
BACKDOOR PATH WITH A COLLIDER AND UNMEASURED CONFOUNDING

XYZ

U

The corresponding probability model factorizes as

fU,X,Y,Z(u, x, y, z) = fU (u)fZ|U (z|u)fY |Z(y|z)fX|U,Y (x|u, y)

In this graph, we have two paths from Z to Y

• Path (Z, Y ) this is a directed path;
• Path (Z,U,X, Y ): this is an undirected path that is also a backdoor path.

However the second path is blocked at the collider X , so there is no open backdoor path, and thus the effect of
Z on Y is only found through the first.

set.seed(2384)
n<-10000
U<-rnorm(n,10,1)
Z<-rnorm(n,2*U+1,1)
Y<-rnorm(n,-Z+3,1)
X<-rnorm(n,Y+U,1)
data1<-data.frame(U,X,Y,Z);pairs(data1,pch=19,cex=0.5)
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If we regress Y on Z, then the correct relationship is recovered.
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round(coef(summary(lm(Y~Z))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 2.961994 0.094022 31.50325 0
+ Z -0.998035 0.004448 -224.39271 0

However, if we condition onX in the regression, we see that bias is introduced in the estimation of the coefficient.

round(coef(summary(lm(Y~Z+X))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 0.903804 0.072623 12.44514 0
+ Z -0.727314 0.004393 -165.54528 0
+ X 0.453505 0.004917 92.23862 0

If we condition on U only, then the direct effect of Z on Y is correctly captured, as the path is still blocked at X

round(coef(summary(lm(Y~Z+U))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 2.932047 0.100382 29.208980 0.00000
+ Z -1.005670 0.010007 -100.498340 0.00000
+ U 0.019045 0.022360 0.851756 0.39437

If we condition on U and X , then the direct effect of Z on Y is also not captured.

round(coef(summary(lm(Y~Z+X+U))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 1.474144 0.072171 20.42563 0
+ Z -0.502210 0.008640 -58.12750 0
+ X 0.498937 0.004952 100.76459 0
+ U -0.493843 0.016552 -29.83663 0

This is due to selection bias: conditioning on a descendant of Y will lead to bias in most circumstances. Consider
the simple chain graph The corresponding probability model factorizes as

XYZ

fX,Y,Z(x, y, z) = fZ(z)fY |Z(y|z)fX|Y,Z(x|y, z).

Clearly we can integrate out x from the joint density to leave

fY,Z(y, z) = fZ(z)fY |Z(y|z)

leaving the (Z, Y ) relationship unchanged. However, we have that

fY |X,Z(y|x, z) =
fX,Y,Z(x, y, z)

fX,Z(x, z)
=
fZ(z)fY |Z(y|z)fX|Y,Z(x|y, z)

fZ(z)fX|Z(x|z)
=
fX|Y,Z(x|y, z)
fX|Z(x|z)

fY |Z(y|z)

and in general
fX|Y,Z(x|y, z)
fX|Z(x|z)

6= 1

so
fY |X,Z(y|x, z) 6= fY |Z(y|z).
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Notice, however, that we can change the data generating model to make the analyses agree. If the conditional
model for Y given Z is instead

Y = −0.5Z + 3 + ε

and then
X = 0.75Y + U + ε

then the effect of conditioning changes.

set.seed(2384)
n<-10000
U<-rnorm(n,10,1)
Z<-rnorm(n,2*U+1,1)
Y<-rnorm(n,-0.5*Z+3,1)
X<-rnorm(n,0.75*Y+U,1)
data2<-data.frame(U,X,Y,Z);pairs(data2,pch=19,cex=0.5)
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If we regress Y on Z, then the correct relationship is recovered.

round(coef(summary(lm(Y~Z))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 2.961994 0.094022 31.50325 0
+ Z -0.498035 0.004448 -111.97548 0

Now, if we condition on X in the regression, we see that bias is still not present, even though there is an open,
biasing path.
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round(coef(summary(lm(Y~Z+X))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 1.342382 0.080650 16.64451 0
+ Z -0.509786 0.003656 -139.42652 0
+ X 0.426448 0.006137 69.49304 0

If we condition on U only, then the direct effect of Z on Y is correctly captured, as the path is still blocked at X

round(coef(summary(lm(Y~Z+U))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 2.932047 0.100382 29.208980 0.00000
+ Z -0.505670 0.010007 -50.532496 0.00000
+ U 0.019045 0.022360 0.851756 0.39437

However, if we condition on U and X , then the direct effect of Z on Y is not captured.

round(coef(summary(lm(Y~Z+X+U))),6)

+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 1.880322 0.081181 23.16219 0
+ Z -0.321823 0.008334 -38.61466 0
+ X 0.480458 0.006337 75.82198 0
+ U -0.472560 0.018960 -24.92430 0

As a final summary, we can inspect the inverse of the sample correlation matrices:

round(solve(cor(data1)),6)

+ U X Y Z
+ U 6.088401 -2.031254 2.461387 -4.562629
+ X -2.031254 4.020629 -4.965237 -0.029805
+ Y 2.461387 -4.965237 12.168425 5.592981
+ Z -4.562629 -0.029805 5.592981 10.175987

round(solve(cor(data2)),6)

+ U X Y Z
+ U 6.088401 -1.354396 1.124682 -4.552405
+ X -1.354396 1.787544 -1.522344 -0.004926
+ Y 1.124682 -1.522344 3.550755 1.711425
+ Z -4.552405 -0.004926 1.711425 6.354784

Note that in both cases, the entry in the position relating X and Z is almost zero. This is an indication that
conditional on the other variables, X and Z are uncorrelated (actually independent here in this Gaussian case).
This entry corresponds to the partial correlation between the two variables.
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