)}{((2k-1)^2 + 4x^2)}$$

and hence

$$\frac{1}{\cosh(\pi x)} = \frac{4}{\pi} \sum_{k=0}^{\infty} (-1)^k \frac{(2k+1)}{((2k+1)^2 + 4x^2)}$$
 (8)

2.3 The Characteristic Function of the sech(x) distribution

Setting $x = t/2\pi$ in equation (8), we conclude that

$$\frac{1}{\cosh(t/2)} = \frac{4}{\pi} \sum_{k=0}^{\infty} (-1)^k \frac{(2k+1)}{((2k+1)^2 + t^2/\pi^2)}$$
$$= 4\pi \sum_{k=0}^{\infty} (-1)^k \frac{(2k+1)}{(2k+1)^2 \pi^2 + t^2}$$

and

$$C_X(t) = \frac{1}{\cosh(t/2)} = \operatorname{sech}(t/2) = \frac{2}{e^{t/2} + e^{-t/2}}$$
 (9)

by comparison with equation (3).

2.4 A note on the Fourier series representation

Technically, the Fourier series expansion in equation (4) is valid on $|x| < \pi$, yet clearly the cf C_X is defined for all $t \in \mathbb{R}$ as

 $\left| \int_{-\infty}^{\infty} e^{itx} \frac{2}{e^{\pi x} + e^{-\pi x}} \ dx \right| < 1 \qquad \forall \ t.$

The cf is not identically zero when $|t/2| < \pi$; in fact it does follow that the formula in equation (9) is valid for all t as the function sech is analytic at all values of t, and thus

$$C_X(t) = \operatorname{sech}(t/2)$$
 $t \in \mathbb{R}$

by the technique of analytic continuation.

3 A Proof using Complex Analysis

We now compute the result using complex analysis. This proof is adapted from the proof of Priestley², p241. Consider the integral of the complex-valued function

$$f(z) = \frac{e^{az}}{\cosh(z)} = \frac{2e^{az}}{e^z + e^{-z}} \qquad z \in \mathbb{C}$$

for $a \in \mathbb{R}$, and -1 < a < 1; f has simple poles at

$$z = \frac{1}{2}(2k+1)\pi i \qquad k \in \mathbb{Z}$$

as

$$\exp\left\{\frac{1}{2}(2k+1)\pi i\right\} + \exp\left\{-\frac{1}{2}(2k+1)\pi i\right\} = 2\cos\left(\frac{1}{2}(2k+1)\pi\right) = 0.$$

Technically, f is holomorphic inside and on the rectangular contour C defined (anti-clockwise) by the corners

$$(R,0), (R,\pi), (-S,\pi), (-S,0),$$

except at the pole $z_0 = \pi i/2$. The **residue** at this *covert* pole is defined as

Res
$$(f(z), z_0) = \frac{g(z_0)}{h'(z_0)}$$

where

$$g(z) = 2e^{az}$$
 $h(z) = e^z + e^{-z}$: $h'(z) = e^z - e^{-z}$

so that

$$\operatorname{Res}(f(z),z_0) = \frac{2e^{a\pi i/2}}{e^{\pi i/2} - e^{-\pi i/2}} = \frac{2e^{a\pi i/2}}{2i\sin(\pi/2)} = -ie^{a\pi i/2}$$

Then by Cauchy's Residue Theorem, the integral around the contour is equal to the residue multiplied by $2\pi i$, that is

$$\oint_C f(z)dz = 2\pi i \operatorname{Res}(f(z), z_0) = 2\pi e^{a\pi i/2}$$
(10)

For the line integral

$$\oint_C f(z)dz = \int_0^{\pi} f(R+iy) \, dy + \int_R^{-S} f(x+i\pi) \, dx + \int_{\pi}^0 f(-S+iy) \, dy + \int_{-S}^R f(x+i0) \, dx$$

$$= \int_0^{\pi} \frac{2e^{a(R+iy)}}{e^{(R+iy)} + e^{-(R+iy)}} \, dy + \int_R^{-S} \frac{2e^{a(x+i\pi)}}{e^{(x+i\pi)} + e^{-(x+i\pi)}} \, dx$$

$$+ \int_{\pi}^0 \frac{2e^{a(-S+iy)}}{e^{(-S+iy)} + e^{-(-S+iy)}} \, dy + \int_{-S}^R \frac{2e^{a(x+i0)}}{e^{(x+i0)} + e^{-(x+i0)}} \, dx$$

Taking the integrals in turn, and examining limiting behaviour as the $R, S \rightarrow \infty$

$$\left| \int_0^\pi \frac{2e^{a(R+iy)}}{e^{(R+iy)} + e^{-(R+iy)}} \ dy \right| \leq \int_0^\pi \left| \frac{2e^{a(R+iy)}}{e^{(R+iy)} + e^{-(R+iy)}} \right| \ dy \leq \int_0^\pi \left| \frac{2e^{aR}}{e^R - e^{-R}} \right| \ dy \to 0$$

²Introduction to Complex Analysis, 2nd Edition, H. A. Priestley, 2003, Oxford University Press.

as $R \to \infty$, as a < 1. Similarly

$$\left| \int_0^\pi \frac{2e^{a(-S+iy)}}{e^{(-S+iy)} + e^{-(-S+iy)}} \ dy \right| \le \int_0^\pi \left| \frac{2e^{a(-S+iy)}}{e^{(-S+iy)} + e^{-(-S+iy)}} \right| \ dy \le \int_0^\pi \left| \frac{2e^{-aS}}{e^{-S} - e^S} \right| \ dy \to 0$$

as $S \to \infty$, as a > -1. For the remaining integrals

$$\int_{R}^{-S} \frac{2e^{a(x+i\pi)}}{e^{(x+i\pi)} + e^{-(x+i\pi)}} dx = -e^{a\pi i} \int_{R}^{-S} \frac{2e^{ax}}{e^{x} + e^{-x}} dx = e^{a\pi i} \int_{-S}^{R} \frac{2e^{ax}}{e^{x} + e^{-x}} dx$$

$$\int_{-S}^{R} \frac{2e^{a(x+i0)}}{e^{(x+i0)} + e^{-(x+i0)}} dx = \int_{-S}^{R} \frac{2e^{ax}}{e^{x} + e^{-x}} dx$$

 J_{-S} $e^{(x+x)} + e^{-(x+x)}$ so neither of these integrands depend on R or S. Thus

$$\lim_{R,S \to \infty} \oint_C f(z) dz = (1 + e^{a\pi i}) \int_{-\infty}^{\infty} \frac{2e^{ax}}{e^x + e^{-x}} dx$$

and hence, from equation (10), we have

$$(1 + e^{a\pi i}) \int_{-\infty}^{\infty} \frac{2e^{ax}}{e^x + e^{-x}} dx = 2\pi e^{a\pi i/2}$$

so that

$$\int_{-\infty}^{\infty} \frac{2e^{ax}}{e^x + e^{-x}} dx = \frac{2\pi e^{a\pi i/2}}{(1 + e^{a\pi i})} = \frac{2\pi}{e^{a\pi i/2} + e^{-a\pi i/2}} = \frac{\pi}{\cos(a\pi/2)} = \pi \sec(a\pi/2).$$

Making the change of variable $x \to \pi x$ yields

$$\int_{-\infty}^{\infty} \frac{2e^{a\pi x}}{e^{\pi x} + e^{-\pi x}} dx = \sec(a\pi/2)$$

and setting $t = a\pi$ yields

$$\int_{-\infty}^{\infty} \frac{2e^{tx}}{e^{\pi x} + e^{-\pi x}} \ dx = \sec(t/2).$$

Thus

$$M_X(t) = \int_{-\infty}^{\infty} \frac{2e^{tx}}{e^{\pi x} + e^{-\pi x}} dx = \sec(t/2)$$

and

$$C_X(t) = \sec(it/2) = \operatorname{sech}(t/2) = \frac{1}{\cosh(t/2)}.$$