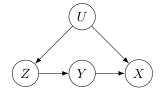
BACKDOOR PATH WITH A COLLIDER AND UNMEASURED CONFOUNDING



The corresponding probability model factorizes as

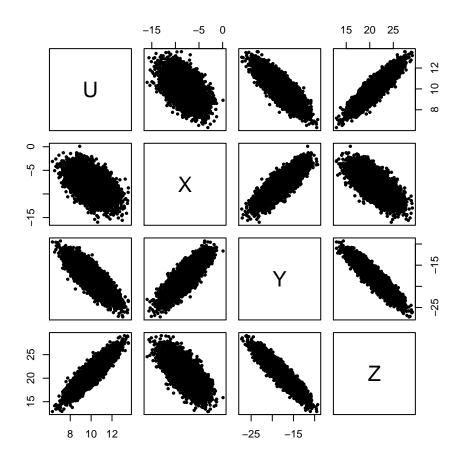
$$f_{U,X,Y,Z}(u,x,y,z) = f_U(u)f_{Z|U}(z|u)f_{Y|Z}(y|z)f_{X|U,Y}(x|u,y)$$

In this graph, we have two paths from Z to Y

- Path (Z, Y) this is a directed path;
- Path (Z, U, X, Y): this is an undirected path that is also a backdoor path.

However the second path is blocked at the collider X, so there is no open backdoor path, and thus the effect of Z on Y is only found through the first.

```
set.seed(2384)
n<-10000
U<-rnorm(n,10,1)
Z<-rnorm(n,2*U+1,1)
Y<-rnorm(n,-Z+3,1)
X<-rnorm(n,Y+U,1)
data1<-data.frame(U,X,Y,Z);pairs(data1,pch=19,cex=0.5)</pre>
```



If we regress Y on Z, then the correct relationship is recovered.

round(coef(summary(lm(Y~Z))),6)

+		Estimate	Std. Error	t value	Pr(> t)
+	(Intercept)	2.961994	0.094022	31.50325	0
+	Z	-0.998035	0.004448	-224.39271	0

However, if we condition on X in the regression, we see that bias is introduced in the estimation of the coefficient.

round(coef(summary(lm(Y~Z+X))),6)

t value Pr(>|t|) + Estimate Std. Error + (Intercept) 0.903804 0.072623 12.44514 0 + Z -0.727314 0.004393 -165.54528 0 + Х 0.453505 0.004917 92.23862 \cap

If we condition on U only, then the direct effect of Z on Y is correctly captured, as the path is still blocked at X

round(coef(summary(lm(Y~Z+U))),6)

 +
 Estimate Std. Error
 t value Pr(>|t|)

 + (Intercept)
 2.932047
 0.100382
 29.208980
 0.00000

 + Z
 -1.005670
 0.010007
 -100.498340
 0.00000

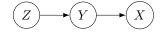
 + U
 0.019045
 0.022360
 0.851756
 0.39437

If we condition on U and X, then the direct effect of Z on Y is also not captured.

```
round(coef(summary(lm(Y~Z+X+U))),6)
```

+		Estimate	Std. Error	t value	Pr(> t)
+	(Intercept)	1.474144	0.072171	20.42563	0
+	Z	-0.502210	0.008640	-58.12750	0
+	Х	0.498937	0.004952	100.76459	0
+	U	-0.493843	0.016552	-29.83663	0

This is due to *selection bias*: conditioning on a descendant of *Y* will lead to bias in most circumstances. Consider the simple chain graph The corresponding probability model factorizes as



$$f_{X,Y,Z}(x,y,z) = f_Z(z)f_{Y|Z}(y|z)f_{X|Y,Z}(x|y,z)$$

Clearly we can integrate out *x* from the joint density to leave

$$f_{Y,Z}(y,z) = f_Z(z)f_{Y|Z}(y|z)$$

leaving the (Z, Y) relationship unchanged. However, we have that

$$f_{Y|X,Z}(y|x,z) = \frac{f_{X,Y,Z}(x,y,z)}{f_{X,Z}(x,z)} = \frac{f_Z(z)f_{Y|Z}(y|z)f_{X|Y,Z}(x|y,z)}{f_Z(z)f_{X|Z}(x|z)} = \frac{f_{X|Y,Z}(x|y,z)}{f_{X|Z}(x|z)}f_{Y|Z}(y|z)$$

and in general

$$\frac{f_{X|Y,Z}(x|y,z)}{f_{X|Z}(x|z)} \neq 1$$

 $f_{Y|X,Z}(y|x,z) \neq f_{Y|Z}(y|z).$

so

Notice, however, that we can change the data generating model to make the analyses agree. If the conditional model for Y given Z is instead

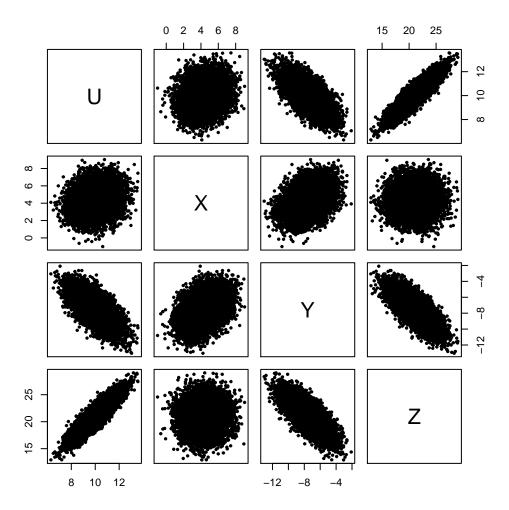
$$Y = -0.5Z + 3 + \epsilon$$

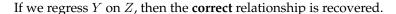
and then

 $X=0.75Y+U+\varepsilon$

then the effect of conditioning changes.

set.seed(2384)
n<-10000
U<-rnorm(n,10,1)
Z<-rnorm(n,2*U+1,1)
Y<-rnorm(n,-0.5*Z+3,1)
X<-rnorm(n,0.75*Y+U,1)
data2<-data.frame(U,X,Y,Z);pairs(data2,pch=19,cex=0.5)</pre>





round(coef(summary(lm(Y[~]Z))),6)
+ Estimate Std. Error t value Pr(>|t|)
+ (Intercept) 2.961994 0.094022 31.50325 0
+ Z -0.498035 0.004448 -111.97548 0

Now, if we condition on *X* in the regression, we see that bias is still **not present**, even though there is an open, biasing path.

round(coef(summary(lm(Y^Z+X))),6)

+		Estimate	Std. Error	t value	Pr(> t)
+	(Intercept)	1.342382	0.080650	16.64451	0
+	Z	-0.509786	0.003656	-139.42652	0
+	Х	0.426448	0.006137	69.49304	0

If we condition on *U* only, then the direct effect of *Z* on *Y* is **correctly captured**, as the path is still blocked at *X*

round(coef(summary(lm(Y^Z+U))),6)

+Estimate Std. Errort value Pr(>|t|)+ (Intercept)2.9320470.10038229.2089800.00000+ Z-0.5056700.010007-50.5324960.00000+ U0.0190450.0223600.8517560.39437

However, if we condition on *U* and *X*, then the direct effect of *Z* on *Y* is **not** captured.

round(coef(summary(lm(Y~Z+X+U))),6)

+		Estimate	Std. Error	t value	Pr(> t)
+	(Intercept)	1.880322	0.081181	23.16219	0
+	Z	-0.321823	0.008334	-38.61466	0
+	Х	0.480458	0.006337	75.82198	0
+	U	-0.472560	0.018960	-24.92430	0

As a final summary, we can inspect the **inverse** of the sample correlation matrices:

round(solve(cor(data1)),6)

+		U	Х	Y	Z
+	U	6.088401	-2.031254	2.461387	-4.562629
+	Х	-2.031254	4.020629	-4.965237	-0.029805
+	Y	2.461387	-4.965237	12.168425	5.592981
+	Ζ	-4.562629	-0.029805	5.592981	10.175987

round(solve(cor(data2)),6)

+		U	Х	Y	Z
+	U	6.088401	-1.354396	1.124682	-4.552405
+	Х	-1.354396	1.787544	-1.522344	-0.004926
+	Y	1.124682	-1.522344	3.550755	1.711425
+	Ζ	-4.552405	-0.004926	1.711425	6.354784

Note that in both cases, the entry in the position relating X and Z is almost zero. This is an indication that conditional on the other variables, X and Z are uncorrelated (actually independent here in this Gaussian case). This entry corresponds to the **partial correlation** between the two variables.